Articles | Volume 19, issue 11
https://doi.org/10.5194/bg-19-2881-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2881-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Origin, transport, and retention of fluvial sedimentary organic matter in South Africa's largest freshwater wetland, Mkhuze Wetland System
MARUM – Center for Marine Environmental Sciences, University
of Bremen, Bremen, Germany
Marc Steven Humphries
School of Chemistry, University of the Witwatersrand,
Johannesburg, South Africa
Matthias Zabel
MARUM – Center for Marine Environmental Sciences, University
of Bremen, Bremen, Germany
David Sebag
IFP Energies Nouvelles, Earth Sciences and Environmental Technologies Division, 92852 Rueil-Malmaison, France
University of Rouen Normandy, UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France
Annette Hahn
MARUM – Center for Marine Environmental Sciences, University
of Bremen, Bremen, Germany
Enno Schefuß
MARUM – Center for Marine Environmental Sciences, University
of Bremen, Bremen, Germany
Related authors
Hendrik Reuter, Julia Gensel, Marcus Elvert, and Dominik Zak
Biogeosciences, 17, 499–514, https://doi.org/10.5194/bg-17-499-2020, https://doi.org/10.5194/bg-17-499-2020, 2020
Short summary
Short summary
Using infrared spectroscopy, we developed a routine to disentangle microbial nitrogen (N) and plant N in decomposed litter. In a decomposition experiment in three wetland soils, this routine revealed preferential protein depolymerization as a decomposition-site-dependent parameter, unaffected by variations in initial litter N content. In Sphagnum peat, preferential protein depolymerization led to a N depletion of still-unprocessed litter tissue, i.e., a gradual loss of litter quality.
Joely Marie Maak, Yu-Shih Lin, Enno Schefuß, Rebecca F. Aepfler, Li-Lian Liu, Marcus Elvert, and Solveig I. Bühring
EGUsphere, https://doi.org/10.5194/egusphere-2024-1356, https://doi.org/10.5194/egusphere-2024-1356, 2024
Short summary
Short summary
In acidic hot springs off Kueishantao, Campylobacteria fix CO2 by using the reductive tricarboxylic acid cycle (rTCA), causing them to have an isotopically heavier biomass. Here, we showcase extremely low isotopic fractionation (of almost 0 ‰,) which has never been reported in environmental samples. Moreover, the crab Xenograpsus testudinatus relies up to 34 % on Campylobacterial biomass, showcasing the dependency of complex life on microscopic bacteria in harsh environments.
Vera Dorothee Meyer, Jürgen Pätzold, Gesine Mollenhauer, Isla S. Castañeda, Stefan Schouten, and Enno Schefuß
Clim. Past, 20, 523–546, https://doi.org/10.5194/cp-20-523-2024, https://doi.org/10.5194/cp-20-523-2024, 2024
Short summary
Short summary
The climatic factors sustaining vegetation in the Sahara during the African humid period (AHP) are still not fully understood. Using biomarkers in a marine sediment core from the eastern Mediterranean, we infer variations in Mediterranean (winter) and monsoonal (summer) rainfall in the Nile river watershed around the AHP. We find that winter and summer rain enhanced during the AHP, suggesting that Mediterranean moisture supported the monsoon in sustaining the “green Sahara”.
Edgart Flores, Sebastian I. Cantarero, Paula Ruiz-Fernández, Nadia Dildar, Matthias Zabel, Osvaldo Ulloa, and Julio Sepúlveda
Biogeosciences, 19, 1395–1420, https://doi.org/10.5194/bg-19-1395-2022, https://doi.org/10.5194/bg-19-1395-2022, 2022
Short summary
Short summary
In this study, we investigate the chemical diversity and abundance of microbial lipids as markers of organic matter sources in the deepest points of the Atacama Trench sediments and compare them to similar lipid stocks in shallower surface sediments and in the overlying water column. We evaluate possible organic matter provenance and some potential chemical adaptations of the in situ microbial community to the extreme conditions of high hydrostatic pressure in hadal realm.
