Articles | Volume 19, issue 9
https://doi.org/10.5194/bg-19-2365-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2365-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Major processes of the dissolved cobalt cycle in the North and equatorial Pacific Ocean
MIT–WHOI Joint Program in Oceanography, Cambridge and Woods Hole, MA, USA
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA 02543, USA
Nathan Lanning
Department of Oceanography, Texas A & M University, College
Station, TX 77843, USA
Allison Laubach
Department of Ocean Sciences, University of California Santa Cruz,
Santa Cruz, CA 95064, USA
Jong-Mi Lee
Department of Ocean Sciences, University of California Santa Cruz,
Santa Cruz, CA 95064, USA
Jessica Fitzsimmons
Department of Oceanography, Texas A & M University, College
Station, TX 77843, USA
Mariko Hatta
Institute of Arctic Climate and Environment Research, Japan Agency
for Marine-Earth Science and Technology, Yokosuka, 237-0061, Japan
William Jenkins
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA 02543, USA
Phoebe Lam
Department of Ocean Sciences, University of California Santa Cruz,
Santa Cruz, CA 95064, USA
Matthew McIlvin
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA 02543, USA
Alessandro Tagliabue
School of Environmental Sciences, University of Liverpool, Liverpool,
L3 5DA, UK
Mak Saito
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA 02543, USA
Related authors
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023, https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Short summary
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.
Brandon M. Stephens, Montserrat Roca-Martí, Amy E. Maas, Vinícius J. Amaral, Samantha Clevenger, Shawnee Traylor, Claudia R. Benitez-Nelson, Philip W. Boyd, Ken O. Buesseler, Craig A. Carlson, Nicolas Cassar, Margaret Estapa, Andrea J. Fassbender, Yibin Huang, Phoebe J. Lam, Olivier Marchal, Susanne Menden-Deuer, Nicola L. Paul, Alyson E. Santoro, David A. Siegel, and David P. Nicholson
Biogeosciences, 22, 3301–3328, https://doi.org/10.5194/bg-22-3301-2025, https://doi.org/10.5194/bg-22-3301-2025, 2025
Short summary
Short summary
The ocean’s mesopelagic zone (MZ) plays a crucial role in the global carbon cycle. This study combines new and previously published measurements of organic carbon supply and demand collected in August 2018 in the MZ of the subarctic North Pacific Ocean. Supply was insufficient to meet demand in August, but supply entering into the MZ in the spring of 2018 could have met the August demand. Results suggest observations over seasonal timescales may help to close MZ carbon budgets.
Travis Mellett, Justine Albers, Alyson Santoro, Pascal Salaun, Joseph Resing, Wenhao Wang, Alistar Lough, Alessandro Tagliabue, Maeve Lohan, Randelle Bundy, and Kristen Buck
EGUsphere, https://doi.org/10.5194/egusphere-2025-1798, https://doi.org/10.5194/egusphere-2025-1798, 2025
Short summary
Short summary
Hydrothermal plumes of iron have been observed to persist in the deep ocean, but the exact mechanisms that contribute to the long-range transport of iron is not well defined. We collected plume waters from three different vent systems along the mid-Atlantic Ridge and monitored the temporal evolution of the physical and chemical forms of iron and its interaction with organic matter over time to learn about the mechanisms that control its dispersion.
Riss M. Kell, Adam V. Subhas, Nicole L. Schanke, Lauren E. Lees, Rebecca J. Chmiel, Deepa Rao, Margaret M. Brisbin, Dawn M. Moran, Matthew R. McIlvin, Francesco Bolinesi, Olga Mangoni, Raffaella Casotti, Cecilia Balestra, Tristan Horner, Robert B. Dunbar, Andrew E. Allen, Giacomo R. DiTullio, and Mak A. Saito
EGUsphere, https://doi.org/10.1101/2023.11.05.565706, https://doi.org/10.1101/2023.11.05.565706, 2025
Short summary
Short summary
Photosynthetic productivity is strongly influenced by water column nutrient availability. Despite the importance of zinc, definitive evidence for oceanic zinc limitation of photosynthesis has been scarce. We applied multiple biogeochemical measurements to a field site in Terra Nova Bay, Antarctica, to demonstrate that the phytoplankton community was experiencing zinc limitation. This field evidence paves the way for future experimental studies to consider Zn as a limiting oceanic micronutrient.
Noelle A. Held, Korrina Kunde, Clare E. Davis, Neil J. Wyatt, Elizabeth L. Mann, E. Malcolm S. Woodward, Matthew McIlvin, Alessandro Tagliabue, Benjamin S. Twining, Claire Mahaffey, Mak A. Saito, and Maeve C. Lohan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3996, https://doi.org/10.5194/egusphere-2024-3996, 2025
Short summary
Short summary
Microbial enzymes are critical to marine biogeochemical cycles, but which microbes are producing those enzymes? We used a targeted proteomics method to quantify how much Prochlorococcus and Synechococcus contribute to surface ocean alkaline phosphatase activity. We find that alkaline phosphatase abundance is limited by the availability of iron, zinc and cobalt (which may substitute for zinc).
