Articles | Volume 19, issue 7
https://doi.org/10.5194/bg-19-1891-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1891-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing
Department of Ecological Modelling, Helmholtz-Centre for Environmental
Research GmbH – UFZ, 04318 Leipzig, Germany
Institute of Geography, Friedrich-Alexander University
Erlangen–Nuremberg, 91058 Erlangen, Germany
Forest Ecology, Institute of Terrestrial Ecosystems, Department of
Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
Andreas Huth
Department of Ecological Modelling, Helmholtz-Centre for Environmental
Research GmbH – UFZ, 04318 Leipzig, Germany
German Centre for Integrative Biodiversity Research – iDiv
Halle-Jena-Leipzig, 04103 Leipzig, Germany
Institute for Environmental Systems Research, University Osnabruck,
49076 Osnabruck, Germany
Rico Fischer
Department of Ecological Modelling, Helmholtz-Centre for Environmental
Research GmbH – UFZ, 04318 Leipzig, Germany
Related authors
Gina Marano, Ulrike Hiltner, Nikolai Knapp, and Harald Bugmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-1534, https://doi.org/10.5194/egusphere-2025-1534, 2025
Short summary
Short summary
Drought is reshaping Europe’s forests. Using an uncalibrated process-based model across hundreds of German sites, we identified key drivers of tree mortality in European beech and Norway spruce forests. Our model captured both the timing and extent of mortality. A new bark beetle module improved predictions for spruce. High soil water capacity and heterogeneous soils reduced drought impacts. These findings offer new insights to anticipate forest responses in a warming, drying climate.
Kevin Wolf, Evelyn Jäkel, André Ehrlich, Michael Schäfer, Hannes Feilhauer, Andreas Huth, Alexandra Weigelt, and Manfred Wendisch
Biogeosciences, 22, 2909–2933, https://doi.org/10.5194/bg-22-2909-2025, https://doi.org/10.5194/bg-22-2909-2025, 2025
Short summary
Short summary
This paper reports an investigation of the influence of clouds on vegetation albedo using a coupled atmosphere–vegetation radiative transfer model. Both models are iteratively linked to simulate cloud–vegetation–radiation interactions over canopies more realistically. Solar, spectral, and broadband irradiances have been simulated under varying cloud conditions. The simulated irradiances were used to investigate the spectral and broadband effect of clouds on vegetation albedo.
Gina Marano, Ulrike Hiltner, Nikolai Knapp, and Harald Bugmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-1534, https://doi.org/10.5194/egusphere-2025-1534, 2025
Short summary
Short summary
Drought is reshaping Europe’s forests. Using an uncalibrated process-based model across hundreds of German sites, we identified key drivers of tree mortality in European beech and Norway spruce forests. Our model captured both the timing and extent of mortality. A new bark beetle module improved predictions for spruce. High soil water capacity and heterogeneous soils reduced drought impacts. These findings offer new insights to anticipate forest responses in a warming, drying climate.
Kevin Wolf, Evelyn Jäkel, André Ehrlich, Michael Schäfer, Hannes Feilhauer, Andreas Huth, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/egusphere-2025-2082, https://doi.org/10.5194/egusphere-2025-2082, 2025
Short summary
Short summary
This paper presents combined atmosphere-vegetation radiative transfer simulations to systematically investigate cloud-induced biases in remotely sensed vegetation indices (VIs) derived from below-cloud measurements. The biases in VIs have been investigated for the general case of two-band VIs, and for the special cases of the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), and the enhanced vegetation index (EVI).
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024, https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
Short summary
Understanding the drivers of forest productivity is key for accurately assessing forests’ role in the global carbon cycle. Yet, despite significant research effort, it is not fully understood how the productivity of a forest can be deduced from its stand structure. We suggest tackling this problem by identifying the share and structure of immature trees within forests and show that this approach could significantly improve estimates of forests’ net productivity and carbon uptake.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022, https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.
J. Pacheco-Labrador, U. Weber, X. Ma, M. D. Mahecha, N. Carvalhais, C. Wirth, A. Huth, F. J. Bohn, G. Kraemer, U. Heiden, FunDivEUROPE members, and M. Migliavacca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 49–55, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, 2022
Cited articles
Anderegg, W. R. L., Trugman, A. T., Badgley, G., Anderson, C. M., Bartuska,
A., Ciais, P., Cullenward, D., Field, C. B., Freeman, J., Goetz, S. J.,
Hicke, J. A., Huntzinger, D., Jackson, R. B., Nickerson, J., Pacala, S., and
Randerson, J. T.: Climate-driven risks to the climate mitigation potential
of forests, Science, 80, eaaz7005, https://doi.org/10.1126/science.aaz7005, 2020.
Asner, G. P. and Alencar, A.: Drought impacts on the Amazon forest: The
remote sensing perspective, New Phytol., 187, 569–578,
https://doi.org/10.1111/j.1469-8137.2010.03310.x, 2010.
Aubry-Kientz, M., Hérault, B., Ayotte-Trépanier, C., Baraloto, C.,
and Rossi, V.: Toward Trait-Based Mortality Models for Tropical Forests,
PLoS One, 8, e63678, https://doi.org/10.1371/journal.pone.0063678, 2013.
Barlow, J., Lagan, B. O., and Peres, C. A.: Morphological correlates of
fire-induced tree mortality in a central Amazonian forest, J. Trop. Ecol.,
19, 291–299, https://doi.org/10.1017/S0266467403003328, 2003.