Moussa Moustapha, Loris Deirmendjian, David Sebag, Jean-Jacques Braun, Stéphane Audry, Henriette Ateba Bessa, Thierry Adatte, Carole Causserand, Ibrahima Adamou, Benjamin Ngounou Ngatcha, and Frédéric Guérin
Biogeosciences, 19, 137–163, https://doi.org/10.5194/bg-19-137-2022, https://doi.org/10.5194/bg-19-137-2022, 2022
Short summary
Short summary
We monitor the spatio-temporal variability of organic and inorganic carbon (C) species in the tropical Nyong River (Cameroon), across groundwater and increasing stream orders. We show the significant contribution of wetland as a C source for tropical rivers. Thus, ignoring the river–wetland connectivity might lead to the misrepresentation of C dynamics in tropical watersheds. Finally, total fluvial carbon losses might offset ~10 % of the net C sink estimated for the whole Nyong watershed.
Annette Hahn, Enno Schefuß, Jeroen Groeneveld, Charlotte Miller, and Matthias Zabel
Clim. Past, 17, 345–360, https://doi.org/10.5194/cp-17-345-2021, https://doi.org/10.5194/cp-17-345-2021, 2021
Hendrik Reuter, Julia Gensel, Marcus Elvert, and Dominik Zak
Biogeosciences, 17, 499–514, https://doi.org/10.5194/bg-17-499-2020, https://doi.org/10.5194/bg-17-499-2020, 2020
Short summary
Short summary
Using infrared spectroscopy, we developed a routine to disentangle microbial nitrogen (N) and plant N in decomposed litter. In a decomposition experiment in three wetland soils, this routine revealed preferential protein depolymerization as a decomposition-site-dependent parameter, unaffected by variations in initial litter N content. In Sphagnum peat, preferential protein depolymerization led to a N depletion of still-unprocessed litter tissue, i.e., a gradual loss of litter quality.
Maria-Elena Vorrath, Juliane Müller, Oliver Esper, Gesine Mollenhauer, Christian Haas, Enno Schefuß, and Kirsten Fahl
Biogeosciences, 16, 2961–2981, https://doi.org/10.5194/bg-16-2961-2019, https://doi.org/10.5194/bg-16-2961-2019, 2019
Short summary
Short summary
The study highlights new approaches in the investigation of past sea ice in Antarctica to reconstruct the climate conditions in earth's history and reveal its future development under global warming. We examined the distribution of organic remains from different algae at the Western Antarctic Peninsula and compared it to fossil and satellite records. We evaluated IPSO25 – the sea ice proxy for the Southern Ocean with 25 carbon atoms – as a useful tool for sea ice reconstructions in this region.
Charlotte Miller, Jemma Finch, Trevor Hill, Francien Peterse, Marc Humphries, Matthias Zabel, and Enno Schefuß
Clim. Past, 15, 1153–1170, https://doi.org/10.5194/cp-15-1153-2019, https://doi.org/10.5194/cp-15-1153-2019, 2019
Short summary
Short summary
Here we reconstruct vegetation and precipitation, in eastern South Africa, over the last 32 000 years, by measuring the stable carbon and hydrogen isotope composition of plant waxes from Mfabeni peat bog (KwaZulu-Natal). Our results indicate that the late Quaternary climate in eastern South Africa did not respond directly to orbital forcing or to changes in sea-surface temperatures. Our findings stress the influence of the Southern Hemisphere westerlies in driving climate change in the region.
Camille Jourdan, Valérie Borrell-Estupina, David Sebag, Jean-Jacques Braun, Jean-Pierre Bedimo Bedimo, François Colin, Armand Crabit, Alain Fezeu, Cécile Llovel, Jules Rémy Ndam Ngoupayou, Benjamin Ngounou Ngatcha, Sandra Van-Exter, Eric Servat, and Roger Moussa
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-116, https://doi.org/10.5194/hess-2019-116, 2019
Publication in HESS not foreseen
Short summary
Short summary
In the theme Panta Rhei, this paper aims to develop a combined approach of data acquisition and a new semi-distributed non-stationary model taking into account land-use changes to reconstruct and predict annual runoff on an urban catchment in a data-sparse context. We use historical data and deploy a complementary short-term spatially-dense dedicated instrumentation. Applications were conducted on the tropical Mefou catchment (Yaoundé, Cameroon) to assess contributions of sub-catchments.