Claire Mahaffey, Noelle Held, Korinne Kunde, Clare Davis, Neil Wyatt, Matthew McIlvin, Malcolm Woodward, Lewis Wrightson, Alessandro Tagliabue, Maeve Lohan, and Mak Saito
EGUsphere, https://doi.org/10.5194/egusphere-2024-3987, https://doi.org/10.5194/egusphere-2024-3987, 2025
Short summary
Short summary
Picocyanobacteria fix over 50 % of carbon in the subtropical ocean, but which nutrients control their growth and activity? Using a states, rates and metaproteomic approach alongside targeted proteomics in experiments, we reveal picocyanobacteria are phosphorus stressed in the west Atlantic and nitrogen stressed in east Atlantic. We find evidence for trace metal and organic phosphorus control on alkaline phosphatase activity.
Pearse J. Buchanan, Juan J. Pierella Karlusich, Robyn E. Tuerena, Roxana Shafiee, E. Malcolm S. Woodward, Chris Bowler, and Alessandro Tagliabue
EGUsphere, https://doi.org/10.5194/egusphere-2024-3639, https://doi.org/10.5194/egusphere-2024-3639, 2025
Short summary
Short summary
Ammonium is a form of nitrogen that may become more important for growth of marine primary producers (i.e., phytoplankton) in the future. Because some phytoplankton taxa have a greater affinity for ammonium than others, the relative increase in ammonium could cause shifts in community composition. We quantify ammonium enrichment, identify its drivers, and isolate the possible effect on phytoplankton community composition under a high emissions scenario.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024, https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
Short summary
Despite interest in modeling the biogeochemical uptake and cycling of the trace metal zinc (Zn), measurements of Zn uptake in natural marine phytoplankton communities have not been conducted previously. To fill this gap, we employed a stable isotope uptake rate measurement method to quantify Zn uptake into natural phytoplankton assemblages within the Southern Ocean. Zn demand was high and rapid enough to depress the inventory of Zn available to phytoplankton on seasonal timescales.
Colleen L. Hoffman, Patrick J. Monreal, Justine B. Albers, Alastair J. M. Lough, Alyson E. Santoro, Travis Mellett, Kristen N. Buck, Alessandro Tagliabue, Maeve C. Lohan, Joseph A. Resing, and Randelle M. Bundy
Biogeosciences, 21, 5233–5246, https://doi.org/10.5194/bg-21-5233-2024, https://doi.org/10.5194/bg-21-5233-2024, 2024
Short summary
Short summary
Hydrothermally derived iron can be transported kilometers away from deep-sea vents, representing a significant flux of vital micronutrients to the ocean. However, the mechanisms that support the stabilization of dissolved iron remain elusive. Using electrochemical, spectrometry, and genomic methods, we demonstrated that strong ligands exert an important control on iron in plumes, and high-affinity iron-binding siderophores were identified in several hydrothermal plume samples for the first time.
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024, https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023, https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Short summary
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Randelle M. Bundy, Alessandro Tagliabue, Nicholas J. Hawco, Peter L. Morton, Benjamin S. Twining, Mariko Hatta, Abigail E. Noble, Mattias R. Cape, Seth G. John, Jay T. Cullen, and Mak A. Saito
Biogeosciences, 17, 4745–4767, https://doi.org/10.5194/bg-17-4745-2020, https://doi.org/10.5194/bg-17-4745-2020, 2020
Short summary
Short summary
Cobalt (Co) is an essential nutrient for ocean microbes and is scarce in most areas of the ocean. This study measured Co concentrations in the Arctic Ocean for the first time and found that Co levels are extremely high in the surface waters of the Canadian Arctic. Although the Co primarily originates from the shelf, the high concentrations persist throughout the central Arctic. Co in the Arctic appears to be increasing over time and might be a source of Co to the North Atlantic.
Cited articles
Aplin, A. C. and Cronan, D. S.: Ferromanganese oxide deposits from the
Central Pacific Ocean, I. Encrustations from the Line Islands Archipelago,
Geochim. Cosmochim. Ac., 49, 427–436, https://doi.org/10.1016/0016-7037(85)90034-1,
1985.
Baars, O. and Croot, P. L.: Dissolved cobalt speciation and reactivity in
the eastern tropical North Atlantic, Mar. Chem., 173, 310–319,
https://doi.org/10.1016/j.marchem.2014.10.006, 2014.
Bertrand, E. M., Saito, M. A., Rose, J. M., Riesselman, C. R., Lohan, M. C.,
Noble, A. E., Lee, P. A., and DiTullio, G. R.: Vitamin B12 and iron
colimitation of phytoplankton growth in the Ross Sea, Limnol. Oceanogr., 52,
1079–1093, https://doi.org/10.4319/lo.2007.52.3.1079, 2007.
Bertrand, E. M., Moran, D. M., McIlvin, M. R., Hoffman, J. M., Allen, A. E.,
and Saito, M. A.: Methionine synthase interreplacement in diatom cultures
and communities: Implications for the persistence of B12 use by
eukaryotic phytoplankton, Limnol. Oceanogr., 58, 1431–1450,
https://doi.org/10.4319/lo.2013.58.4.1431, 2013.
Bishop, J. K. B. and Wood, T. J.: Year-round observations of carbon biomass
and flux variability in the Southern Ocean, Global Biogeochem. Cy., 23,
GB2019, https://doi.org/10.1029/2008GB003206, 2009.
