Articles | Volume 19, issue 6
https://doi.org/10.5194/bg-19-1657-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1657-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tidal mixing of estuarine and coastal waters in the western English Channel is a control on spatial and temporal variability in seawater CO2
Department of Geography, University of Calgary, Calgary, T2N 1N4, Canada
Michael Bedington
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Ute Schuster
Department of Geography, University of Exeter, Exeter, EX4 4QE, UK
Andrew J. Watson
Department of Geography, University of Exeter, Exeter, EX4 4QE, UK
Vassilis Kitidis
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Ricardo Torres
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Helen S. Findlay
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
James R. Fishwick
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Ian Brown
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Related authors
Richard P. Sims, Thomas M. Holding, Peter E. Land, Jean-Francois Piolle, Hannah L. Green, and Jamie D. Shutler
Earth Syst. Sci. Data, 15, 2499–2516, https://doi.org/10.5194/essd-15-2499-2023, https://doi.org/10.5194/essd-15-2499-2023, 2023
Short summary
Short summary
The flow of carbon between the land and ocean is poorly quantified with existing measurements. It is not clear how seasonality and long-term variability impact this flow of carbon. Here, we demonstrate how satellite observations can be used to create decadal time series of the inorganic carbonate system in the Amazon and Congo River outflows.
Richard P. Sims, Mohamed M. M. Ahmed, Brian J. Butterworth, Patrick J. Duke, Stephen F. Gonski, Samantha F. Jones, Kristina A. Brown, Christopher J. Mundy, William J. Williams, and Brent G. T. Else
Ocean Sci., 19, 837–856, https://doi.org/10.5194/os-19-837-2023, https://doi.org/10.5194/os-19-837-2023, 2023
Short summary
Short summary
Using a small research vessel based out of Cambridge Bay in the Kitikmeot Sea (Canadian Arctic Archipelago), we were able to make measurements of surface ocean pCO2 shortly after sea ice breakup for 4 consecutive years. We compare our measurements to previous underway measurements and the two ongoing ocean carbon observatories in the region. We identify high interannual variability and a potential bias in previous estimates due to lower pCO2 in bays and inlets.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Brent G. T. Else, Araleigh Cranch, Richard P. Sims, Samantha Jones, Laura A. Dalman, Christopher J. Mundy, Rebecca A. Segal, Randall K. Scharien, and Tania Guha
The Cryosphere, 16, 3685–3701, https://doi.org/10.5194/tc-16-3685-2022, https://doi.org/10.5194/tc-16-3685-2022, 2022
Short summary
Short summary
Sea ice helps control how much carbon dioxide polar oceans absorb. We compared ice cores from two sites to look for differences in carbon chemistry: one site had thin ice due to strong ocean currents and thick snow; the other site had thick ice, thin snow, and weak currents. We did find some differences in small layers near the top and the bottom of the cores, but for most of the ice volume the chemistry was the same. This result will help build better models of the carbon sink in polar oceans.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Alex T. Archibald, Bablu Sinha, Maria R. Russo, Emily Matthews, Freya A. Squires, N. Luke Abraham, Stephane J.-B. Bauguitte, Thomas J. Bannan, Thomas G. Bell, David Berry, Lucy J. Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian A. King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Bengamin I. Moat, Katie Read, Chris Reed, Malcolm J. Roberts, Reinhard Schiemann, David Schroeder, Timothy J. Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Mingxi Yang
Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, https://doi.org/10.5194/essd-17-135-2025, 2025
Short summary
Short summary
Here, we present an overview of the data generated as part of the North Atlantic Climate System Integrated Study (ACSIS) programme that are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA; www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC; bodc.ac.uk). The datasets described here cover the North Atlantic Ocean, the atmosphere above (it including its composition), and Arctic sea ice.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, and Rafel Simó
Biogeosciences, 21, 4439–4452, https://doi.org/10.5194/bg-21-4439-2024, https://doi.org/10.5194/bg-21-4439-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emission and quantification of its impacts have large uncertainties, but a detailed study on the emissions and drivers of their uncertainty is missing to date. The emissions are usually calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in DMS seawater products, which can affect DMS fluxes.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, Mingxi Yang, and Rafel Simó
Biogeosciences, 21, 4453–4467, https://doi.org/10.5194/bg-21-4453-2024, https://doi.org/10.5194/bg-21-4453-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emissions and quantification of their impacts have large uncertainties, but a detailed study on the range of emissions and drivers of their uncertainty is missing to date. The emissions are calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in the effect of flux parameterizations used in models.
Neill Mackay, Taimoor Sohail, Jan David Zika, Richard G. Williams, Oliver Andrews, and Andrew James Watson
Geosci. Model Dev., 17, 5987–6005, https://doi.org/10.5194/gmd-17-5987-2024, https://doi.org/10.5194/gmd-17-5987-2024, 2024
Short summary
Short summary
The ocean absorbs carbon dioxide from the atmosphere, mitigating climate change, but estimates of the uptake do not always agree. There is a need to reconcile these differing estimates and to improve our understanding of ocean carbon uptake. We present a new method for estimating ocean carbon uptake and test it with model data. The method effectively diagnoses the ocean carbon uptake from limited data and therefore shows promise for reconciling different observational estimates.
