Articles | Volume 19, issue 10
https://doi.org/10.5194/bg-19-2653-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2653-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Aileen B. Baird
School of Geography, Earth and Environmental Sciences, University of
Birmingham, Birmingham, B152TT, UK
Birmingham Institute of Forest Research, University of Birmingham,
Birmingham, B15 2TT, UK
Edward J. Bannister
School of Geography, Earth and Environmental Sciences, University of
Birmingham, Birmingham, B152TT, UK
Birmingham Institute of Forest Research, University of Birmingham,
Birmingham, B15 2TT, UK
A. Robert MacKenzie
School of Geography, Earth and Environmental Sciences, University of
Birmingham, Birmingham, B152TT, UK
Birmingham Institute of Forest Research, University of Birmingham,
Birmingham, B15 2TT, UK
School of Geography, Earth and Environmental Sciences, University of
Birmingham, Birmingham, B152TT, UK
Birmingham Institute of Forest Research, University of Birmingham,
Birmingham, B15 2TT, UK
Related authors
No articles found.
Juncheng Qian, Thomas Wynn, Bowen Liu, Yuli Shan, Suzanne E. Bartington, Francis D. Pope, Yuqing Dai, and Zongbo Shi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3839, https://doi.org/10.5194/egusphere-2025-3839, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We developed a multi-stage AutoML calibration framework to improve low-cost indoor PM2.5 sensor accuracy. Using chamber tests with varied emission sources, the method corrected drift, humidity effects, and non-linear responses, raising R2 above 0.9 and halving RMSE. The approach enables reliable, scalable indoor air quality monitoring for research and public health applications.
Yuqing Dai, Bowen Liu, Chengxu Tong, David Carslaw, Robert MacKenzie, and Zongbo Shi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1376, https://doi.org/10.5194/egusphere-2025-1376, 2025
Short summary
Short summary
Air pollution causes millions of deaths annually, driving policies to improve air quality. However, assessing these policies is challenging because weather changes can hide their true impact. We created a logical evaluation framework and found that a widely applied machine learning approach that adjusts for weather effects could underestimate the effectiveness of short-term policies, like emergency traffic controls. We proposed a refined approach that could largely reduce such underestimation.
Susan E. Quick, Giulio Curioni, Nicholas J. Harper, Stefan Krause, and A. Robert MacKenzie
Biogeosciences, 22, 1557–1581, https://doi.org/10.5194/bg-22-1557-2025, https://doi.org/10.5194/bg-22-1557-2025, 2025
Short summary
Short summary
To study the effects of rising CO2 levels on water usage of old-growth temperate oak forest, we monitored trees in an open-air elevated CO2 experiment for 5 years. We found 4 %–16 % leaf-on season reduction in daylight water usage for ~35% increase in atmospheric CO2. July-only reduction varied more widely. Tree water usage depended on tree size, i.e. stem size and projected canopy area, across all treatments. Experimental infrastructure increased the water usage of the trees in leaf-on season.
Sophie A. Mills, Adam Milsom, Christian Pfrang, A. Rob MacKenzie, and Francis D. Pope
Atmos. Meas. Tech., 16, 4885–4898, https://doi.org/10.5194/amt-16-4885-2023, https://doi.org/10.5194/amt-16-4885-2023, 2023
Short summary
Short summary
Pollen grains are important components of the atmosphere and have the potential to impact upon cloud processes via their ability to help in the formation of rain droplets. This study investigates the hygroscopicity of two different pollen species using an acoustic levitator. Pollen grains are levitated, and their response to changes in relative humidity is investigated. A key advantage of this method is that it is possible study pollen shape under varying environmental conditions.
Clarissa Baldo, Paola Formenti, Claudia Di Biagio, Gongda Lu, Congbo Song, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Pavla Dagsson-Waldhauserova, Olafur Arnalds, David Beddows, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 23, 7975–8000, https://doi.org/10.5194/acp-23-7975-2023, https://doi.org/10.5194/acp-23-7975-2023, 2023
Short summary
Short summary
This paper presents new shortwave spectral complex refractive index and single scattering albedo data for Icelandic dust. Our results show that the imaginary part of the complex refractive index of Icelandic dust is at the upper end of the range of low-latitude dust. Furthermore, we observed that Icelandic dust is more absorbing towards the near-infrared, which we attribute to its high magnetite content. These findings are important for modeling dust aerosol radiative effects in the Arctic.