Bonnet, S., Guieu, C., Bruyant, F., Prášil, O., Van Wambeke, F., Raimbault, P., Moutin, T., Grob, C., Gorbunov, M. Y., Zehr, J. P., Masquelier, S. M., Garczarek, L., and Claustre, H.: Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise), Biogeosciences, 5, 215–225, https://doi.org/10.5194/bg-5-215-2008, 2008.
Bown, J., Boye, M., Baker, A., Duvieilbourg, E., Lacan, F., Le Moigne, F.,
Planchon, F., Speich, S., and Nelson, D. M.: The biogeochemical cycle of
dissolved cobalt in the Atlantic and the Southern Ocean south off the coast
of South Africa, Mar. Chem., 126, 193–206,
https://doi.org/10.1016/j.marchem.2011.03.008, 2011.
Bown, J., Boye, M., and Nelson, D. M.: New insights on the role of organic
speciation in the biogeochemical cycle of dissolved cobalt in the
southeastern Atlantic and the Southern Ocean, Biogeosciences, 9, 2719–2736,
https://doi.org/10.5194/bg-9-2719-2012, 2012.
Boyd, P. W., Law, C. S., Wong, C. S., Nojiri, Y., Tsunda, A., Levasseur, M.,
Takeda, S., Rivkin, R., Harrison, P. J., Strzepek, R., Gower, J., McKay, R.
M., Abraham, E., Arychuk, M., Barwell-Clarke, J., Crawford, W., Crawford,
D., Hale, M., Harada, K., Johnson, K., Kiyosawa, H., Kudo, I., Marchetti,
A., Miller, W., Needoba, J., Nishioka, J., Ogawa, H., Page, J., Robert, M.,
Saito, H., Sastri, A., Sherry, N., Soutar, T., Sutherland, N., Taira, Y.,
Whitney, F., Wong, S.-K. E., and Yoshimura, T.: The decline and fate of an
iron-induced subarctic phytoplankton bloom, Lett. Nat., 428, 549–553,
https://doi.org/10.1029/2001jb001129, 2004.
Browning, T. J., Achterberg, E. P., Rapp, I., Engel, A., Bertrand, E. M.,
Tagliabue, A., and Moore, C. M.: Nutrient co-limitation at the boundary of an
oceanic gyre, Nature, 551, 242–246, https://doi.org/10.1038/nature24063, 2017.
Bruland, K. W. and Lohan, M. C.: Controls of trace metals in seawater, in:
Treatise on Geochemistry, Vol. 6, edited by: Elderfield, H., Holland H. D.,
and Turekian, K. K., Elsevier, 23–47, https://doi.org/10.1016/B0-08-043751-6/06105-3,
2003.
Bundy, R. M., Tagliabue, A., Hawco, N. J., Morton, P. L., Twining, B. S., Hatta, M., Noble, A. E., Cape, M. R., John, S. G., Cullen, J. T., and Saito, M. A.: Elevated sources of cobalt in the Arctic Ocean, Biogeosciences, 17, 4745–4767, https://doi.org/10.5194/bg-17-4745-2020, 2020.
Cameron, H., Georghiou, L., Perry, J. G., and Wiley, P.: The economic
feasibility of deep-sea mining, Eng. Costs Prod. Econ., 5, 279–287,
https://doi.org/10.1016/0167-188X(81)90019-7, 1981.
Casciotti, K. L., Cutter, G. A., and Lam, P. J.: Bottle file from Leg 1 (Seattle, WA to Hilo, HI) of the US GEOTRACES Pacific Meridional Transect (PMT) cruise (GP15, RR1814) on R/V Roger Revelle from September to October 2018, Biological and Chemical Oceanography Data Management Office (BCO-DMO), (Version 6) Version Date 2021-05-05 [data set], https://doi.org/10.26008/1912/bco-dmo.777951.6, 2021a.
Casciotti, K. L., Cutter, G. A., and Lam, P. J.: Bottle file from Leg 2 (Hilo, HI to Papeete, French Polynesia) of the US GEOTRACES Pacific Meridional Transect (PMT) cruise (GP15, RR1815) on R/V Roger Revelle from October to November 2018, Biological and Chemical Oceanography Data Management Office (BCO-DMO), (Version 5) Version Date 2021-05-05 [data set], https://doi.org/10.26008/1912/bco-dmo.824867.5, 2021b.
Chmiel, R.: “GP15”, Version Date 2022-03-15, GitHub [code], https://github.com/rebecca-chmiel/GP15, last access: 3 May 2022.
Clague, D. A., Paduan, J. B., Caress, D. W., Moyer, C. L., Glazer, B. T., and
Yoerger, D. R.: Structure of Lo`ihi Seamount, Hawai'i and lava flow
morphology from high-resolution mapping, Front. Earth Sci., 7, 58,
https://doi.org/10.3389/feart.2019.00058, 2019.
Clegg, S. L. and Whitfield, M.: A generalized model for the scavenging of
trace metals in the open ocean – I. Particle cycling, Deep-Sea Res., 37,
809–832, https://doi.org/10.1016/0198-0149(90)90008-J, 1990.
Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R. M., Tanner, S.,
Chavez, F. P., Ferioli, L., Sakamoto, C., Rogers, P., Millero, F.,
Steinberg, Pa., Nightingale, P., Cooper, D., Cochlan, W. P., Landry, M. R.,
Constantinou, J., Rollwagen, G., Trasvina, A., and Kudela, R.: A massive
phytoplankton bloom induced by an ecosystem-scale iron fertilization
experiment in the equatorial Pacific Ocean, Nature, 383, 495–501,
https://doi.org/10.1038/383495a0, 1996.
Cox, A. D. and Saito, M. A.: Proteomic responses of oceanic Synechococcus WH8102 to
phosphate and zinc scarcity and cadmium additions, Front. Microbiol., 4,
387, https://doi.org/10.3389/fmicb.2013.00387, 2013.
Crusius, J., Schroth, A. W., Gassó, S., Moy, C. M., Levy, R. C., and
Gatica, M.: Glacial flour dust storms in the Gulf of Alaska: Hydrologic and
meteorological controls and their importance as a source of bioavailable
iron, Geophys. Res. Lett., 38, L06602, https://doi.org/10.1029/2010GL046573, 2011.
Cutter, G. A. and Bruland, K. W.: Rapid and noncontaminating sampling system
for trace elements in global ocean surveys, Limnol. Oceanogr. Method., 10,
425–436, https://doi.org/10.4319/lom.2012.10.425, 2012.
Czeschel, R., Stramma, L., Schwarzkopf, F. U., Giese, B. S., Funk, A., and
Karstensen, J.: Middepth circulation of the eastern tropical South Pacific
and its link to the oxygen minimum zone, J. Geophys. Res., 116, C01015,
https://doi.org/10.1029/2010JC006565, 2011.
de Carvalho, L. M., Hollister, A. P., Trindade, C., Gledhill, M., and
Koschinsky, A.: Distribution and size fractionation of nickel and cobalt
species along the Amazon estuary and mixing plume, Mar. Chem., 236, 104019,
https://doi.org/10.1016/j.marchem.2021.104019, 2021.
de Lavergne, C., Madec, G., Roquet, F., Holmes, R. M., and McDougall, T. J.:
Abyssal ocean overturning shaped by seafloor distribution, Nature, 551,
181–186, https://doi.org/10.1038/nature24472, 2017.
Drazen, J. C., Smith, C. R., Gjerde, K. M., Haddock, S. H. D., Carter, G.
S., Choy, C. A., Clark, M. R., Dutrieux, P., Goetze, E., Hauton, C., Hatta,
M., Koslow, J. A., Leitner, A. B., Pacini, A., Perelman, J. N., Peacock, T.,
Sutton, T. T., Watling, L., and Yamamoto, H.: Midwater ecosystems must be
considered when evaluating environmental risks of deep-sea mining, P. Natl. Acad. Sci. USA,
117, 17455–17460, https://doi.org/10.1073/pnas.2011914117, 2020.
Dulaquais, G., Boye, M., Middag, R., Owens, S., Puigcorbe, V., Buesseler,
K., Masqué, P., de Baar, H. J. W., and Carton, X.: Contrasting
biogeochemical cycles of cobalt in the surface western Atlantic Ocean,
Global Biogeochem. Cy., 28, 1387–1412, https://doi.org/10.1002/2014GB004903, 2014a.
Dulaquais, G., Boye, M., Rijkenberg, M. J. A., and Carton, X.: Physical and
remineralization processes govern the cobalt distribution in the deep
western Atlantic Ocean, Biogeosciences, 11, 1561–1580,
https://doi.org/10.5194/bg-11-1561-2014, 2014b.
Dulaquais, G., Planquette, H., L'Helguen, S., Rijkenberg, M. J. A., and Boye,
M.: The biogeochemistry of cobalt in the Mediterranean Sea, Global
Biogeochem. Cy., 31, 377–399, https://doi.org/10.1002/2016GB005478, 2017.
Fuchida, S., Yokoyama, A., Fukuchi, R., Ishibashi, J. I., Kawagucci, S.,
Kawachi, M., and Koshikawa, H.: Leaching of metals and metalloids from
hydrothermal ore particulates and their effects on marine phytoplankton, ACS
Omega, 2, 3175–3182, https://doi.org/10.1021/acsomega.7b00081, 2017.
Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y., and Schilling, J.-G.: The
mean composition of ocean ridge basalts, Geochem. Geophy. Geosy.,
14, 489–518, https://doi.org/10.1029/2012GC004334, 2013.
Glover, D., Jenkins, W., and Doney, S.: Modeling Methods for Marine Science,
Cambridge University Press, New York, ISBN 978-0521867832, 2011.
Gobler, C. J., Norman, C., Panzeca, C., Taylor, G. T., and
Sañudo-Wilhelmy, S. A.: Effect of B-vitamins (B1, B12) and
inorganic nutrients on algal bloom dynamics in a coastal ecosystem, Aquat.
Microb. Ecol., 49, 181–194, https://doi.org/10.3354/ame01132, 2007.
Hawco, N. J., Ohnemus, D. C., Resing, J. A., Twining, B. S., and Saito, M.
A.: A dissolved cobalt plume in the oxygen minimum zone of the eastern
tropical South Pacific, Biogeosciences, 13, 5697–5717,
https://doi.org/10.5194/bg-13-5697-2016, 2016.