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
Richard P. Sims, Thomas M. Holding, Peter E. Land, Jean-Francois Piolle, Hannah L. Green, and Jamie D. Shutler
Earth Syst. Sci. Data, 15, 2499–2516, https://doi.org/10.5194/essd-15-2499-2023, https://doi.org/10.5194/essd-15-2499-2023, 2023
Short summary
Short summary
The flow of carbon between the land and ocean is poorly quantified with existing measurements. It is not clear how seasonality and long-term variability impact this flow of carbon. Here, we demonstrate how satellite observations can be used to create decadal time series of the inorganic carbonate system in the Amazon and Congo River outflows.
Richard P. Sims, Mohamed M. M. Ahmed, Brian J. Butterworth, Patrick J. Duke, Stephen F. Gonski, Samantha F. Jones, Kristina A. Brown, Christopher J. Mundy, William J. Williams, and Brent G. T. Else
Ocean Sci., 19, 837–856, https://doi.org/10.5194/os-19-837-2023, https://doi.org/10.5194/os-19-837-2023, 2023
Short summary
Short summary
Using a small research vessel based out of Cambridge Bay in the Kitikmeot Sea (Canadian Arctic Archipelago), we were able to make measurements of surface ocean pCO2 shortly after sea ice breakup for 4 consecutive years. We compare our measurements to previous underway measurements and the two ongoing ocean carbon observatories in the region. We identify high interannual variability and a potential bias in previous estimates due to lower pCO2 in bays and inlets.
George Manville, Thomas G. Bell, Jane P. Mulcahy, Rafel Simó, Martí Galí, Anoop S. Mahajan, Shrivardhan Hulswar, and Paul R. Halloran
Biogeosciences, 20, 1813–1828, https://doi.org/10.5194/bg-20-1813-2023, https://doi.org/10.5194/bg-20-1813-2023, 2023
Short summary
Short summary
We present the first global investigation of controls on seawater dimethylsulfide (DMS) spatial variability over scales of up to 100 km. Sea surface height anomalies, density, and chlorophyll a help explain almost 80 % of DMS variability. The results suggest that physical and biogeochemical processes play an equally important role in controlling DMS variability. These data provide independent confirmation that existing parameterisations of seawater DMS concentration use appropriate variables.
Veronica Z. Berta, Lynn M. Russell, Derek J. Price, Chia-Li Chen, Alex K. Y. Lee, Patricia K. Quinn, Timothy S. Bates, Thomas G. Bell, and Michael J. Behrenfeld
Atmos. Chem. Phys., 23, 2765–2787, https://doi.org/10.5194/acp-23-2765-2023, https://doi.org/10.5194/acp-23-2765-2023, 2023
Short summary
Short summary
Amines are compounds emitted from a variety of marine and continental sources and were measured by aerosol mass spectrometry and Fourier transform infrared spectroscopy during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) cruises. Secondary continental and primary marine sources of amines were identified by comparisons to tracers. The results show that the two methods are complementary for investigating amines in the marine environment.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Brent G. T. Else, Araleigh Cranch, Richard P. Sims, Samantha Jones, Laura A. Dalman, Christopher J. Mundy, Rebecca A. Segal, Randall K. Scharien, and Tania Guha
The Cryosphere, 16, 3685–3701, https://doi.org/10.5194/tc-16-3685-2022, https://doi.org/10.5194/tc-16-3685-2022, 2022
Short summary
Short summary
Sea ice helps control how much carbon dioxide polar oceans absorb. We compared ice cores from two sites to look for differences in carbon chemistry: one site had thin ice due to strong ocean currents and thick snow; the other site had thick ice, thin snow, and weak currents. We did find some differences in small layers near the top and the bottom of the cores, but for most of the ice volume the chemistry was the same. This result will help build better models of the carbon sink in polar oceans.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 4287–4304, https://doi.org/10.5194/bg-19-4287-2022, https://doi.org/10.5194/bg-19-4287-2022, 2022
Short summary
Short summary
This study explores the seasonal, inter-annual, and multi-year drivers of the South Atlantic air–sea CO2 flux. Our analysis showed seasonal sea surface temperatures dominate in the subtropics, and the subpolar regions correlated with biological processes. Inter-annually, the El Niño–Southern Oscillation correlated with the CO2 flux by modifying sea surface temperatures and biological activity. Long-term trends indicated an important biological contribution to changes in the air–sea CO2 flux.