Edward J. Bannister, Mike Jesson, Nicholas J. Harper, Kris M. Hart, Giulio Curioni, Xiaoming Cai, and A. Rob MacKenzie
Atmos. Chem. Phys., 23, 2145–2165, https://doi.org/10.5194/acp-23-2145-2023, https://doi.org/10.5194/acp-23-2145-2023, 2023
Short summary
Short summary
In forests, the residence time of air influences canopy chemistry and atmospheric exchange. However, there have been few field observations. We use long-term open-air CO2 enrichment measurements to show median daytime residence times are twice as long when the trees are in leaf versus when they are not. Residence times increase with increasing atmospheric stability and scale inversely with turbulence. Robust parametrisations for large-scale models are available using common distributions.
Andrea Mazzeo, Michael Burrow, Andrew Quinn, Eloise A. Marais, Ajit Singh, David Ng'ang'a, Michael J. Gatari, and Francis D. Pope
Atmos. Chem. Phys., 22, 10677–10701, https://doi.org/10.5194/acp-22-10677-2022, https://doi.org/10.5194/acp-22-10677-2022, 2022
Short summary
Short summary
A modelling system for meteorology and chemistry transport processes, WRF–CHIMERE, has been tested and validated for three East African conurbations using the most up-to-date anthropogenic emissions available. Results show that the model is able to reproduce hourly and daily temporal variabilities in aerosol concentrations that are close to observations in both urban and rural environments, encouraging the adoption of numerical modelling as a tool for air quality management in East Africa.
Dimitrios Bousiotis, David C. S. Beddows, Ajit Singh, Molly Haugen, Sebastián Diez, Pete M. Edwards, Adam Boies, Roy M. Harrison, and Francis D. Pope
Atmos. Meas. Tech., 15, 4047–4061, https://doi.org/10.5194/amt-15-4047-2022, https://doi.org/10.5194/amt-15-4047-2022, 2022
Short summary
Short summary
In the last decade, low-cost sensors have revolutionised the field of air quality monitoring. This paper extends the ability of low-cost sensors to not only measure air pollution, but also to understand where the pollution comes from. This "source apportionment" is a critical step in air quality management to allow for the mitigation of air pollution. The techniques developed in this paper have the potential for great impact in both research and industrial applications.
Tony Bush, Nick Papaioannou, Felix Leach, Francis D. Pope, Ajit Singh, G. Neil Thomas, Brian Stacey, and Suzanne Bartington
Atmos. Meas. Tech., 15, 3261–3278, https://doi.org/10.5194/amt-15-3261-2022, https://doi.org/10.5194/amt-15-3261-2022, 2022
Short summary
Short summary
Poor air quality is a human health risk which demands high-spatiotemporal-resolution monitoring data to manage. Low-cost air quality sensors present a convenient pathway to delivering these needs, compared to traditional methods, but bring methodological challenges which can limit operational ability. In this study within Oxford, UK, we develop machine learning methods to improve the quality of low-cost sensors for NO2, PM10 (particulate matter) and PM2.5 and demonstrate their effectiveness.
Leigh R. Crilley, Louisa J. Kramer, Francis D. Pope, Chris Reed, James D. Lee, Lucy J. Carpenter, Lloyd D. J. Hollis, Stephen M. Ball, and William J. Bloss
Atmos. Chem. Phys., 21, 18213–18225, https://doi.org/10.5194/acp-21-18213-2021, https://doi.org/10.5194/acp-21-18213-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) is a key source of atmospheric oxidants. We evaluate if the ocean surface is a source of HONO for the marine boundary layer, using measurements from two contrasting coastal locations. We observed no evidence for a night-time ocean surface source, in contrast to previous work. This points to significant geographical variation in the predominant HONO formation mechanisms in marine environments, reflecting possible variability in the sea-surface microlayer composition.