Hawco, N. J., Lam, P. J., Lee, J. M., Ohnemus, D. C., Noble, A. E., Wyatt,
N. J., Lohan, M. C., and Saito, M. A.: Cobalt scavenging in the mesopelagic
ocean and its influence on global mass balance: Synthesizing water column
and sedimentary fluxes, Mar. Chem., 201, 151–166,
https://doi.org/10.1016/j.marchem.2017.09.001, 2018.
Hawco, N. J., Yang, S., Foreman, R. K., Funkey, C. P., Dugenne, M., White,
A. E., Wilson, S. T., Kelly, R. L., Bian, X., Huang, K., Karl, D. M., and
John, S. G.: Metal isotope signatures from lava-seawater interaction during
the 2018 eruption of Kīlauea, Geochim. Cosmochim. Ac., 282, 340–356,
https://doi.org/10.1016/j.gca.2020.05.005, 2020.
Hein, J. R., Mizell, K., Koschinsky, A., and Conrad, T. A.: Deep-ocean
mineral deposits as a source of critical metals for high- and
green-technology applications: Comparison with land-based resources, Ore
Geol. Rev., 51, 1–14, https://doi.org/10.1016/j.oregeorev.2012.12.001, 2013.
Hémond, C., Devey, C. W., and Chauvel, C.: Source compositions and
melting processes in the Society and Austral plumes (South Pacific Ocean):
Element and isotope (Sr, Nd, Pb, Th) geochemistry, Chem. Geol., 115, 7–45,
https://doi.org/10.1016/0009-2541(94)90143-0, 1994.
Jenkins, W. J., Lott, D. E. III, and Cahill, K. L.: A determination of
atmospheric helium, neon, argon, krypton, and xenon solubility
concentrations in water and seawater, Mar. Chem., 211, 94–107,
https://doi.org/10.1016/j.marchem.2019.03.007, 2019.
Jenkins, W. J., Hatta, M., Fitzsimmons, J. N., Schlitzer, R., Lanning, N.
T., Shiller, A., Buckley, N. R., German, C. R., Lott, D. E. III, Weiss, G.,
Whitmore, L., Casciotti, K., Lam, P. J., Cutter, G. A., and Cahill, K. L.: An
intermediate-depth source of hydrothermal 3He and dissolved iron in the
North Pacific, Earth Planet. Sci. Lett., 539, 116223,
https://doi.org/10.1016/j.epsl.2020.116223, 2020.
Johnson, K. S., Coale, K. H., Berelson, W. M., and Gordon, R. M.: On the
formation of the manganese maximum in the oxygen minimum zone, Geochim.
Cosmochim. Ac., 60, 1291–1299, https://doi.org/10.1016/0016-7037(96)00005-1, 1996.
Juranek, L. W., Quay, P. D., Feely, R. A., Lockwood, D., Karl, D. M., and
Church, M. J.: Biological production in the NE Pacific and its influence on
air-sea CO2 flux: Evidence from dissolved oxygen isotopes and
O2 Ar, J. Geophys. Res.-Ocean., 117, C05022, https://doi.org/10.1029/2011JC007450,
2012.
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the
eastern tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77, 331–350,
https://doi.org/10.1016/j.pocean.2007.05.009, 2008.
Kellogg, R. M., McIlvin, M. R., Vedamati, J., Twining, B. S., Moffett, J.
W., Marchetti, A., Moran, D. M., and Saito, M. A.: Efficient zinc/cobalt
interreplacement in northeast Pacific diatoms and relationship to high
surface dissolved Co : Zn ratios, Limnol. Oceanogr., 65, 2557–2582,
https://doi.org/10.1002/lno.11471, 2020.
Kenyon, J. A., Buesseler, K. O., Davidson, P., Pike, S. M., and Lam P. J.:
234Th as a tracer of particulate export and remineralization along the
GEOTRACES Pacific Meridional Transect, in preparation, 2022.
Key, R. M., Olsen, A., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., and Suzuki, T.: Global
Ocean Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, ND-P093,
Oak Ridge National Laboratory,
U.S. Department of Energy or the Carbon Dioxide Information Analysis Center, Oak Ridge, Tennessee,
https://doi.org/10.3334/CDIAC/OTG.NDP093_GLODAPv2, 2015.
Kleint, C., Bach, W., Diehl, A., Fröhberg, N., Garbe-Schönberg, D.,
Hartmann, J. F., de Ronde, C. E. J., Sander, S. G., Strauss, H., Stucker, V.
K., Thal, J., Zitoun, R., and Koschinsky, A.: Geochemical characterization of
highly diverse hydrothermal fluids from volcanic vent systems of the
Kermadec intraoceanic arc, Chem. Geol., 528, 119289,
https://doi.org/10.1016/j.chemgeo.2019.119289.
Lam, P. J. and Bishop, J. K. B.: The continental margin is a key source of
iron to the HNLC North Pacific Ocean, Geophys. Reseach Lett., 35, L07608,
https://doi.org/10.1029/2008GL033294, 2008.
Lam, P. J., Bishop, J. K. B., Henning, C. C., Marcus, M. A., Waychunas, G.
A., and Fung, I. Y.: Wintertime phytoplankton bloom in the subarctic Pacific
supported by continental margin iron, Global Biogeochem. Cy., 20, GB1006,
https://doi.org/10.1029/2005GB002557, 2006.