Shrivardhan Hulswar, Rafel Simó, Martí Galí, Thomas G. Bell, Arancha Lana, Swaleha Inamdar, Paul R. Halloran, George Manville, and Anoop Sharad Mahajan
Earth Syst. Sci. Data, 14, 2963–2987, https://doi.org/10.5194/essd-14-2963-2022, https://doi.org/10.5194/essd-14-2963-2022, 2022
Short summary
Short summary
The third climatological estimation of sea surface dimethyl sulfide (DMS) concentrations based on in situ measurements was created (DMS-Rev3). The update includes a much larger input dataset and includes improvements in the data unification, filtering, and smoothing algorithm. The DMS-Rev3 climatology provides more realistic monthly estimates of DMS, and shows significant regional differences compared to past climatologies.
Matthias Fuchs, Juri Palmtag, Bennet Juhls, Pier Paul Overduin, Guido Grosse, Ahmed Abdelwahab, Michael Bedington, Tina Sanders, Olga Ogneva, Irina V. Fedorova, Nikita S. Zimov, Paul J. Mann, and Jens Strauss
Earth Syst. Sci. Data, 14, 2279–2301, https://doi.org/10.5194/essd-14-2279-2022, https://doi.org/10.5194/essd-14-2279-2022, 2022
Short summary
Short summary
We created digital, high-resolution bathymetry data sets for the Lena Delta and Kolyma Gulf regions in northeastern Siberia. Based on nautical charts, we digitized depth points and isobath lines, which serve as an input for a 50 m bathymetry model. The benefit of this data set is the accurate mapping of near-shore areas as well as the offshore continuation of the main deep river channels. This will improve the estimation of river outflow and the nutrient flux output into the coastal zone.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 93–115, https://doi.org/10.5194/bg-19-93-2022, https://doi.org/10.5194/bg-19-93-2022, 2022
Short summary
Short summary
This study identifies the most accurate biological proxy for the estimation of seawater pCO2 fields, which are key to assessing the ocean carbon sink. Our analysis shows that the net community production (NCP), the balance between photosynthesis and respiration, was more accurate than chlorophyll a within a neural network scheme. The improved pCO2 estimates, based on NCP, identified the South Atlantic Ocean as a net CO2 source, compared to a CO2 sink using chlorophyll a.
Zhaohui Chen, Parvadha Suntharalingam, Andrew J. Watson, Ute Schuster, Jiang Zhu, and Ning Zeng
Biogeosciences, 18, 4549–4570, https://doi.org/10.5194/bg-18-4549-2021, https://doi.org/10.5194/bg-18-4549-2021, 2021
Short summary
Short summary
As the global temperature continues to increase, carbon dioxide (CO2) is a major driver of this global warming. The increased CO2 is mainly caused by emissions from fossil fuel use and land use. At the same time, the ocean is a significant sink in the carbon cycle. The North Atlantic is a critical ocean region in reducing CO2 concentration. We estimate the CO2 uptake in this region based on a carbon inverse system and atmospheric CO2 observations.
Daniel P. Phillips, Frances E. Hopkins, Thomas G. Bell, Peter S. Liss, Philip D. Nightingale, Claire E. Reeves, Charel Wohl, and Mingxi Yang
Atmos. Chem. Phys., 21, 10111–10132, https://doi.org/10.5194/acp-21-10111-2021, https://doi.org/10.5194/acp-21-10111-2021, 2021
Short summary
Short summary
We present the first measurements of the rate of transfer (flux) of three gases between the atmosphere and the ocean, using a direct flux measurement technique, at a coastal site. We show greater atmospheric loss of acetone and acetaldehyde into the ocean than estimated by global models for the open water; importantly, the acetaldehyde transfer direction is opposite to the model estimates. Measured dimethylsulfide fluxes agreed with a recent model. Isoprene fluxes were too weak to be measured.
Yuanxu Dong, Mingxi Yang, Dorothee C. E. Bakker, Vassilis Kitidis, and Thomas G. Bell
Atmos. Chem. Phys., 21, 8089–8110, https://doi.org/10.5194/acp-21-8089-2021, https://doi.org/10.5194/acp-21-8089-2021, 2021
Short summary
Short summary
Eddy covariance (EC) is the most direct method for measuring air–sea CO2 flux from ships. However, uncertainty in EC air–sea CO2 fluxes has not been well quantified. Here we show that with the state-of-the-art gas analysers, instrumental noise no longer contributes significantly to the CO2 flux uncertainty. Applying an appropriate averaging timescale (1–3 h) and suitable air–sea CO2 fugacity threshold (at least 20 µatm) to EC flux data enables an optimal analysis of the gas transfer velocity.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Georges Saliba, Chia-Li Chen, Savannah L. Lewis, Lynn M. Russell, Michael A. Shook, Ewan C. Crosbie, Luke D. Ziemba, Matthew D. Brown, Taylor J. Shingler, Claire E. Robinson, Elizabeth B. Wiggins, Kenneth L. Thornhill, Edward L. Winstead, Carolyn Jordan, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 21, 831–851, https://doi.org/10.5194/acp-21-831-2021, https://doi.org/10.5194/acp-21-831-2021, 2021
Short summary
Short summary
Models describing atmospheric airflow were combined with satellite measurements representative of marine phytoplankton and other meteorological variables. These combined variables were compared to measured aerosol to identify upwind influences on aerosol concentrations. Results indicate that phytoplankton production rates upwind impact the aerosol mass. Also, results suggest that the condensation of mass onto short-lived large sea spray particles may be a significant sink of aerosol mass.