Dimitrios Bousiotis, Francis D. Pope, David C. S. Beddows, Manuel Dall'Osto, Andreas Massling, Jakob Klenø Nøjgaard, Claus Nordstrøm, Jarkko V. Niemi, Harri Portin, Tuukka Petäjä, Noemi Perez, Andrés Alastuey, Xavier Querol, Giorgos Kouvarakis, Nikos Mihalopoulos, Stergios Vratolis, Konstantinos Eleftheriadis, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 11905–11925, https://doi.org/10.5194/acp-21-11905-2021, https://doi.org/10.5194/acp-21-11905-2021, 2021
Short summary
Short summary
Formation of new particles is a key process in the atmosphere. New particle formation events arising from nucleation of gaseous precursors have been analysed in extensive datasets from 13 sites in five European countries in terms of frequency, nucleation rate, and particle growth rate, with several common features and many differences identified. Although nucleation frequencies are lower at roadside sites, nucleation rates and particle growth rates are typically higher.
Dimitrios Bousiotis, Ajit Singh, Molly Haugen, David C. S. Beddows, Sebastián Diez, Killian L. Murphy, Pete M. Edwards, Adam Boies, Roy M. Harrison, and Francis D. Pope
Atmos. Meas. Tech., 14, 4139–4155, https://doi.org/10.5194/amt-14-4139-2021, https://doi.org/10.5194/amt-14-4139-2021, 2021
Short summary
Short summary
Measurement and source apportionment of atmospheric pollutants are crucial for the assessment of air quality and the implementation of policies for their improvement. This study highlights the current capability of low-cost sensors in source identification and differentiation using clustering approaches. Future directions towards particulate matter source apportionment using low-cost OPCs are highlighted.
Dimitrios Bousiotis, James Brean, Francis D. Pope, Manuel Dall'Osto, Xavier Querol, Andrés Alastuey, Noemi Perez, Tuukka Petäjä, Andreas Massling, Jacob Klenø Nøjgaard, Claus Nordstrøm, Giorgos Kouvarakis, Stergios Vratolis, Konstantinos Eleftheriadis, Jarkko V. Niemi, Harri Portin, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 3345–3370, https://doi.org/10.5194/acp-21-3345-2021, https://doi.org/10.5194/acp-21-3345-2021, 2021
Short summary
Short summary
New particle formation events from 16 sites over Europe have been studied, and the influence of meteorological and atmospheric composition variables has been investigated. Some variables, like solar radiation intensity and temperature, have a positive effect on the occurrence of these events, while others have a negative effect, affecting different aspects such as the rate at which particles are formed or grow. This effect varies depending on the site type and magnitude of these variables.
Clarissa Baldo, Paola Formenti, Sophie Nowak, Servanne Chevaillier, Mathieu Cazaunau, Edouard Pangui, Claudia Di Biagio, Jean-Francois Doussin, Konstantin Ignatyev, Pavla Dagsson-Waldhauserova, Olafur Arnalds, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 20, 13521–13539, https://doi.org/10.5194/acp-20-13521-2020, https://doi.org/10.5194/acp-20-13521-2020, 2020
Short summary
Short summary
We showed that Icelandic dust has a fundamentally different chemical and mineralogical composition from low-latitude dust. In particular, magnetite is as high as 1 %–2 % of the total dust mass. Our results suggest that Icelandic dust may have an important impact on the radiation balance in the subpolar and polar regions.
Cited articles
https://www.worcester.ac.uk/about/academic-schools/school-of-science-and-the-environment/science-and-the-environment-research/national-pollen-and-aerobiology-research-unit/pollen-calendar.aspx,
last access: 16 July 2020.
Amiro, B. D.: Comparison of turbulence statistics within three boreal forest
canopies, Bound.-Lay. Meteorol., 51, 99–121, https://doi.org/10.1007/BF00120463, 1990.
Andrew, C. and Lilleskov, E. A.: Productivity and community structure of
ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3, Ecol. Lett.,
12, 813–822, https://doi.org/10.1111/j.1461-0248.2009.01334.x, 2009.
Aylor, D. E.: Dispersal in Time and Space: Aerial Pathogens, in: Plant
Disease: An Advanced Treatise, edited by: Horsfall, J. G. and Cowling, E.
B., Academic Press, New York, 159–179,
https://doi.org/10.1016/0048-3575(79)90101-9, 1978.
Baird, A. B. and Pope, F. D.: “Can't see the forest for the trees”: The
importance of fungi in the context of UK tree planting, https://doi.org/10.1002/fes3.371, 2021.
Baird, A. B., Pope, F. D., Bannister, E. J., and MacKenzie, A. R.: BIFoR FACE 2018 bioaerosols data, University of Birmingham [data set], https://doi.org/10.25500/edata.bham.00000688, 2021.