Bi, J., Knyazikhin, Y., Choi, S., Park, T., Barichivich, J., Ciais, P., Fu,
R., Ganguly, S., Hall, F., Hilker, T., Huete, A., Jones, M., Kimball, J.,
Lyapustin, A. I., Mõttus, M., Nemani, R. R., Piao, S., Poulter, B.,
Saleska, S. R., Saatchi, S. S., Xu, L., Zhou, L., and Myneni, R. B.: Sunlight
mediated seasonality in canopy structure and photosynthetic activity of
Amazonian rainforests, Environ. Res. Lett., 10, 064014,
https://doi.org/10.1088/1748-9326/10/6/064014, 2015.
Bohn, F. J. and Huth, A.: The importance of forest structure to
biodiversity-productivity relationships, R. Soc. Open Sci., 4, 160521,
https://doi.org/10.1098/rsos.160521, 2017.
Botkin, D. B.: Forest dynamics: an ecological model, Oxford University
Press, New York, 309 pp., 1993.
Botkin, D. B., Janak, J. F., and Wallis, J. R.: Some Ecological Consequences
of a Computer Model of Forest Growth, J. Ecol., 60, 849–872,
https://doi.org/10.2307/2258570, 1972.
Bovolo, C. I., Wagner, T., Parkin, G., Hein-Griggs, D., Pereira, R., and
Jones, R.: The Guiana Shield rainforests-overlooked guardians of South
American climate, Environ. Res. Lett., 13, 074029, https://doi.org/10.1088/1748-9326/aacf60, 2018.
Brando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E.,
Coe, M. T., Silvério, D., Macedo, M. N., Davidson, E. A., Nóbrega,
C. C., Alencar, A., and Soares-Filho, B. S.: Abrupt increases in Amazonian
tree mortality due to drought-fire interactions,
P. Natl. Acad. Sci. USA, 111, 6347–6352, https://doi.org/10.1073/pnas.1305499111, 2014.
Bugmann, H.: A Review of forest gap models, Climate Change, 51, 259–305,
https://doi.org/10.1023/A:1012525626267, 2001.
Bugmann, H., Seidl, R., Hartig, F., Bohn, F., Brůna, J., Cailleret, M.,
François, L., Heinke, J., Henrot, A. J., Hickler, T., Hülsmann, L.,
Huth, A., Jacquemin, I., Kollas, C., Lasch-Born, P., Lexer, M. J.,
Merganič, J., Merganičová, K., Mette, T., Miranda, B. R.,
Nadal-Sala, D., Rammer, W., Rammig, A., Reineking, B., Roedig, E.,
Sabaté, S., Steinkamp, J., Suckow, F., Vacchiano, G., Wild, J., Xu, C.,
and Reyer, C. P. O.: Tree mortality submodels drive simulated long-term
forest dynamics: assessing 15 models from the stand to global scale,
Ecosphere, 10, e02616, https://doi.org/10.1002/ecs2.2616, 2019.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca,
M., Mu, M., Saatchi, S., Santoro, M., Thurner, M., Weber, U.,
Ahrens, B., Beer, C., Cescatti, A., Randerson, J. T. and Reichstein, M.:
Global covariation of carbon turnover times with climate in terrestrial
ecosystems, Nature, 514, 213–217, https://doi.org/10.1038/nature13731, 2014.
Chambers, J. Q., Robertson, A. L., Carneiro, V. M. C., Lima, A. J. N.,
Smith, M. L., Plourde, L. C., and Higuchi, N.: Hyperspectral remote detection
of niche partitioning among canopy trees driven by blowdown gap disturbances
in the Central Amazon, Oecologia, 160, 107–117,
https://doi.org/10.1007/s00442-008-1274-9, 2009.
Chambers, J. Q., Negron-Juarez, R. I., Marra, D. M., Di Vittorio, A., Tews,
J., Roberts, D., Ribeiro, G. H. P. M., Trumbore, S. E., and Higuchi, N.: The
steady-state mosaic of disturbance and succession across an old-growth
Central Amazon forest landscape, P. Natl. Acad. Sci. USA, 110,
3949–3954, https://doi.org/10.1073/pnas.1202894110, 2013.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne,
A. E.: Towards a worldwide wood economics spectrum, Ecol. Lett., 12,
351–366, https://doi.org/10.1111/j.1461-0248.2009.01285.x, 2009.
Clark, D. B., Clark, D. A., and Oberbauer, S. F.: Annual wood production in a
tropical rain forest in NE Costa Rica linked to climatic variation but not
to increasing CO2, Glob. Change Biol., 16, 747–759,
https://doi.org/10.1111/j.1365-2486.2009.02004.x, 2010.
Coley, P. D. and Kursar, T. A.: On tropical forests and their pests, Science,
80, 343, 35–36, https://doi.org/10.1126/science.1248110, 2014.
Dantas de Paula, M., Groeneveld, J., Fischer, R., Taubert, F., Martins, V.
F., and Huth, A.: Defaunation impacts on seed survival and its effect on the
biomass of future tropical forests, Oikos, 127, 1526–1538,
https://doi.org/10.1111/oik.05084, 2018.
Doughty, C. E., Metcalfe, D. B., Girardin, C. A. J., Amézquita, F. F.,
Cabrera, D. G., Huasco, W. H., Silva-Espejo, J. E., Araujo-Murakami, A., Da
Costa, M. C., Rocha, W., Feldpausch, T. R., Mendoza, A. L. M., Da Costa, A.