David C. Loades, Mingxi Yang, Thomas G. Bell, Adam R. Vaughan, Ryan J. Pound, Stefan Metzger, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 13, 6915–6931, https://doi.org/10.5194/amt-13-6915-2020, https://doi.org/10.5194/amt-13-6915-2020, 2020
Short summary
Short summary
The loss of ozone to the sea surface was measured from the south coast of the UK and was found to be more rapid than previous observations over the open ocean. This is likely a consequence of different chemistry and biology in coastal environments. Strong winds appeared to speed up the loss of ozone. A better understanding of what influences ozone loss over the sea will lead to better model estimates of total ozone in the troposphere.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Wei-Lei Wang, Guisheng Song, François Primeau, Eric S. Saltzman, Thomas G. Bell, and J. Keith Moore
Biogeosciences, 17, 5335–5354, https://doi.org/10.5194/bg-17-5335-2020, https://doi.org/10.5194/bg-17-5335-2020, 2020
Short summary
Short summary
Dimethyl sulfide, a volatile compound produced as a byproduct of marine phytoplankton activity, can be emitted to the atmosphere via gas exchange. In the atmosphere, DMS is oxidized to cloud condensation nuclei, thus contributing to cloud formation. Therefore, oceanic DMS plays an important role in regulating the planet's climate by influencing the radiation budget. In this study, we use an artificial neural network model to update the global DMS climatology and estimate the sea-to-air flux.
Cited articles
Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., and Borges, A. V.: Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters, Biogeosciences, 12, 67–78, https://doi.org/10.5194/bg-12-67-2015, 2015.
Ahmed, M. and Else, B. G.:
The Ocean CO2 Sink in the Canadian Arctic Archipelago: A Present-Day Budget and Past Trends Due to Climate Change, Geophys. Res. Lett., 46, 9777–9785, 2019.
Bakker, D. C., de Baar, H. J., and de Wilde, H. P.:
Dissolved carbon dioxide in Dutch coastal waters, Mar. Chem., 55, 247–263, 1996.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A.:
The changing carbon cycle of the coastal ocean, Nature, 504, 61–70, https://doi.org/10.1038/nature12857, 2013.
Bedington, M. and Torres, R.: Plymouth sound and surroundings surface temperature and salinity from FVCOM model, Zenodo [data set], https://doi.org/10.5281/zenodo.6372107, 2022.
Borges, A. and Frankignoulle, M.:
Daily and seasonal variations of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas, J. Marine Syst., 19, 251–266, 1999.
Borges, A., Schiettecatte, L.-S., Abril, G., Delille, B., and Gazeau, F.:
Carbon dioxide in European coastal waters, Estuar. Coast. Shelf S., 70, 375–387, 2006.
Borges, A. V., Abril, G., and Bouillon, S.: Carbon dynamics and CO2 and CH4 outgassing in the Mekong delta, Biogeosciences, 15, 1093–1114, https://doi.org/10.5194/bg-15-1093-2018, 2018.
Bozec, Y., Cariou, T., Macé, E., Morin, P., Thuillier, D., and Vernet, M.:
Seasonal dynamics of air–sea CO2 fluxes in the inner and outer Loire estuary (NW Europe), Estuar. Coast. Shelf S., 100, 58–71, 2012.
Cai, W., Chen, C. A., and Borges, A.:
Carbon dioxide dynamics and fluxes in coastal waters influenced by river plumes, in: Biogeochemical Dynamics at Major River-Coastal Interfaces, edited by: Bianchi, T. S., Allison, M. A., and Cai, W.-J., Cambridge University Press, Cambridge, 155–173, 2013.
Cai, W.-J.:
Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?, Annu. Rev. Mar. Sci., 3, 123–145, 2011.
Cai, W.-J., Xu, Y.-Y., Feely, R. A., Wanninkhof, R., Jönsson, B., Alin, S. R., Barbero, L., Cross, J. N., Azetsu-Scott, K., and Fassbender, A. J.:
Controls on surface water carbonate chemistry along North American ocean margins, Nat. Commun., 11, 1–13, 2020.
Cai, W.-J., Feely, R. A., Testa, J. M., Li, M., Evans, W., Alin, S. R., Xu, Y.-Y., Pelletier, G., Ahmed, A., and Greeley, D. J.:
Natural and anthropogenic drivers of acidification in large estuaries, Annu. Rev. Mar. Sci., 13, 23–55, 2021.