Matear, R. J. and Hirst, A. C.: Long-term changes in dissolved oxygen
concentrations in the ocean caused by protracted global warming, Global
Biogeochem. Cy., 17, 1125, https://doi.org/10.1029/2002gb001997, 2003.
Matsumoto, K.: Radiocarbon-based circulation age of the world oceans, J.
Geophys. Res.-Ocean., 112, C09004, https://doi.org/10.1029/2007JC004095, 2007.
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the
Gibbs Seawater (GSW) Oceanographic Toolbox, SCOR/IAPSO WG127,
ISBN 978-0-646-55621-5, 2011.
Metz, S. and Trefry, J. H.: Chemical and mineralogical influences on
concentrations of trace metals in hydrothermal fluids, Geochim. Cosmochim.
Ac., 64, 2267–2279, https://doi.org/10.1016/S0016-7037(00)00354-9, 2000.
Moffett, J. W. and Ho, J.: Oxidation of cobalt and manganese in seawater via
a common microbially catalyzed pathway, Geochim. Cosmochim. Ac., 60,
3415–3424, https://doi.org/10.1016/0016-7037(96)00176-7, 1996.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic
nutrient limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Nishioka, J., Obata, H., Ogawa, H., Ono, K., Yamashita, Y., Lee, K., Takeda,
S., and Yasuda, I.: Subpolar marginal seas fuel the North Pacific through the
intermediate water at the termination of the global ocean circulation, P.
Natl. Acad. Sci. USA, 117, 12665–12673, https://doi.org/10.1073/pnas.2000658117,
2020.
Noble, A. E., Saito, M. A., Maiti, K., and Benitez-Nelson, C. R.: Cobalt,
manganese, and iron near the Hawaiian Islands: A potential concentrating
mechanism for cobalt within a cyclonic eddy and implications for the
hybrid-type trace metals, Deep-Sea Res. Pt. II, 55,
1473–1490, https://doi.org/10.1016/j.dsr2.2008.02.010, 2008.
Noble, A. E., Lamborg, C. H., Ohnemus, D. C., Lam, P. J., Goepfert, T. J.,
Measures, C. I., Frame, C. H., Casciotti, K. L., DiTullio, G. R., Jennings,
J., and Saito, M. A.: Basin-scale inputs of cobalt, iron, and manganese from
the Benguela-Angola front to the South Atlantic Ocean, Limnol. Oceanogr.,
57, 989–1010, https://doi.org/10.4319/lo.2012.57.4.0989, 2012.
Noble, A. E., Moran, D. M., Allen, A. E., and Saito, M. A.: Dissolved and
particulate trace metal micronutrients under the McMurdo Sound seasonal sea
ice: basal sea ice communities as a capacitor for iron, Front. Chem., 1, 25,
https://doi.org/10.3389/fchem.2013.00025, 2013.
Noble, A. E., Ohnemus, D. C., Hawco, N. J., Lam, P. J., and Saito, M. A.:
Coastal sources, sinks and strong organic complexation of dissolved cobalt
within the US North Atlantic GEOTRACES transect GA03, Biogeosciences, 14,
2715–2739, https://doi.org/10.5194/bg-14-2715-2017, 2017.
Ohnemus, D. C., Rauschenberg, S., Cutter, G. A., Fitzsimmons, J. N., and
Sherrell, R. M.: Elevated trace metal content of prokaryotic communities
associated with marine oxygen deficient zones, Limnol. Oceanogr., 62, 3–25,
https://doi.org/10.1002/lno.10363, 2017.
Oldham, V. E., Chmiel, R., Hansel, C. M., DiTullio, G. R., Rao, D., and
Saito, M.: Inhibited manganese oxide formation hinders cobalt scavenging in
the Ross Sea, Global Biogeochem. Cy., 35, e2020GB006706,
https://doi.org/10.1029/2020GB006706, 2021.
Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.:
The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally
consistent data product for the world ocean, Earth Syst. Sci. Data, 8,
297–323, https://doi.org/10.5194/essd-8-297-2016, 2016.
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S., Bittig, H. C., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jones, S. D., Jutterström, S., Karlsen, M. K., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Telszewski, M., Tilbrook, B., Velo, A., and Wanninkhof, R.: GLODAPv2.2019 – an update of GLODAPv2, Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, 2019.
Polovina, J. J., Howell, E., Kobayashi, D. R., and Seki, M. P.: The
transition zone chlorophyll front, a dynamic global feature defining
migration and forage habitat for marine resources, Prog. Oceanogr., 49,
469–483, https://doi.org/10.1016/S0079-6611(01)00036-2, 2001.
Polovina, J. J., Howell, E. A., Kobayashi, D. R., and Seki, M. P.: The
Transition Zone Chlorophyll Front updated: Advances from a decade of
research, Prog. Oceanogr., 150, 79–85, https://doi.org/10.1016/j.pocean.2015.01.006,
2017.
Price, N. M. and Morel, F. M. M.: Cadmium and cobalt substitution for zinc
in a marine diatom, Nature, 344, 658–660, https://doi.org/10.1038/344658a0, 1990.