Bannister, E. J., MacKenzie, A. R., and Cai, X. M.: Realistic Forests and the Modeling of Forest‐Atmosphere Exchange, Rev. Geophys., 60, e2021RG000746, https://doi.org/10.1029/2021RG000746, 2022.
Baldocchi, D. D. and Meyers, T. P.: Turbulence structure in a deciduous
forest, Bound.-Lay. Meteorol., 43, 345–364, 1988.
Bannister, E. J., MacKenzie, A. R., and Cai, X. M.: Realistic Forests and the Modeling of Forest‐Atmosphere Exchange, Rev. Geophys., 60, e2021RG000746, https://doi.org/10.1029/2021RG000746, 2022.
Belcher, S. E., Harman, I. N., and Finnigan, J. J.: The Wind in the Willows:
Flows in Forest Canopies in Complex Terrain, Annu. Rev. Fluid Mech., 44, 479–504,
https://doi.org/10.1146/annurev-fluid-120710-101036, 2012.
Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J.,
Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S.,
Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis
and forecast in the European Centre for Medium-Range Weather Forecasts
Integrated Forecast System: 2. Data assimilation, J. Geophys. Res.-Atmos., 114, D13205,
https://doi.org/10.1029/2008JD011115, 2009.
Biedermann, P. H. W. and Vega, F. E.: Ecology and Evolution of
Insect–Fungus Mutualisms, Annu. Rev. Entomol., 65, 431–455,
https://doi.org/10.1146/annurev-ento-011019-024910, 2020.
Burge, H. A.: An update on pollen and fungal spore aerobiology, Reviews And Feature Articles: Current Reviews Of Allergy And Clinical Immunology, 110,
544–552, https://doi.org/10.1067/mai.2002.128674, 2002.
Carslaw, D. C. and Ropkins, K.: openair – an R package for air quality
data analysis, Environ. Modell. Softw., 27–28, 52–61, 2012.
Chaudhary, V. B., Nolimal, S., Sosa-Hernández, M. A., Egan, C., and
Kastens, J.: Trait-based aerial dispersal of arbuscular mycorrhizal fungi,
New Phytol., 228, 238–252, https://doi.org/10.1111/nph.16667, 2020.
Cionco, R. M.: A Mathematical Model for Air Flow in a Vegetative Canopy, J. Appl. Meteorol. Clim., 4, 517–522,
https://doi.org/10.1175/1520-0450(1965)004<0517:ammfaf>2.0.co;2, 1965.
Cionco, R. M.: Analysis of canopy index values for various canopy densities,
Bound.-Lay. Meteorol., 15, 81–93, https://doi.org/10.1007/BF00165507, 1978.
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018.
Crilley, L. R., Singh, A., Kramer, L. J., Shaw, M. D., Alam, M. S., Apte, J. S., Bloss, W. J., Hildebrandt Ruiz, L., Fu, P., Fu, W., Gani, S., Gatari, M., Ilyinskaya, E., Lewis, A. C., Ng'ang'a, D., Sun, Y., Whitty, R. C. W., Yue, S., Young, S., and Pope, F. D.: Effect of aerosol composition on the performance of low-cost optical particle counter correction factors, Atmos. Meas. Tech., 13, 1181–1193, https://doi.org/10.5194/amt-13-1181-2020, 2020.
Davies, R. R., Denny, M. J., and Newton, L. M.: A Comparison Hetween the
Summer and Autumn Air-Sporas at London and Liverpool, Allergy, 18, 131–147,
https://doi.org/10.1111/j.1398-9995.1963.tb03156.x, 1963.
Di-Giovanni, F., Kevan, P. G., and Nasr, M. E.: The variability in settling
velocities of some pollen and spores, Grana, 34, 39–44,
https://doi.org/10.1080/00173139509429031, 1995.
Dressaire, E., Yamada, L., Song, B., and Roper, M.: Mushrooms use
convectively created airflows to disperse their spores, P. Natl. Acad. Sci. USA, 113, 2833–2838, https://doi.org/10.1073/pnas.1509612113, 2016.
Finnigan, J.: Turbulence in Plant Canopies, Annu. Rev., 32, 519–571, 2000.
Fröhlich-Nowoisky, J., Pickersgill, D. A., Despres, V. R., and Pöschl,
U.: High diversity of fungi in air particulate matter, P.
Natl. Acad. Sci. USA, 106, 12814–12819,
https://doi.org/10.1073/pnas.0811003106, 2009.
Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A.,
Pöhlker, C., Andreae, M. O., Lang-Yona, N., Burrows, S. M., Gunthe, S.
S., Elbert, W., Su, H., Hoor, P., Thines, E., Hoffmann, T., Després, V.
R., and Pöschl, U.: Bioaerosols in the Earth system: Climate, health,
and ecosystem interactions, Atmos. Res., 182, 346–376,
https://doi.org/10.1016/j.atmosres.2016.07.018, 2016.
Gange, A. C., Gange, E. G., Sparks, T. H., and Boddy, L.: Rapid and Recent
Changes in Fungal Fruiting Patterns, Science, 316, 71–71,
https://doi.org/10.1126/science.1137489, 2007.
Gardner, A., Ellsworth, D. S., Crous, K. Y., Pritchard, J., and MacKenzie, A. R.: Is
photosynthetic enhancement sustained through three years of elevated CO2 exposure in 175-year-old Quercus robur?, Tree Physiol., 42, 130–144, https://doi.org/10.1093/treephys/tpab090, 2022.
Gilbert, G. S. and Reynolds, D. R.: Nocturnal Fungi: Airborne Spores in the
Canopy and Understory of a Tropical Rain Forest, Biotropica, 37, 462–464, 2005.
Gosselin, M. I., Rathnayake, C. M., Crawford, I., Pöhlker, C., Fröhlich-Nowoisky, J., Schmer, B., Després, V. R., Engling, G., Gallagher, M., Stone, E., Pöschl, U., and Huffman, J. A.: Fluorescent bioaerosol particle, molecular tracer, and fungal spore concentrations during dry and rainy periods in a semi-arid forest, Atmos. Chem. Phys., 16, 15165–15184, https://doi.org/10.5194/acp-16-15165-2016, 2016.
Griffiths, P. T., Borlace, J.-S., Gallimore, P. J., Kalberer, M., Herzog,
M., and Pope, F. D.: Hygroscopic growth and cloud activation of pollen: a
laboratory and modelling study, Atmos. Sci. Lett., 13, 289–295,
https://doi.org/10.1002/asl.397, 2012.
Grinn-Gofroń, A., Nowosad, J., Bosiacka, B., Camacho, I., Pashley, C.,
Belmonte, J., De Linares, C., Ianovici, N., Manzano, J. M. M., Sadyś,
M., Skjøth, C., Rodinkova, V., Tormo-Molina, R., Vokou, D.,
Fernández-Rodríguez, S., and Damialis, A.: Airborne Alternaria and
Cladosporium fungal spores in Europe: Forecasting possibilities and
relationships with meteorological parameters, Sci. Total
Environ., 653, 938–946, https://doi.org/10.1016/j.scitotenv.2018.10.419,
2019.
Grundström, M., Adams-Groom, B., Pashley, C. H., Dahl, Å.,
Rasmussen, K., de Weger, L. A., Thibaudon, M., Fernández-Rodríguez,
S., Silva-Palacios, I., and Skjøth, C. A.: Oak pollen seasonality and
severity across Europe and modelling the season start using a generalized
phenological model, Sci. Total Environ., 663, 527–536,
https://doi.org/10.1016/j.scitotenv.2019.01.212, 2019.
Hagan, D. H. and the py-opc contributors: py-opc,
GitHub [code], https://github.com/dhhagan/py-opc (last access: 27 January 2021), 2017.
Halbwachs, H. and Bässler, C.: Gone with the wind – a review on
basidiospores of lamellate agarics, Mycosphere, 6, 78–112,
https://doi.org/10.5943/mycosphere/6/1/10, 2015.
Hart, K. M., Curioni, G., Blaen, P., Harper, N. J., Miles, P., Lewin, K. F.,
Nagy, J., Bannister, E. J., Cai, X. M., Thomas, R. M., Krause, S., Tausz,
M., and MacKenzie, A. R.: Characteristics of Free Air Carbon Dioxide
Enrichment of a Northern Temperate Mature Forest, Glob. Change Biol., 26, 1023–1037,
https://doi.org/10.1111/gcb.14786, 2019.
Heald, C. L. and Spracklen, D. V.: Atmospheric budget of primary biological
aerosol particles from fungal spores, Geophys. Res. Lett., 36, L09806,
https://doi.org/10.1029/2009GL037493, 2009.