Call, M., Maher, D. T., Santos, I. R., Ruiz-Halpern, S., Mangion, P., Sanders, C. J., Erler, D. V., Oakes, J. M., Rosentreter, J., and Murray, R.:
Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring–neap–spring timescales in a mangrove creek, Geochim. Cosmochimi. Ac., 150, 211–225, 2015.
Canning, A. R., Fietzek, P., Rehder, G., and Körtzinger, A.: Technical note: Seamless gas measurements across the land–ocean aquatic continuum – corrections and evaluation of sensor data for CO2, CH4 and O2 from field deployments in contrasting environments, Biogeosciences, 18, 1351–1373, https://doi.org/10.5194/bg-18-1351-2021, 2021.
Cazenave, P. W., Torres, R., and Allen, J. I.:
Unstructured grid modelling of offshore wind farm impacts on seasonally stratified shelf seas, Prog. Oceanogr., 145, 25–41, 2016.
Chen, C., Liu, H., and Beardsley, R. C.:
An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries, J. Atmos. Ocean. Tech., 20, 159–186, 2003.
Chen, C.-T. A. and Borges, A. V.:
Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2, Deep-Sea Res. Pt. II, 56, 578–590, 2009.
Chen, C.-T. A., Huang, T.-H., Chen, Y.-C., Bai, Y., He, X., and Kang, Y.: Air–sea exchanges of CO2 in the world's coastal seas, Biogeosciences, 10, 6509–6544, https://doi.org/10.5194/bg-10-6509-2013, 2013.
Dai, M., Lu, Z., Zhai, W., Chen, B., Cao, Z., Zhou, K., Cai, W. J., and Chenc, C. T. A.:
Diurnal variations of surface seawater pCO2 in contrasting coastal environments, Limnol. Oceanogr., 54, 735–745, 2009.
Dickson, A. G.:
Standard potential of the reaction: AgCl(s) + 12 H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion in synthetic sea water from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127, 1990.
Dickson, A. G. and Millero, F. J.:
A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, 1987.
Dickson, A. G., Sabine, C. L., and Christian, J. R.:
Guide to best practices for ocean CO2 measurements, Sidney, British Columbia, North Pacific Marine Science Organization, PICES Special Publication, 3, 176 pp., 2007.
Fennel, K., Alin, S., Barbero, L., Evans, W., Bourgeois, T., Cooley, S., Dunne, J., Feely, R. A., Hernandez-Ayon, J. M., Hu, X., Lohrenz, S., Muller-Karger, F., Najjar, R., Robbins, L., Shadwick, E., Siedlecki, S., Steiner, N., Sutton, A., Turk, D., Vlahos, P., and Wang, Z. A.: Carbon cycling in the North American coastal ocean: a synthesis, Biogeosciences, 16, 1281–1304, https://doi.org/10.5194/bg-16-1281-2019, 2019.
Ferrón, S., Ortega, T., Gómez-Parra, A., and Forja, J.:
Seasonal study of dissolved CH4, CO2 and N2O in a shallow tidal system of the bay of Cádiz (SW Spain), J. Marine Syst., 66, 244–257, 2007.
Frankignoulle, M., Bourge, I., Canon, C., and Dauby, P.:
Distribution of surface seawater partial CO2 pressure in the English Channel and in the Southern Bight of the North Sea, Cont. Shelf Res., 16, 381–395, 1996.
Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E., and Théate, J.-M.:
Carbon dioxide emission from European estuaries, Science, 282, 434–436, 1998.
Hales, B., Chipman, D., and Takahashi, T.:
High-frequency measurement of partial pressure and total concentration of carbon dioxide in seawater using microporous hydrophobic membrane contractors, Limnol. Oceanogr.-Meth., 2, 356–364, 2004.
Hales, B., Takahashi, T., and Bandstra, L.:
Atmospheric CO2 uptake by a coastal upwelling system, Global Biogeochem. Cy., 19, GB1009, https://doi.org/10.1029/2004GB002295, 2005.
Haney, R. L.:
On the pressure gradient force over steep topography in sigma coordinate ocean models, J. Phys. Oceanogr., 21, 610–619, 1991.
JCGM:
Evaluation of measurement data – Guide to the expression of uncertainty in measurement, Int. Organ. Stand. Geneva ISBN, Joint Committee for Guides in Metrology , 50, 134, 2008.
Jeffrey, L. C., Maher, D. T., Santos, I. R., Call, M., Reading, M. J., Holloway, C., and Tait, D. R.:
The spatial and temporal drivers of pCO2, pCH4 and gas transfer velocity within a subtropical estuary, Estuar. Coast. Shelf S., 208, 83–95, 2018a.
Jeffrey, L. C., Santos, I. R., Tait, D. R., Makings, U., and Maher, D. T.:
Seasonal drivers of carbon dioxide dynamics in a hydrologically modified subtropical tidal river and estuary (Caboolture River, Australia), J. Geophys. Res.-Biogeo., 123, 1827–1849, 2018b.