Price, N. M., Harrison, G. I., Hering, J. G., Hudson, R. J., Nirel, P. M. V.,
Palenik, B., and Morel, F. M. M.: Preparation and chemistry of the artificial
algal culture medium aquil preparation and chemistry of the artificial algal
culture medium aquil, Biol. Oceanogr., 6, 443–461,
https://doi.org/10.1080/01965581.1988.10749544, 1988/1989.
Quisel, J. D., Wykoff, D. D., and Grossman, A. R.: Biochemical
characterization of the extracellular phosphatases produced by
phosphorus-deprived Chlamydomonas reinhardtii, Plant Physiol., 111, 839–848,
https://doi.org/10.1104/pp.111.3.839, 1996.
Reed, R. K.: Flow of the Alaskan Stream and its variations, Deep-Sea Res.
Pt. A, 31, 369–386, https://doi.org/10.1016/0198-0149(84)90090-6,
1984.
Richon, C. and Tagliabue, A.: Biogeochemical feedbacks associated with the
response of micronutrient recycling by zooplankton to climate change, Glob.
Change Biol., 27, 4758–4770, https://doi.org/10.1111/gcb.15789, 2021.
Saito, M.: Dissolved Cobalt and Labile Cobalt from Leg 2 (Hilo, HI to Papeete, French Polynesia) of the US GEOTRACES Pacific Meridional Transect (PMT) cruise (GP15, RR1815) on R/V Roger Revelle from October to November 2018, Biological and Chemical Oceanography Data Management Office (BCO-DMO), (Version 1) Version Date 2020-07-15 [data set], https://doi.org/10.26008/1912/bco-dmo.818610.1, 2020.
Saito, M. A.: Dissolved Cobalt and Labile Cobalt from Leg 1 (Seattle, WA to Hilo, HI) of the US GEOTRACES Pacific Meridional Transect (PMT) cruise (GP15, RR1814) on R/V Roger Revelle from September to October 2018, Biological and Chemical Oceanography Data Management Office (BCO-DMO), (Version 2) Version Date 2021-05-05 [data set], https://doi.org/10.26008/1912/bco-dmo.818383.2, 2021.
Saito, M. A. and Moffett, J. W.: Complexation of cobalt by natural organic
ligands in the Sargasso Sea as determined by a new high-sensitivity
electrochemical cobalt speciation method suitable for open ocean work, Mar.
Chem., 75, 49–68, https://doi.org/10.1016/S0304-4203(01)00025-1, 2001.
Saito, M. A. and Moffett, J. W.: Temporal and spatial variability of cobalt
in the Atlantic Ocean, Geochim. Cosmochim. Ac., 66, 1943–1953,
https://doi.org/10.1016/s0016-7037(02)00829-3, 2002.
Saito, M. A., Moffett, J. W., Chisholm, S. W., and Waterbury, J. B.: Cobalt
limitation and uptake in Prochlorococcus, Limnol. Oceanogr., 47, 1629–1636,
https://doi.org/10.4319/lo.2002.47.6.1629, 2002.
Saito, M. A., Rocap, G., and Moffett, J. W.: Production of cobalt binding
ligands in a Synechococcus feature at the Costa Rica upwelling dome, Limnol. Oceanogr.,
50, 279–290, 2005.
Saito, M. A., Goepfert, T. J., Noble, A. E., Bertrand, E. M., Sedwick, P. N.,
and DiTullio, G. R.: A seasonal study of dissolved cobalt in the Ross Sea,
Antarctica: micronutrient behavior, absence of scavenging, and relationships
with Zn, Cd, and P, Biogeosciences, 7, 4059–4082,
https://doi.org/10.5194/bg-7-4059-2010, 2010.
Saito, M. A., McIlvin, M. R., Moran, D. M., Goepfert, T. J., DiTullio, G.
R., Post, A. F., and Lamborg, C. H.: Multiple nutrient stresses at
intersecting Pacific Ocean biomes detected by protein biomarkers, Science,
345, 1173–1177, https://doi.org/10.1126/science.1256450, 2014.
Saito, M. A., Noble, A. E., Hawco, N., Twining, B. S., Ohnemus, D. C., John,
S. G., Lam, P., Conway, T. M., Johnson, R., Moran, D., and McIlvin, M.: The
acceleration of dissolved cobalt's ecological stoichiometry due to
biological uptake, remineralization, and scavenging in the Atlantic Ocean,
Biogeosciences, 14, 4637–4662, https://doi.org/10.5194/bg-14-4637-2017, 2017.
Sañudo-Wilhelmy, S. A., Gobler, C. J., Okbamichael, M., and Taylor, G.
T.: Regulation of phytoplankton dynamics by vitamin B12, Geophys.
Res. Lett., 33, L04604, https://doi.org/10.1029/2005GL025046, 2006.
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.:
High-latitude controls of thermocline nutrients and low latitude biological
productivity, Lett. Nat., 427, 56–60, https://doi.org/10.1038/nature02127, 2004.
Schlitzer, R., Anderson, R. F., Dodas, E. M., et al.: The GEOTRACES Intermediate Data Product 2017, Chem.
Geol., 493, 210–223, https://doi.org/10.1016/j.chemgeo.2018.05.040, 2018.