Healy, D. A., O'Connor, D. J., and Sodeau, J. R.: Measurement of the
particle counting efficiency of the “Waveband Integrated Bioaerosol
Sensor” model number 4 (WIBS-4), J. Aerosol Sci., 47, 94–99,
https://doi.org/10.1016/j.jaerosci.2012.01.003, 2012.
Hollins, P. D., Kettlewell, P. S., Atkinson, M. D., Stephenson, D. B.,
Corden, J. M., Millington, W. M., and Mullins, J.: Relationships between
airborne fungal spore concentration of Cladosporium and the summer climate
at two sites in Britain, Int. J. Biometeorol., 48, 137–141,
https://doi.org/10.1007/s00484-003-0188-9, 2004.
Horton, T. R.: Spore Dispersal in Ectomycorrhizal Fungi at Fine and Regional
Scales, in: Biogeography of Mycorrhizal Symbiosis, edited by: Tedersoo, L.,
Springer International Publishing, Cham, 61–78,
https://doi.org/10.1007/978-3-319-56363-3_3, 2017.
Hulst, H. C. and van de Hulst, H. C.: Light scattering by small particles, John Wiley and
Sons, New York, 1957.
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019, 2019.
Jones, A. M. and Harrison, R. M.: The effects of meteorological factors on
atmospheric bioaerosol concentrations – a review, Sci. Total
Environ., 326, 151–180, https://doi.org/10.1016/j.scitotenv.2003.11.021,
2004.
Kaimal, J. C. and Finnigan, J. J.: Atmospheric boundary layer flows – their
structure and measurement, Oxford University Press, New York,
https://doi.org/10.16085/j.issn.1000-6613.2012.02.016, 1994.
Kauserud, H., Heegaard, E., Buntgen, U., Halvorsen, R., Egli, S.,
Senn-Irlet, B., Krisai-Greilhuber, I., Damon, W., Sparks, T., Norden, J.,
Hoiland, K., Kirk, P., Semenov, M., Boddy, L., and Stenseth, N. C.:
Warming-induced shift in European mushroom fruiting phenology, P. Natl. Acad. Sci. USA, 109, 14488–14493,
https://doi.org/10.1073/pnas.1200789109, 2012.
Kivlin, S. N., Winston, G. C., Goulden, M. L., and Treseder, K. K.:
Environmental filtering affects soil fungal community composition more than
dispersal limitation at regional scales, Fungal Ecol., 12, 14–25,
https://doi.org/10.1016/j.funeco.2014.04.004, 2014.
Klironomos, J. N., Rillig, M. C., Allen, M. F., Zak, D. R., Pregitzer, K.
S., and Kubiske, M. E.: Increased levels of airborne fungal spores in
response to Populus tremuloides grown under elevated atmospheric CO2, Can. J. Bot., 75,
1670–1673, https://doi.org/10.1139/b97-880, 1997.
Læssøe, T. and Petersen, J. H.: Fungi of Temperate Europe, Princeton
University Press, 2019.
Li, D.-W. and Kendrick, B.: A year-round study on functional relationships
of airborne fungi with meteorological factors, Int. J. Biometeorol., 39,
74–80, https://doi.org/10.1007/BF01212584, 1995.
Lilleskov, E. A. and Bruns, T. D.: Spore dispersal of a resupinate
ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs, Mycologia, 97,
762–769, https://doi.org/10.1080/15572536.2006.11832767, 2005.
MacKenzie, A. R., Krause, S., Hart, K. M., Thomas, R. M., Blaen, P. J., Hamilton, R. L., Curioni, G., Quick, S. E., Kourmouli, A., Hannah, D. M., and Comer‐Warner, S. A.: BIFoR FACE: Water-soil-vegetation-atmosphere data from a temperate deciduous forest catchment, including under elevated CO2, Hydrol. Process., 35, e14096, https://doi.org/10.1002/hyp.14096, 2021.
Moore-Landecker, E.: Fungal Spores, in: eLS, American Cancer Society,
https://doi.org/10.1002/9780470015902.a0000378.pub2, 2011.