Jiang, L. Q., Cai, W. J., Wanninkhof, R., Wang, Y., and Lüger, H.:
Air–sea CO2 fluxes on the US South Atlantic Bight: Spatial and seasonal variability, J. Geophys. Res.-Oceans, 113, C07019, https://doi.org/10.1029/2007JC004366, 2008.
Joesoef, A., Huang, W.-J., Gao, Y., and Cai, W.-J.: Air–water fluxes and sources of carbon dioxide in the Delaware Estuary: spatial and seasonal variability, Biogeosciences, 12, 6085–6101, https://doi.org/10.5194/bg-12-6085-2015, 2015.
Kahl, L. C., Bianchi, A. A., Osiroff, A. P., Pino, D. R., and Piola, A. R.:
Distribution of sea-air CO2 fluxes in the Patagonian Sea: Seasonal, biological and thermal effects, Cont. Shelf Res., 143, 18–28, 2017.
Kitidis, V., Hardman-Mountford, N. J., Litt, E., Brown, I., Cummings, D., Hartman, S., Hydes, D., Fishwick, J. R., Harris, C., and Martinez-Vicente, V.:
Seasonal dynamics of the carbonate system in the Western English Channel, Cont. Shelf Res., 42, 30–40, 2012.
Kitidis, V., Brown, I., Hardman-Mountford, N., and Lefèvre, N.:
Surface ocean carbon dioxide during the Atlantic Meridional Transect (1995–2013); evidence of ocean acidification, Prog. Oceanogr., 158, 65–75, 2017.
Kitidis, V., Shutler, J. D., Ashton, I., Warren, M., Brown, I., Findlay, H., Hartman, S. E., Sanders, R., Humphreys, M., and Kivimäe, C.:
Winter weather controls net influx of atmospheric CO2 on the north-west European shelf, Sci. Rep.-UK, 9, 1–11, 2019.
Körtzinger, A., Mintrop, L., Wallace, D. W., Johnson, K. M., Neill, C., Tilbrook, B., Towler, P., Inoue, H. Y., Ishii, M., and Shaffer, G.:
The international at-sea intercomparison of fCO2 systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean, Mar. Chem., 72, 171–192, 2000.
Landschützer, P., Laruelle, G. G., Roobaert, A., and Regnier, P.: A uniform pCO2 climatology combining open and coastal oceans, Earth Syst. Sci. Data, 12, 2537–2553, https://doi.org/10.5194/essd-12-2537-2020, 2020.
Laruelle, G. G., Dürr, H. H., Slomp, C. P., and Borges, A. V.:
Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves, Geophys. Res. Lett., 37, L15607, https://doi.org/10.1029/2010GL043691, 2010.
Laruelle, G. G., Lauerwald, R., Pfeil, B., and Regnier, P.:
Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas, Global Biogeochem. Cy., 28, 1199–1214, 2014.
Laruelle, G. G., Goossens, N., Arndt, S., Cai, W.-J., and Regnier, P.: Air–water CO2 evasion from US East Coast estuaries, Biogeosciences, 14, 2441–2468, https://doi.org/10.5194/bg-14-2441-2017, 2017a.
Laruelle, G. G., Landschützer, P., Gruber, N., Tison, J.-L., Delille, B., and Regnier, P.: Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation, Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, 2017b.
Laruelle, G. G., Cai, W.-J., Hu, X., Gruber, N., Mackenzie, F. T., and Regnier, P.:
Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide, Nat. Commun., 9, 454, https://doi.org/10.1038/s41467-017-02738-z, 2018.
Lefèvre, N., Diverrès, D., and Gallois, F.:
Origin of CO2 undersaturation in the western tropical Atlantic, Tellus B, 62, 595–607, 2010.
Li, D., Chen, J., Ni, X., Wang, K., Zeng, D., Wang, B., Jin, H., Huang, D., and Cai, W. J.: Effects of Biological Production and Vertical Mixing on Sea Surface pCO2 Variations in the Changjiang River Plume During Early Autumn: A Buoy-Based Time Series Study, J. Geophys. Res.-Oceans, 123, 6156–6173, 2018.
Litt, E. J., Hardman-Mountford, N. J., Blackford, J. C., Mitchelson-Jacob, G., Goodman, A., Moore, G. F., Cummings, D. G., and Butenschön, M.:
Biological control of pCO2 at station L4 in the Western English Channel over 3 years, J. Plankton Res., 32, 621–629, 2010.
Macklin, P. A., Maher, D. T., and Santos, I. R.:
Estuarine canal estate waters: Hotspots of CO2 outgassing driven by enhanced groundwater discharge?, Mar. Chem., 167, 82–92, 2014.