Schroth, A. W., Crusius, J., Hoyer, I., and Campbell, R.: Estuarine removal
of glacial iron and implications for iron fluxes to the ocean, Geophys. Res.
Lett., 41, 3951–3958, https://doi.org/10.1002/2014GL060199, 2014.
Sharma, R.: Deep-sea mining: Economic, technical, technological, and
environmental considerations for sustainable development, Mar. Technol. Soc.
J., 45, 28–41, https://doi.org/10.4031/MTSJ.45.5.2, 2011.
Stabeno, P. J., Reed, R. K., and Schumacher, J. D.: The Alaska Coastal
Current: Continuity of transport and forcing, J. Geophys. Res., 100,
2477–2485, https://doi.org/10.1029/94JC02842, 1995.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
oxygen-minimum zones in the tropical oceans, Science, 320, 655–658,
https://doi.org/10.1126/science.1153847, 2008.
Sunda, W. G. and Huntsman, S. A.: Effect of sunlight on redox cycles of
manganese in the southwestern Sargasso Sea, Deep-Sea Res. Pt. A, 35, 1297–1317, https://doi.org/10.1016/0198-0149(88)90084-2, 1988.
Sunda, W. G. and Huntsman, S. A.: Cobalt and zinc interreplacement in marine
phytoplankton: Biological and geochemical implications, Limnol. Oceanogr.,
40, 1404–1417, https://doi.org/10.4319/lo.1995.40.8.1404, 1995.
Sundby, B., Anderson, L. G., Hall, P. O. J., Iverfeldt, Å., van der
Loeff, M. M. R., and Westerlund, S. F. G.: The effect of oxygen on release
and uptake of cobalt, manganese, iron and phosphate at the sediment-water
interface, Geochim. Cosmochim. Ac., 50, 1281–1288,
https://doi.org/10.1016/0016-7037(86)90411-4, 1986.
Swanner, E. D., Planavsky, N. J., Lalonde, S. V., Robbins, L. J., Bekker,
A., Rouxel, O. J., Saito, M. A., Kappler, A., Mojzsis, S. J., and Konhauser,
K. O.: Cobalt and marine redox evolution, Earth Planet. Sc. Lett., 390,
253–263, https://doi.org/10.1016/j.epsl.2014.01.001, 2014.
Tagliabue, A., Hawco, N. J., Bundy, R. M., Landing, W. M., Milne, A.,
Morton, P. L., and Saito, M. A.: The role of external inputs and internal
cycling in shaping the global ocean cobalt distribution: Insights from the
first cobalt biogeochemical model, Global Biogeochem. Cy., 32, 594–616,
https://doi.org/10.1002/2017GB005830, 2018.
Taylor, S. R. and McLennan, S. M.: The geochemical evolution of the
continental crust, Rev. Geophys., 33, 241–265, https://doi.org/10.1029/95RG00262, 1995.
Tsuda, A., Kiyosawa, H., Kuwata, A., Mochizuki, M., Shiga, N., Saito, H.,
Chiba, S., Imai, K., Nishioka, J., and Ono, T.: Responses of diatoms to
iron-enrichment (SEEDS) in the western subarctic Pacific, temporal and
spatial comparisons, Prog. Oceanogr., 64, 189–205,
https://doi.org/10.1016/j.pocean.2005.02.008, 2005.
Ustick, L. J., Larkin, A. A., Garcia, C. A., Garcia, N. S., Brock, M. L.,
Lee, J. A., Wiseman, N. A., Keith Moore, J., and Martiny, A. C.: Metagenomic
analysis reveals global-scale patterns of ocean nutrient limitation,
Science, 372, 287–291, https://doi.org/10.1126/science.abe6301, 2021.
Wojciechowski, C. L., Cardia, J. P., and Kantrowitz, E. R.: Alkaline
phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for
activity, Protein Sci., 11, 903–911, https://doi.org/10.1110/ps.4260102, 2002.
Wyatt, N. J., Milne, A., Achterberg, E. P., Browning, T. J., Bouman, H. A.,
Woodward, E. M. S., and Lohan, M. C.: Seasonal cycling of zinc and cobalt in
the Southeast Atlantic along the GEOTRACES GA10 section, Biogeosciences, 18,
4265–4280, https://doi.org/10.5194/bg-18-4265-2021, 2021.
Xiang, Y. and Lam, P. J.: Size-fractionated compositions of marine suspended
particles in the western Arctic Ocean: Lateral and vertical sources, J.
Geophys. Res.-Ocean., 125, e2020JC016144, https://doi.org/10.1029/2020JC016144, 2020.
Zhang, H., van den Berg, C. M. G., and Wollast, R.: The determination of
interactions of cobalt (II) with organic compounds in seawater using
cathodic stripping voltammetry, Mar. Chem., 28, 285–300,
https://doi.org/10.1016/0304-4203(90)90049-I, 1990.
Zheng, L., Minami, T., Konagaya, W., Chan, C. Y., Tsujisaka, M., Takano, S.,
Norisuye, K., and Sohrin, Y.: Distinct basin-scale-distributions of aluminum,
manganese, cobalt, and lead in the North Pacific Ocean, Geochim. Cosmochim.
Ac., 254, 102–121, https://doi.org/10.1016/j.gca.2019.03.038, 2019.
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine...
Altmetrics
Final-revised paper
Preprint