Morcrette, J.-J., Boucher, O., Jones, L., Salmond, D., Bechtold, P.,
Beljaars, A., Benedetti, A., Bonet, A., Kaiser, J. W., Razinger, M., Schulz,
M., Serrar, S., Simmons, A. J., Sofiev, M., Suttie, M., Tompkins, A. M., and
Untch, A.: Aerosol analysis and forecast in the European Centre for
Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling, J. Geophys. Res.-Atmos.,
114, D06206, https://doi.org/10.1029/2008JD011235, 2009.
Nathan, R., Horn, H. S., Chave, J., and Levin, S. A.: Mechanistic models for
tree seed dispersal by wind in dense forests and open landscapes, in: Seed
dispersal and frugivory: ecology, evolution and conservation, Third
International Symposium-Workshop on Frugivores and Seed Dispersal, São
Pedro, Brazil, 6–11 August 2000, edited by: Levey, D. J., Silva, W. R., and
Galetti, M., CABI, Wallingford, 69–82,
https://doi.org/10.1079/9780851995250.0069, 2002.
Norby, R. J., De Kauwe, M. G., Domingues, T. F., Duursma, R. A., Ellsworth,
D. S., Goll, D. S., Lapola, D. M., Luus, K. A., MacKenzie, A. R., Medlyn, B.
E., Pavlick, R., Rammig, A., Smith, B., Thomas, R., Thonicke, K., Walker, A.
P., Yang, X., and Zaehle, S.: Model-data synthesis for the next generation
of forest free-air CO2 enrichment (FACE) experiments, New Phytol., 209, 17–28,
https://doi.org/10.1111/nph.13593, 2016.
Norros, V., Penttilä, R., Suominen, M., and Ovaskainen, O.: Dispersal
may limit the occurrence of specialist wood decay fungi already at small
spatial scales, Oikos, 121, 961–974,
https://doi.org/10.1111/j.1600-0706.2012.20052.x, 2012.
Norros, V., Rannik, Ü., Hussein, T., Petäjä, T., Vesala, T., and
Ovaskainen, O.: Do small spores disperse further than large spores?, Ecology, 95,
1612–1621, https://doi.org/10.1890/13-0877.1, 2014.
O'Connor, D. J., Sadyś, M., Skjøth, C. A., Healy, D. A., Kennedy, R.,
and Sodeau, J. R.: Atmospheric concentrations of Alternaria, Cladosporium,
Ganoderma and Didymella spores monitored in Cork (Ireland) and Worcester
(England) during the summer of 2010, Aerobiologia, 30, 397–411,
https://doi.org/10.1007/s10453-014-9337-3, 2014.
Oneto, D. L., Golan, J., Mazzino, A., Pringle, A., and Seminara, A.: Timing
of fungal spore release dictates survival during atmospheric transport,
P. Natl. Acad. Sci. USA, 117, 5134–5143, https://doi.org/10.1073/pnas.1913752117, 2020.
Page, C. N.: The Ferns of Britain and Ireland, 2nd Edn., CUP, 540 pp., 1997.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Pope, F. D.: Pollen grains are efficient cloud condensation nuclei, Environ.
Res. Lett., 5, 044015, https://doi.org/10.1088/1748-9326/5/4/044015, 2010.
Pöschl, U.: Atmospheric Aerosols: Composition, Transformation, Climate
and Health Effects, Angew. Chem. Int. Edit., 44, 7520–7540, https://doi.org/10.1002/anie.200501122,
2005.
Raupach, M. R., Finnigan, J. J., and Brunet, Y.: Coherent Eddies and
Turbulence in Vegetation Canopies: The Mixing-Layer Analogy, Bound.-Lay Meteorol., 25th Anniversary Volume, 351–382,
https://doi.org/10.1007/978-94-017-0944-6_15, 1996.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org (last access: 27 April 2022), 2020.
Reinmuth-Selzle, K., Kampf, C. J., Lucas, K., Lang-Yona, N.,
Fröhlich-Nowoisky, J., Shiraiwa, M., Lakey, P. S. J., Lai, S., Liu, F.,
Kunert, A. T., Ziegler, K., Shen, F., Sgarbanti, R., Weber, B.,
Bellinghausen, I., Saloga, J., Weller, M. G., Duschl, A., Schuppan, D., and
Pöschl, U.: Air Pollution and Climate Change Effects on Allergies in the
Anthropocene: Abundance, Interaction, and Modification of Allergens and
Adjuvants, Environ. Sci. Technol., 51, 4119–4141,
https://doi.org/10.1021/acs.est.6b04908, 2017.