Marrec, P., Cariou, T., Collin, E., Durand, A., Latimier, M., Macé, E., Morin, P., Raimund, S., Vernet, M., and Bozec, Y.:
Seasonal and latitudinal variability of the CO2 system in the western English Channel based on Voluntary Observing Ship (VOS) measurements, Mar. Chem., 155, 29–41, 2013.
Mehrbach, C.:
Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, 1973.
Mellor, G. L. and Yamada, T.:
Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851–875, 1982.
Najjar, R. G., Herrmann, M., Alexander, R., Boyer, E. W., Burdige, D. J., Butman, D., Cai, W., Canuel, E. A., Chen, R. F., and Friedrichs, M. A.:
Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America, Global Biogeochem. Cy., 32, 389–416, 2018.
Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.:
In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers, Global Biogeochem. Cy., 14, 373–387, 2000.
Orr, H., Des Clers, S., Simpson, G., Hughes, M., Battarbee, R., Cooper, L., Dunbar, M., Evans, R., Hannaford, J., and Hannah, D.:
Changing water temperatures: a surface water archive for England and Wales, Surface Water Temperature Archive [data set], https://data.gov.uk/dataset/7b6b7515-3b63-4d70-9764-772e5823fdcc/surface-water-temperature-archive-up-to-2007 (last access: December 2016), 2010.
Rees, A. P., Gilbert, J. A., and Kelly-Gerreyn, B. A.:
Nitrogen fixation in the western English Channel (NE Atlantic ocean), Mar. Ecol. Prog. Ser., 374, 7–12, 2009.
Resplandy, L., Keeling, R., Rödenbeck, C., Stephens, B., Khatiwala, S., Rodgers, K., Long, M., Bopp, L., and Tans, P.:
Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport, Nat. Geosci., 11, 504–509, 2018.
Ribas-Ribas, M., Anfuso, E., Gómez-Parra, A., and Forja, J. M.: Tidal and seasonal carbon and nutrient dynamics of the Guadalquivir estuary and the Bay of Cádiz (SW Iberian Peninsula), Biogeosciences, 10, 4481–4491, https://doi.org/10.5194/bg-10-4481-2013, 2013.
Ribas-Ribas, M., Rérolle, V. M. C., Bakker, D. C. E., Kitidis, V., Lee, G. A., Brown, I., Achterberg, E. P., Hardman-Mountford, N. J., and Tyrrell, T.: Intercomparison of carbonate chemistry measurements on a cruise in northwestern European shelf seas, Biogeosciences, 11, 4339–4355, https://doi.org/10.5194/bg-11-4339-2014, 2014.
Robbins, L., Daly, K., Barbero, L., Wanninkhof, R., He, R., Zong, H., Lisle, J., Cai, W. J., and Smith, C.:
Spatial and temporal variability of pCO2, carbon fluxes, and saturation state on the West Florida Shelf, J. Geophys. Res.-Oceans, 123, 6174–6188, 2018.
Roobaert, A., Laruelle, G. G., Landschützer, P., Gruber, N., Chou, L., and Regnier, P.:
The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean, Global Biogeochem. Cy., 33, 1693–1714, 2019.
Santos, I. R., Maher, D. T., and Eyre, B. D.:
Coupling automated radon and carbon dioxide measurements in coastal waters, Environ. Sci. Technol., 46, 7685–7691, 2012.
Shen, C., Testa, J. M., Li, M., Cai, W. J., Waldbusser, G. G., Ni, W., Kemp, W. M., Cornwell, J., Chen, B., and Brodeur, J.:
Controls on carbonate system dynamics in a coastal plain estuary: A modeling study, J. Geophys. Res.-Biogeo., 124, 61–78, 2019.
Siddorn, J., Allen, J., and Uncles, R.:
Heat, salt and tracer transport in the Plymouth Sound coastal region: a 3-D modelling study, J. Mar. Biol. Assoc. UK, 83, 673–682, 2003.
Sims, R.: Richard-Sims/WCO_tidal_pco2: Processing code for WCO Tidal pCO2 paper (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.6373406, 2022.
Sims, R. P., Schuster, U., Watson, A. J., Yang, M. X., Hopkins, F. E., Stephens, J., and Bell, T. G.: A measurement system for vertical seawater profiles close to the air–sea interface, Ocean Sci., 13, 649–660, https://doi.org/10.5194/os-13-649-2017, 2017.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.:
A description of the Advanced Research WRF version 3, NCAR Technical note-475 + STR, University Corporation for Atmospheric Research, https://doi.org/10.5065/D68S4MVH, 2008.
Smagorinsky, J.:
General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., 91, 99–164, 1963.
Smyth, T., Fishwick, J., Gallienne, C., Stephens, J., and Bale, A.:
Technology, design, and operation of an autonomous buoy system in the western English Channel, J. Atmos. Ocean. Tech., 27, 2056–2064, 2010a.