C. L., Meir, P., Phillips, O. L., and Malhi, Y.: Drought impact on forest
carbon dynamics and fluxes in Amazonia, Nature, 519, 78–82,
https://doi.org/10.1038/nature14213, 2015.
Dubayah, R. O., Sheldon, S. L., Clark, D. B., Hofton, M. A., Blair, J. B.,
Hurtt, G. C., and Chazdon, R. L.: Estimation of tropical forest height and
biomass dynamics using lidar remote sensing at la Selva, Costa Rica,
J. Geophys. Res.-Biogeo., 115, G00E09, https://doi.org/10.1029/2009JG000933,
2010.
Erb, K.-H., Fetzel, T., Plutzar, C., Kastner, T., Lauk, C., Mayer, A.,
Niedertscheider, M., Körner, C., and Haberl, H.: Biomass turnover time in
terrestrial ecosystems halved by land use, Nat. Geosci., 9, 674–678,
https://doi.org/10.1038/ngeo2782, 2016.
Fauset, S., Gloor, M., Fyllas, N. M., Phillips, O. L., Asner, G. P., Baker,
T. R., Patrick Bentley, L., Brienen, R. J. W., Christoffersen, B. O., del
Aguila-Pasquel, J., Doughty, C. E., Feldpausch, T. R., Galbraith, D. R.,
Goodman, R. C., Girardin, C. A. J., Honorio Coronado, E. N., Monteagudo, A.,
Salinas, N., Shenkin, A., Silva-Espejo, J. E., van der Heijden, G., Vasquez,
R., Alvarez-Davila, E., Arroyo, L., Barroso, J. G., Brown, F., Castro, W.,
Cornejo Valverde, F., Davila Cardozo, N., Di Fiore, A., Erwin, T.,
Huamantupa-Chuquimaco, I., Núñez Vargas, P., Neill, D., Pallqui
Camacho, N., Gutierrez, A. P., Peacock, J., Pitman, N., Prieto, A.,
Restrepo, Z., Rudas, A., Quesada, C. A., Silveira, M., Stropp, J., Terborgh,
J., Vieira, S. A., and Malhi, Y.: Individual-based modeling of amazon forests
suggests that climate controls productivity while traits control demography,
Front. Earth Sci., 7, 83, https://doi.org/10.3389/feart.2019.00083, 2019.
Fischer, R., Bohn, F., Dantas de Paula, M., Dislich, C., Groeneveld, J.,
Gutiérrez, A. G., Kazmierczak, M., Knapp, N., Lehmann, S., Paulick, S.,
Pütz, S., Rödig, E., Taubert, F., Köhler, P., and Huth, A.:
Lessons learned from applying a forest gap model to understand ecosystem and
carbon dynamics of complex tropical forests, Ecol. Model., 326, 124–133,
https://doi.org/10.1016/j.ecolmodel.2015.11.018, 2016.
Fischer, R., Rödig, E., and Huth, A.: Consequences of a reduced number of
plant functional types for the simulation of forest productivity, Forests,
9, 460, https://doi.org/10.3390/f9080460, 2018.
Fischer, R., Knapp, N., Bohn, F., Shugart, H. H., and Huth, A.: The Relevance
of Forest Structure for Biomass and Productivity in Temperate Forests: New
Perspectives for Remote Sensing, Surv. Geophys., 40, 709–734,
https://doi.org/10.1007/s10712-019-09519-x, 2019.
Fisher, J. I., Hurtt, G. C., Thomas, R. Q., and Chambers, J. Q.: Clustered
disturbances lead to bias in large-scale estimates based on forest sample
plots, Ecol. Lett., 11, 554–563, https://doi.org/10.1111/j.1461-0248.2008.01169.x,
2008.
Formind Team: FORMIND the forest model, Download – FORMIND community registration, https://formind.org/downloads/download-formind-model/, last access: 22 February 2022.
Franklin, J. F., Shugart, H. H., and Harmon, M. E.: Tree Death as an
Ecological Process, Bioscience, 37, 550–556, https://doi.org/10.2307/1310665, 1987.
Friend, A. D., Arneth, A., Kiang, N. Y., Lomas, M. R., Ogée, J.,
Rödenbeck, C., Running, S. W., Santaren, J.-D., Sitch, S., Viovy, N.,
Woodward, F. I., and Zaehle, S.: FLUXNET and modelling the global carbon
cycle, Glob. Change Biol., 13, 610–633,
https://doi.org/10.1111/j.1365-2486.2006.01223.x, 2007.
Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R., Betts, R., Cadule,
P., Ciais, P., Clark, D. B., Dankers, R., Falloon, P. D., Ito, A., Kahana,
R., Kleidon, A., Lomas, M. R., Nishina, K., Ostberg, S., Pavlick, R.,
Peylin, P., Schaphoff, S., Vuichard, N., Warszawski, L., Wiltshire, A., and
Woodward, F. I.: Carbon residence time dominates uncertainty in terrestrial
vegetation responses to future climate and atmospheric CO2, P. Natl. Acad. Sci. USA, 111, 3280–3285, https://doi.org/10.1073/pnas.1222477110, 2014.
Gourlet-Fleury, S., Ferry, B., Molino, J.-F., Petronelli, P., and Schmitt,
L.: Paracou expérimental plots: key features, in: Ecology and management
of a neotropical rainforest: lessons drawn from Paracou, a long-term
experimental research site in French Guiana, edited by: Gourlet-Fleury, S. and Guehl, J.-M., ECOFOR, Paris, Elsevier, ISBN 2-84299-455-8, 3–60, 2004.