Reponen, T., Willeke, K., Ulevicius, V., Reponen, A., and Grinshpun, S. A.:
Effect of relative humidity on the aerodynamic diameter and respiratory
deposition of fungal spores, Atmos. Environ., 30, 3967–3974,
https://doi.org/10.1016/1352-2310(96)00128-8, 1996.
Sadyś, M., Skjøth, C. A., and Kennedy, R.: Back-trajectories show
export of airborne fungal spores (Ganoderma sp.) from forests to
agricultural and urban areas in England, Atmos. Environ., 84,
88–99, https://doi.org/10.1016/j.atmosenv.2013.11.015, 2014.
Sadyś, M., Adams-Groom, B., Herbert, R. J., and Kennedy, R.: Comparisons
of fungal spore distributions using air sampling at Worcester, England
(2006–2010), Aerobiologia, 32, 619–634,
https://doi.org/10.1007/s10453-016-9436-4, 2016a.
Sadyś, M., Kennedy, R., and West, J. S.: Potential impact of climate
change on fungal distributions: analysis of 2 years of contrasting weather
in the UK, Aerobiologia, 32, 127–137,
https://doi.org/10.1007/s10453-015-9402-6, 2016b.
Sesartic, A. and Dallafior, T. N.: Global fungal spore emissions, review and synthesis of literature data, Biogeosciences, 8, 1181–1192, https://doi.org/10.5194/bg-8-1181-2011, 2011.
Sousan, S., Koehler, K., Hallett, L., and Peters, T. M.: Evaluation of the
Alphasense optical particle counter (OPC-N2) and the Grimm portable aerosol
spectrometer (PAS-1.108), Aerosol. Sci. Tech., 50, 1352–1365,
https://doi.org/10.1080/02786826.2016.1232859, 2016.
Stephens, R. B. and Rowe, R. J.: The underappreciated role of rodent
generalists in fungal spore dispersal networks, Ecology, 101, e02972,
https://doi.org/10.1002/ecy.2972, 2020.
Su, H. B., Shaw, R. H., Pawu, K. T., Moeng, C. H., and Sullivan, P. P.:
Turbulent statistics of neutrally stratified flow within and above a sparse
forest from large-eddy simulation and field observations, Bound.-Lay. Meteorol., 88, 363–397,
https://doi.org/10.1023/A:1001108411184, 1998.
Tesmer, J. and Schnittler, M.: Sedimentation velocity of myxomycete spores, Mycol. Prog.,
6, 229–234, https://doi.org/10.1007/s11557-007-0539-8, 2007.
Van Norman, K., Lippert, J., Rivers-Pankratz, D., Holmes, R., and Mayrsohn, C.: Sporocarp Survey Protocol for Macrofungi, version 1.0, Portland, OR, Interagency Special Status/Sensitive Species Program, U.S. Department of Interior, Bureau of Land Management, Oregon/Washington and U.S. Department of Agriculture, Forest Service, Region 6, 16 pp., 2008.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, 2016.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke,
C., Woo, K., and Yutani, H.: Welcome to the Tidyverse, J. Open. Source Softw., 4, 1686,
https://doi.org/10.21105/joss.01686, 2019.
Welcome to the Tidyverse: https://tidyverse.tidyverse.org/articles/paper.html, last access: 11 May
2021.
Wolf, J., Johnson, N. C., Rowland, D. L., and Reich, P. B.: Elevated CO2 and
plant species richness impact arbuscular mycorrhizal fungal spore
communities, New Phytol., 157, 579–588, 2003.
Wolf, J., O'Neill, N. R., Rogers, C. A., Muilenberg, M. L., and Ziska, L.
H.: Elevated atmospheric carbon dioxide concentrations amplify Alternaria
alternate sporulation and total antigen production, Environ. Health Persp., 118, 1223–1228,
https://doi.org/10.1289/ehp.0901867, 2010.
Ziegler, C., Kulawska, A., Kourmouli, A., Hamilton, L., Shi, Z., MacKenzie,
A. R., Dyson, R. J., and Johnston, I. G.: Quantification and uncertainty of
root growth stimulation by elevated CO2 in mature temperate deciduous
forest, BioRxiv [preprint], https://doi.org/10.1101/2021.04.15.440027, 2021.
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Forest environments contain a wide variety of airborne biological particles (bioaerosols)...
Altmetrics
Final-revised paper
Preprint