Smyth, T. J., Fishwick, J. R., Lisa, A.-M., Cummings, D. G., Harris, C., Kitidis, V., Rees, A., Martinez-Vicente, V., and Woodward, E. M.:
A broad spatio-temporal view of the Western English Channel observatory, J. Plankton Res., 32, 585–601, 2010b.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., and Sabine, C.:
Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577, 2009.
Torres, O., Kwiatkowski, L., Sutton, A. J., Dorey, N., and Orr, J. C.:
Characterizing mean and extreme diurnal variability of ocean CO2 system variables across marine environments, Geophys. Res. Lett., 48, e2020GL090228, https://doi.org/10.1029/2020GL090228, 2021.
Torres, R., Artioli, Y., Kitidis, V., Ciavatta, S., Ruiz-Villarreal, M., Shutler, J., Polimene, L., Martinez, V., Widdicombe, C., and Woodward, E. M. S.:
Sensitivity of modeled CO2 air–sea flux in a coastal environment to surface temperature gradients, surfactants, and satellite data assimilation, Remote Sens.-Basel, 12, 2038, https://doi.org/10.3390/rs12122038, 2020.
Uncles, R. and Torres, R.:
Estimating dispersion and flushing time-scales in a coastal zone: Application to the Plymouth area, Ocean Coast. Manage., 72, 3–12, 2013.
Uncles, R., Stephens, J., and Harris, C.:
Estuaries of Southwest England: Salinity, suspended particulate matter, loss-on-ignition and morphology, Prog. Oceanogr., 137, 385–408, 2015.
Uncles, R., Clark, J., Bedington, M., and Torres, R.:
On sediment dispersal in the Whitsand Bay Marine Conservation Zone: neighbour to a closed dredge-spoil disposal site, in: Marine Protected Areas, edited by: Humphreys, J. and Clark, R., Elsevier, Amsterdam, 599–629, 2020.
Upstill-Goddard, R. C.:
Air–sea gas exchange in the coastal zone, Estuar. Coast. Shelf S., 70, 388–404, 2006.
Van Heuven, S., Pierrot, D., Rae, J., Lewis, E., and Wallace, D.:
MATLAB Program Developed for CO2 System Calculations, ORNL/CDIAC-105b, Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, US Department of Energy, Oak Ridge, Tennessee, https://cdiac.ess-dive.lbl.gov/ftp/co2sys/CO2SYS_calc_MATLAB_v1.1/ (last access: 28 July 2016), 2011.
Volta, C., Laruelle, G. G., and Regnier, P.:
Regional carbon and CO2 budgets of North Sea tidal estuaries, Estuar. Coast. Shelf S., 176, 76–90, 2016.
Wanninkhof, R.:
Relationship between wind speed and gas exchange over the ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362, 2014.
Ward, N. D., Bianchi, T. S., Medeiros, P. M., Seidel, M., Richey, J. E., Keil, R. G., and Sawakuchi, H. O.:
Where carbon goes when water flows: carbon cycling across the aquatic continuum, Frontiers in Marine Science, 4, 7, https://doi.org/10.3389/fmars.2017.00007, 2017.
Weiss, R. F.:
Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar. Chem., 2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2, 1974.
Widdicombe, C., Eloire, D., Harbour, D., Harris, R., and Somerfield, P.:
Long-term phytoplankton community dynamics in the Western English Channel, J. Plankton Res., 32, 643–655, 2010.
Woolf, D. K., Shutler, J. D., Goddijn-Murphy, L., Watson, A., Chapron, B., Nightingale, P. D., Donlon, C. J., Piskozub, J., Yelland, M., and Ashton, I.:
Key uncertainties in the recent air–sea flux of CO2, Global Biogeochem. Cy., 33, 1548–1563, 2019.
Yang, M., Bell, T. G., Hopkins, F. E., Kitidis, V., Cazenave, P. W., Nightingale, P. D., Yelland, M. J., Pascal, R. W., Prytherch, J., Brooks, I. M., and Smyth, T. J.: Air–sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK, Atmos. Chem. Phys., 16, 5745–5761, https://doi.org/10.5194/acp-16-5745-2016, 2016.
Yang, M., Bell, T. G., Brown, I. J., Fishwick, J. R., Kitidis, V., Nightingale, P. D., Rees, A. P., and Smyth, T. J.: Insights from year-long measurements of air–water CH4 and CO2 exchange in a coastal environment, Biogeosciences, 16, 961–978, https://doi.org/10.5194/bg-16-961-2019, 2019.
Short summary
The amount of carbon dioxide (CO2) being absorbed by the ocean is relevant to the earth's climate. CO2 values in the coastal ocean and estuaries are not well known because of the instrumentation used. We used a new approach to measure CO2 across the coastal and estuarine zone. We found that CO2 and salinity were linked to the state of the tide. We used our CO2 measurements and model salinity to predict CO2. Previous studies overestimate how much CO2 the coastal ocean draws down at our site.
The amount of carbon dioxide (CO2) being absorbed by the ocean is relevant to the earth's...
Altmetrics
Final-revised paper
Preprint