Grau, O., Peñuelas, J., Ferry, B., Freycon, V., Blanc, L., Desprez, M.,
Baraloto, C., Chave, J., Descroix, L., Dourdain, A., Guitet, S., Janssens,
I. A., Sardans, J., and Hérault, B.: Nutrient-cycling mechanisms other
than the direct absorption from soil may control forest structure and
dynamics in poor Amazonian soils, Sci. Rep.-UK, 7, 45017,
https://doi.org/10.1038/srep45017, 2017.
Guitet, S., Sabatier, D., Brunaux, O., Couteron, P., Denis, T., Freycon, V.,
Gonzalez, S., Hérault, B., Jaouen, G., Molino, J.-F., Pélissier, R.,
Richard-Hansen, C., and Vincent, G.: Disturbance Regimes Drive The Diversity
of Regional Floristic Pools Across Guianan Rainforest Landscapes, Sci. Rep.-UK,
8, 3872, https://doi.org/10.1038/s41598-018-22209-9, 2018.
Gumpenberger, M., Vohland, K., Heyder, U., Poulter, B., MacEy, K., Rammig,
A., Popp, A., and Cramer, W.: Predicting pan-tropical climate change induced
forest stock gains and losses – Implications for REDD, Environ. Res. Lett.,
5, 014013, https://doi.org/10.1088/1748-9326/5/1/014013, 2010.
Hall, F. G., Bergen, K., Blair, J. B., Dubayah, R., Houghton, R., Hurtt, G.,
Kellndorfer, J., Lefsky, M., Ranson, J., Saatchi, S., Shugart, H. H., and
Wickland, D.: Characterizing 3D vegetation structure from space: Mission
requirements, Remote Sens. Environ., 115, 2753–2775,
https://doi.org/10.1016/j.rse.2011.01.024, 2011.
Hammond, D. S.: Tropical forests of the Guiana Shield: Ancient forests of
the modern world, CABI Publishing, 528 pp., 2005.
Hartmann, H., Schuldt, B., Sanders, T. G. M., Macinnis-Ng, C., Boehmer, H.
J., Allen, C. D., Bolte, A., Crowther, T. W., Hansen, M. C., Medlyn, B. E.,
Ruehr, N. K., and Anderegg, W. R. L.: Monitoring global tree mortality
patterns and trends. Report from the VW symposium “Crossing scales and
disciplines to identify global trends of tree mortality as indicators of
forest health”, New Phytol., 217, 984–987, https://doi.org/10.1111/nph.14988, 2018.
Hiltner, U., Bräuning, A., Huth, A., Fischer, R., and Hérault, B.:
Simulation of succession in a neotropical forest: High selective logging
intensities prolong the recovery times of ecosystem functions,
Forest Ecol. Manag.,
430, 517–525, https://doi.org/10.1016/j.foreco.2018.08.042, 2018.
Hiltner, U., Huth, A., Hérault, B., Holtmann, A., Bräuning, A., and
Fischer, R.: Climate change alters the ability of neotropical forests to
provide timber and sequester carbon, Forest Ecol. Manag., 492, 119166,
https://doi.org/10.1016/j.foreco.2021.119166, 2021.
Holzwarth, F., Kahl, A., Bauhus, J., and Wirth, C.: Many ways to die –
partitioning tree mortality dynamics in a near-natural mixed deciduous
forest, J. Ecol., 101, 220–230,
https://doi.org/10.1111/1365-2745.12015, 2013.
Hülsmann, L., Bugmann, H., and Brang, P.: How to predict tree death from
inventory data – lessons from a systematic assessment of European tree
mortality models, Can. J. Forest Res., 47, 890–900,
https://doi.org/10.1139/cjfr-2016-0224, 2017.
Hülsmann, L., Bugmann, H., Cailleret, M., and Brang, P.: How to kill a
tree: empirical mortality models for 18 species and their performance in a
dynamic forest model, Ecol. Appl., 28, 522–540, https://doi.org/10.1002/eap.1668,
2018.
Huth, A., Ditzer, T., and Bossel, H.: Rain Forest Growth Model FORMIX3: A
Tool for Forest Management Planning Towards Sustainability, Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, 78 pp., 1998.
Ingwell, L. L., Joseph Wright, S., Becklund, K. K., Hubbell, S. P., and
Schnitzer, S. A.: The impact of lianas on 10 years of tree growth and
mortality on Barro Colorado Island, Panama, J. Ecol., 98, 879–887,
https://doi.org/10.1111/j.1365-2745.2010.01676.x, 2010.
IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A:
Global and Sectoral Aspects. Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J.,
Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C.,
Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., and Mastrandrea, P. R., Cambridge
University Press, Cambridge, UK, New York, NY, USA,
https://www.ipcc.ch/report/ar5/wg2/ (last access: 22 February 2022), 2014.
Johnson, M. O., Galbraith, D., Gloor, M., De Deurwaerder, H., Guimberteau,
M., Rammig, A., Thonicke, K., Verbeeck, H., von Randow, C., Monteagudo, A.,
Phillips, O. L., Brienen, R. J. W., Feldpausch, T. R., Lopez Gonzalez, G.,
Fauset, S., Quesada, C. A., Christoffersen, B., Ciais, P., Sampaio, G.,
Kruijt, B., Meir, P., Moorcroft, P., Zhang, K., Alvarez-Davila, E., Alves de
Oliveira, A., Amaral, I., Andrade, A., Aragao, L. E. O. C., Araujo-Murakami,
A., Arets, E. J. M. M., Arroyo, L., Aymard, G. A., Baraloto, C., Barroso,
J., Bonal, D., Boot, R., Camargo, J., Chave, J., Cogollo, A., Cornejo
Valverde, F., Lola da Costa, A. C., Di Fiore, A., Ferreira, L., Higuchi, N.,
Honorio, E. N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Licona,
J., Lovejoy, T., Malhi, Y., Marimon, B., Marimon, B. H., Matos, D. C. L.,
Mendoza, C., Neill, D. A., Pardo, G., Peña-Claros, M., Pitman, N. C. A.,
Poorter, L., Prieto, A., Ramirez-Angulo, H., Roopsind, A., Rudas, A.,
Salomao, R. P., Silveira, M., Stropp, J., ter Steege, H., Terborgh, J.,
Thomas, R., Toledo, M., Torres-Lezama, A., van der Heijden, G. M. F.,
Vasquez, R., Guimarães Vieira, I. C., Vilanova, E., Vos, V. A., and
Baker, T. R.: Variation in stem mortality rates determines patterns of
above-ground biomass in Amazonian forests: implications for dynamic global
vegetation models, Glob. Change Biol., 22, 3996–4013,
https://doi.org/10.1111/gcb.13315, 2016.
Kim, K., Wang, M., Ranjitkar, S., Liu, S., Xu, J., and Zomer,
R. J.: Using leaf area index (LAI) to assess vegetation response to drought
in Yunnan province of China, J. Mt. Sci., 14, 1863–1872,
https://doi.org/10.1007/s11629-016-3971-x, 2017.
Kindig, D. A. and Stoddart, G.: What is population health?, Am. J. Public
Health, 93, 380–383, https://doi.org/10.2105/AJPH.93.3.380, 2003.
Köhler, P. and Huth, A.: Simulating growth dynamics in a South-East
Asian rainforest threatened by recruitment shortage and tree harvesting,
Climate Change, 67, 95–117, https://doi.org/10.1007/s10584-004-0713-9, 2004.
Korner, C.: ATMOSPHERIC SCIENCE: Slow in, Rapid out – Carbon Flux Studies and
Kyoto Targets, Science, 80, 1242–1243,
https://doi.org/10.1126/science.1084460, 2003.
Körner, C.: A matter of tree longevity, Science,
https://doi.org/10.1126/science.aal2449, 2017.
Kuptz, D., Grams, T. E. E., and Günter, S.: Light acclimation of four
native tree species in felling gaps within a tropical mountain rainforest,
Trees, 24, 117–127, https://doi.org/10.1007/s00468-009-0385-1, 2010.
Lefsky, M. A., Cohen, W. B., Parker, G. G., and Harding, D. J.: Lidar Remote
Sensing for Ecosystem Studies, BioScience, 52, 19–30, https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2, 2002.
Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C.,
Del Bom Espirito-Santo, F., Hunter, M. O., and de Oliveira, R.: Estimates of
forest canopy height and aboveground biomass using ICESat, Geophys. Res.
Lett., 32, 1–4, https://doi.org/10.1029/2005GL023971, 2005.
Magnabosco Marra, D., Higuchi, N., Trumbore, S. E., Ribeiro, G. H. P. M., dos Santos, J., Carneiro, V. M. C., Lima, A. J. N., Chambers, J. Q., Negrón-Juárez, R. I., Holzwarth, F., Reu, B., and Wirth, C.: Predicting biomass of hyperdiverse and structurally complex central Amazonian forests – a virtual approach using extensive field data, Biogeosciences, 13, 1553–1570, https://doi.org/10.5194/bg-13-1553-2016, 2016.
Maréchaux, I. and Chave, J.: An individual-based forest model to jointly
simulate carbon and tree diversity in Amazonia: description and
applications, Ecol. Monogr., 87, 632–664, https://doi.org/10.1002/ecm.1271, 2017.
Marra, D. M., Chambers, J. Q., Higuchi, N., Trumbore, S. E., Ribeiro, G. H.
P. M., Dos Santos, J., Negrón-Juárez, R. I., Reu, B., and Wirth, C.:
Large-scale wind disturbances promote tree diversity in a Central Amazon
forest, PLoS One, 9, 103711, https://doi.org/10.1371/journal.pone.0103711, 2014.
McDowell, N., Allen, C. D., Anderson-Teixeira, K., Brando, P., Brienen, R.,
Chambers, J., Christoffersen, B., Davies, S., Doughty, C., Duque, A.,
Espirito-Santo, F., Fisher, R., Fontes, C. G., Galbraith, D., Goodsman, D.,
Grossiord, C., Hartmann, H., Holm, J., Johnson, D. J., Kassim, A. R.,
Keller, M., Koven, C., Kueppers, L., Kumagai, T., Malhi, Y., McMahon, S. M.,
Mencuccini, M., Meir, P., Moorcroft, P., Muller-Landau, H. C., Phillips, O.
L., Powell, T., Sierra, C. A., Sperry, J., Warren, J., Xu, C., and Xu, X.:
Drivers and mechanisms of tree mortality in moist tropical forests, New
Phytol., 219, 851–869, https://doi.org/10.1111/nph.15027, 2018.
Muller-Landau, H. C., Condit, R. S., Chave, J., Thomas, S. C., Bohlman, S.
A., Bunyavejchewin, S., Davies, S., Foster, R., Gunatilleke, S.,
Gunatilleke, N., Harms, K. E., Hart, T., Hubbell, S. P., Itoh, A., Kassim,
A. R., LaFrankie, J. V., Lee, H. S., Losos, E., Makana, J. R., Ohkubo, T.,
Sukumar, R., Sun, I. F., Nur Supardi, M. N., Tan, S., Thompson, J.,
Valencia, R., Muñoz, G. V., Wills, C., Yamakura, T., Chuyong, G.,
Dattaraja, H. S., Esufali, S., Hall, P., Hernandez, C., Kenfack, D.,
Kiratiprayoon, S., Suresh, H. S., Thomas, D., Vallejo, M. I., and Ashton, P.:
Testing metabolic ecology theory for allometric scaling of tree size, growth
and mortality in tropical forests, Ecol. Lett., 9, 575–588,
https://doi.org/10.1111/j.1461-0248.2006.00904.x, 2006.
Myneni, R., Knyazikhin, Y., and Park, T.: MODIS/Terra+Aqua Leaf Area
Index/FPAR 8-day L4 Global 500m SIN Grid V006, NASA EOSDIS L. Process. DAAC [data set],
https://doi.org/10.5067/MODIS/MCD15A2H.006, 2015.
Negrón-Juárez, R., Jenkins, H., Raupp, C., Riley, W., Kueppers, L.,
Magnabosco Marra, D., Ribeiro, G., Monteiro, M., Candido, L., Chambers, J.,
and Higuchi, N.: Windthrow Variability in Central Amazonia, Atmosphere-Basel, 8, 28, https://doi.org/10.3390/atmos8020028, 2017.
Negrón-Juárez, R. I., Chambers, J. Q., Guimaraes, G., Zeng, H.,
Raupp, C. F. M., Marra, D. M., Ribeiro, G. H. P. M., Saatchi, S. S., Nelson,
B. W., and Higuchi, N.: Widespread Amazon forest tree mortality from a single
cross-basin squall line event, Geophys. Res. Lett., 37, L16701,
https://doi.org/10.1029/2010GL043733, 2010.
Negrón-Juárez, R. I., Holm, J. A., Marra, D. M., Rifai, S. W.,
Riley, W. J., Chambers, J. Q., Koven, C. D., Knox, R. G., McGroddy, M. E.,
Di Vittorio, A. V, Urquiza-Muñoz, J., Tello-Espinoza, R., Muñoz, W.
A., Ribeiro, G. H. P. M., and Higuchi, N.: Vulnerability of Amazon forests to
storm-driven tree mortality, Environ. Res. Lett., 13, 054021,
https://doi.org/10.1088/1748-9326/aabe9f, 2018.
Nepstad, D. C., Tohver, I. M., David, R., Moutinho, P., and Cardinot, G.:
Mortality of large trees and lianas following experimental drought in an
amazon forest, Ecology, 88, 2259–2269, https://doi.org/10.1890/06-1046.1, 2007.
Le Page, Y., Hurtt, G., Thomson, A. M., Bond-Lamberty, B., Patel, P., Wise,
M., Calvin, K., Kyle, P., Clarke, L., Edmonds, J., and Janetos, A.:
Sensitivity of climate mitigation strategies to natural disturbances,
Environ. Res. Lett., 8, 015018, https://doi.org/10.1088/1748-9326/8/1/015018, 2013.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P.,
Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A.,
Sitch, S., and Hayes, D.: A large and persistent carbon sink in the world's
forests, Science, 80, 333, 988–993, https://doi.org/10.1126/science.1201609,
2011.
Phillips, O. L. and Brienen, R. J. W.: Carbon uptake by mature Amazon
forests has mitigated Amazon nations' carbon emissions, Carbon Balance
Manag., 12, 1–9, https://doi.org/10.1186/s13021-016-0069-2, 2017.
Phillips, O. L., Heijden, G. Van Der, Lewis, S. L., Lo, G., Lloyd, J.,
Malhi, Y., Monteagudo, A., Almeida, S., Da, E. A., Andelman, S., Andrade,
A., Arroyo, L., Aymard, G., Baker, T. R., Costa, L., Feldpausch, T. R.,
Fisher, J. B., Fyllas, N. M., Freitas, M. A., Jime, E., Keeling, H., Tim,
J., Gloor, E., Higuchi, N., Lovett, J. C., Meir, P., Mendoza, C., Morel, A.,
Nu, P., Prieto, A., Quesada, C. A., Peh, K. S., Pen, A., Schwarz, M., Silva,
J., Silveira, M., Slik, J. W. F., Sonké, B., Sota Thomas, A., Stropp,
J., Taplin, J. R., Vasquez, R., and Vilanova, E.: Drought–mortality
relationships for tropical forests Oliver, New Phytol., 187, 631–646, 2010.
Piponiot, C., Cabon, A., Descroix, L., Dourdain, A., Mazzei, L., Ouliac, B.,
Rutishauser, E., Sist, P. and Hérault, B.: A methodological framework to
assess the carbon balance of tropical managed forests, Carbon Balance
Manag., 11, 15, https://doi.org/10.1186/s13021-016-0056-7, 2016a.
Piponiot, C., Sist, P., Mazzei, L., Peña-Claros, M., Putz, F. E.,
Rutishauser, E., Shenkin, A., Ascarrunz, N., de Azevedo, C. P., Baraloto,
C., França, M., Guedes, M., Coronado, E. N. H., d'Oliveira, M. V. N.,
Ruschel, A. R., da Silva, K. E., Sotta, E. D., de Souza, C. R., Vidal, E.,
West, T. A. P., and Hérault, B.: Carbon recovery dynamics following
disturbance by selective logging in amazonian forests, Elife,
5, e21394, https://doi.org/10.7554/eLife.21394, 2016b.
Piponiot, C., Rödig, E., Putz, F. E., Rutishauser, E., Sist, P.,
Ascarrunz, N., Blanc, L., Derroire, G., Descroix, L., Guedes, M. C.,
Coronado, E. H., Huth, A., Kanashiro, M., Licona, J. C., Mazzei, L.,
D'Oliveira, M. V. N., Peña-Claros, M., Rodney, K., Shenkin, A., de
Souza, C. R., Vidal, E., West, T. A. P., Wortel, V., and Hérault, B.: Can
timber provision from Amazonian production forests be sustainable?, Environ.
Res. Lett., 14, 064014, https://doi.org/10.1088/1748-9326/ab195e, 2019.
Plummer, S. E.: Perspectives on combining ecological process models and
remotely sensed data, Ecol. Model., 129, 169–186,
https://doi.org/10.1016/S0304-3800(00)00233-7, 2000.
Poorter, L.: Growth responses of 15 rain-forest tree species to a light
gradient: The relative importance of morphological and physiological traits,
Funct. Ecol., 13, 396–410, https://doi.org/10.1046/j.1365-2435.1999.00332.x, 1999.
Pugh, T. A. M., Arneth, A., Kautz, M., Poulter, B., and Smith, B.: Important
role of forest disturbances in the global biomass turnover and carbon sinks,
Nat. Geosci., 12, 730–735, https://doi.org/10.1038/s41561-019-0427-2, 2019.
Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2016, Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, 2016.
Rifai, S. W., Urquiza Muñoz, J. D., Negrón-Juárez, R. I.,
Ramírez Arévalo, F. R., Tello-Espinoza, R., Vanderwel, M. C.,
Lichstein, J. W., Chambers, J. Q., and Bohlman, S. A.: Landscape-scale
consequences of differential tree mortality from catastrophic wind
disturbance in the Amazon, Ecol. Appl., 26, 2225–2237,
https://doi.org/10.1002/eap.1368, 2016.
Rödig, E., Cuntz, M., Heinke, J., Rammig, A., and Huth, A.: Spatial
heterogeneity of biomass and forest structure of the Amazon rain forest:
Linking remote sensing, forest modelling and field inventory, Glob. Ecol.
Biogeogr., 26, 1292–1302, https://doi.org/10.1111/geb.12639, 2017.
Rödig, E., Cuntz, M., Rammig, A., Fischer, R., Taubert, F., and Huth, A.:
The importance of forest structure for carbon fluxes of the Amazon
rainforest, Environ. Res. Lett., 13, 054013,
https://doi.org/10.1088/1748-9326/aabc61, 2018.
Rödig, E., Knapp, N., Fischer, R., Bohn, F. J., Dubayah, R., Tang, H.,
and Huth, A.: From small-scale forest structure to Amazon-wide carbon
estimates, Nat. Commun., 10, 5088, https://doi.org/10.1038/s41467-019-13063-y, 2019.
Rowland, L., da Costa, A. C. L., Galbraith, D. R., Oliveira, R. S., Binks,
O. J., Oliveira, A. A. R., Pullen, A. M., Doughty, C. E., Metcalfe, D. B.,
Vasconcelos, S. S., Ferreira, L. V., Malhi, Y., Grace, J., Mencuccini, M.,
and Meir, P.: Death from drought in tropical forests is triggered by
hydraulics not carbon starvation, Nature, 528, 119–122,
https://doi.org/10.1038/nature15539, 2015.
Rüger, N., Huth, A., Hubbell, S. P., and Condit, R.: Determinants of
mortality across a tropical lowland rainforest community, Oikos, 120,
1047–1056, https://doi.org/10.1111/j.1600-0706.2010.19021.x, 2011.
Rüger, N., Condit, R., Dent, D. H., DeWalt, S. J., Hubbell, S. P.,
Lichstein, J. W., Lopez, O. R., Wirth, C., and Farrior, C. E.: Demographic
trade-offs predict tropical forest dynamics, Science, 80, 368,
165–168, https://doi.org/10.1126/science.aaz4797, 2020.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A.,
Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S.,
White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks
in tropical regions across three continents, P. Natl. Acad. Sci. USA,
108, 9899–9904, https://doi.org/10.1073/pnas.1019576108, 2011.
Seidl, R., Schelhaas, M. J., Rammer, W., and Verkerk, P. J.: Increasing
forest disturbances in Europe and their impact on carbon storage, Nat. Clim.
Chang., 4, 806–810, https://doi.org/10.1038/nclimate2318, 2014.
Senf, C. and Seidl, R.: Mapping the forest disturbance regimes of Europe,
Nat. Sustain., 1–8, https://doi.org/10.1038/s41893-020-00609-y, 2020.
Shugart, H. H.: A Theory of Forest Dynamics: The Ecological Implications of
Forest Succession Models, 1st edn., Blackburn Press, New Jersey, 278 pp.,
ISBN 0387960007, 1984.
Shugart, H. H.: Forest Gap Models, Earth Syst. Biol. Ecol. Dimens. Glob.
Environ. Chang., 2, 316–323, 2002.
Shugart, H. H., Asner, G. P., Fischer, R., Huth, A., Knapp, N., Le Toan, T.,
and Shuman, J. K.: Computer and remote-sensing infrastructure to enhance
large-scale testing of individual-based forest models, Front. Ecol.
Environ., 13, 503–511, https://doi.org/10.1890/140327, 2015.
Shugart, H. H., Wang, B., Fischer, R., Ma, J., Fang, J., and Yan, X.: Gap
models and their individual-based relatives in the assessment of the
consequences of global change, Environ. Res. Lett., 13, 033001, https://doi.org/10.1088/1748-9326/aaaacc, 2018.
Silvério, D. V., Brando, P. M., Bustamante, M. M. C., Putz, F. E.,
Marra, D. M., Levick, S. R., and Trumbore, S. E.: Fire, fragmentation, and
windstorms: A recipe for tropical forest degradation, J. Ecol., 107,
656–667, https://doi.org/10.1111/1365-2745.13076, 2019.
Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.: Mapping forest canopy
height globally with spaceborne lidar, J. Geophys. Res., 116, G04021,
https://doi.org/10.1029/2011JG001708, 2011.
Slik, J. W. F., Breman, F. C., Bernard, C., van Beek, M., Cannon, C. H.,
Eichhorn, K. A. O., and Sidiyasa, K.: Fire as a selective force in a Bornean
tropical everwet forest, Oecologia, 164, 841–849,
https://doi.org/10.1007/s00442-010-1764-4, 2010.
Snell, R. S., Huth, A., Nabel, J. E. M. S., Bocedi, G., Travis, J. M. J.,
Gravel, D., Bugmann, H., Gutiérrez, A. G., Hickler, T., Higgins, S. I.,
Reineking, B., Scherstjanoi, M., Zurbriggen, N., and Lischke, H.: Using
dynamic vegetation models to simulate plant range shifts, Ecography,
37, 1184–1197, https://doi.org/10.1111/ecog.00580, 2014.
Soong, J. L., Janssens, I. A., Grau, O., Margalef, O., Stahl, C., Van
Langenhove, L., Urbina, I., Chave, J., Dourdain, A., Ferry, B., Freycon, V.,
Herault, B., Sardans, J., Peñuelas, J., and Verbruggen, E.: Soil
properties explain tree growth and mortality, but not biomass, across
phosphorus-depleted tropical forests, Sci. Rep.-UK, 10, 1–13,
https://doi.org/10.1038/s41598-020-58913-8, 2020.
Stach, N., Salvado, A., Petit, M., Faure, J. F., Durieux, L., Corbane, C.,
Joubert, P., Lasselin, D., and Deshayes, M.: Land use monitoring by remote
sensing in tropical forest areas in support of the Kyoto Protocol: the case
of French Guiana, Int. J. Remote Sens., 30, 5133–5149,
https://doi.org/10.1080/01431160903022969, 2009.
Stovall, A. E. L., Shugart, H., and Yang, X.: Tree height explains mortality
risk during an intense drought, Nat. Commun., 10, 4385,
https://doi.org/10.1038/s41467-019-12380-6, 2019.
Thurner, M., Beer, C., Carvalhais, N., Forkel, M., Santoro, M., Tum, M., and
Schmullius, C.: Large-scale variation in boreal and temperate forest carbon
turnover rate related to climate, Geophys. Res. Lett., 43, 4576–4585,
https://doi.org/10.1002/2016GL068794, 2016.
Le Toan, T., Quegan, S., Davidson, M. W. J., Balzter, H., Paillou, P.,
Papathanassiou, K., Plummer, S., Rocca, F., Saatchi, S., Shugart, H., and
Ulander, L.: The BIOMASS mission: Mapping global forest biomass to better
understand the terrestrial carbon cycle, Remote Sens. Environ., 115,
2850–2860, https://doi.org/10.1016/j.rse.2011.03.020, 2011.
Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich,
J., Briffa, K. R., and Sheffield, J.: Global warming and changes in drought,
Nat. Clim. Change, 4, 17–22, https://doi.org/10.1038/nclimate2067, 2014.
Uriarte, M., Canham, C. D., Thompson, J., and Zimmerman, J. K.: A
neighborhood analysis of tree growth and survival in a hurricane-driven
tropical forest, Ecol. Monogr., 74, 591–614, https://doi.org/10.1890/03-4031, 2004.
Wagner, F., Rossi, V., Stahl, C., Bonal, D., and Hérault, B.: Water
availability is the main climate driver of neotropical tree growth, PLoS
One, 7, 1–11, https://doi.org/10.1371/journal.pone.0034074, 2012.
Wright, S. J., Sun, I. F., Pickering, M., Fletcher, C. D., and Chen, Y. Y.:
Long-term changes in liana loads and tree dynamics in a Malaysian forest,
Ecology, 96, 2748–2757, https://doi.org/10.1890/14-1985.1, 2015.
Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A. A., Ilic, J., Jansen, S.,
Lewis, S. L. S. L., Miller, R. B. B., Swenson, N. G. G., Wiemann, M. C. C.,
and Chave, J.: Data from: Towards a worldwide wood economics spectrum, Dryad
Digital Repository, https://doi.org/10.1111/j.1461-0248.2009.01285.x, 2009.
Short summary
Quantifying biomass loss rates due to stem mortality is important for estimating the role of tropical forests in the global carbon cycle. We analyse the consequences of long-term elevated stem mortality for tropical forest dynamics and biomass loss. Based on simulations, we developed a statistical model to estimate biomass loss rates of forests in different successional states from forest attributes. Assuming a doubling of tree mortality, biomass loss increased from 3.2 % yr-1 to 4.5 % yr-1.
Quantifying biomass loss rates due to stem mortality is important for estimating the role of...
Altmetrics
Final-revised paper
Preprint