Rony R. Kuechler, Lydie M. Dupont, and Enno Schefuß
Clim. Past, 14, 73–84, https://doi.org/10.5194/cp-14-73-2018, https://doi.org/10.5194/cp-14-73-2018, 2018
Short summary
Short summary
Measuring deuterium and stable carbon isotopes of higher plant wax extracted from marine sediments offshore of Mauritania, we recovered a record of hydrology and vegetation change in West Africa for two Pliocene intervals: 5.0–4.6 and 3.6–3.0 Ma. We find that changes in local summer insolation cannot fully explain the variations in the West African monsoon and that latitudinal insolation and temperature gradients are important drivers of tropical monsoon systems.
Annette Hahn, Enno Schefuß, Sergio Andò, Hayley C. Cawthra, Peter Frenzel, Martin Kugel, Stephanie Meschner, Gesine Mollenhauer, and Matthias Zabel
Clim. Past, 13, 649–665, https://doi.org/10.5194/cp-13-649-2017, https://doi.org/10.5194/cp-13-649-2017, 2017
Short summary
Short summary
Our study demonstrates that a source to sink analysis in the Gouritz catchment can be used to obtain valuable paleoclimatic information form the year-round rainfall zone. In combination with SST reconstructions these data are a valuable contribution to the discussion of Southern Hemisphere palaeoenvironments and climate variability (in particular atmosphere–ocean circulation and hydroclimate change) in the South African Holocene.
Shuwen Sun, Enno Schefuß, Stefan Mulitza, Cristiano M. Chiessi, André O. Sawakuchi, Matthias Zabel, Paul A. Baker, Jens Hefter, and Gesine Mollenhauer
Biogeosciences, 14, 2495–2512, https://doi.org/10.5194/bg-14-2495-2017, https://doi.org/10.5194/bg-14-2495-2017, 2017
C. Häggi, C. M. Chiessi, and E. Schefuß
Biogeosciences, 12, 7239–7249, https://doi.org/10.5194/bg-12-7239-2015, https://doi.org/10.5194/bg-12-7239-2015, 2015
Related subject area
Biogeochemistry: Wetlands
Assessing root–soil interactions in wetland plants: root exudation and radial oxygen loss
Technical note: Comparison of radiometric techniques for estimating recent organic carbon sequestration rates in inland wetland soils
Shoulder season controls on methane emissions from a boreal peatland
Patterns and drivers of organic matter decomposition in peatland open-water pools
Spatial patterns of organic matter content in the surface soil of the salt marshes of the Venice Lagoon (Italy)
Decomposing the Tea Bag Index and finding slower organic matter loss rates at higher elevations and deeper soil horizons in a minerogenic salt marsh
Sorption of colored vs. noncolored organic matter by tidal marsh soils
From the Top: Surface-derived Carbon Fuels Greenhouse Gas Production at Depth in a Neotropical Peatland
Peatland evaporation across hemispheres: contrasting controls and sensitivity to climate warming driven by plant functional types
Reviews and Syntheses: Variable Inundation Across Earth’s Terrestrial Ecosystems
Driving and limiting factors of CH4 and CO2 emissions from coastal brackish-water wetlands in temperate regions
Reviews and syntheses: Greenhouse gas emissions from drained organic forest soils – synthesizing data for site-specific emission factors for boreal and cool temperate regions
Reviews and syntheses: Understanding the impacts of peatland catchment management on dissolved organic matter concentration and treatability
Plant mercury accumulation and litter input to a Northern Sedge-dominated Peatland
Warming accelerates belowground litter turnover in salt marshes – insights from a Tea Bag Index study
Sedimentary blue carbon dynamics based on chronosequential observations in a tropical restored mangrove forest
Duration of extraction determines CO2 and CH4 emissions from an actively extracted peatland in eastern Quebec, Canada
Nutrient release and flux dynamics of CO2, CH4, and N2O in a coastal peatland driven by actively induced rewetting with brackish water from the Baltic Sea
Quantification of blue carbon in salt marshes of the Pacific coast of Canada
Cutting peatland CO2 emissions with water management practices
Tracking vegetation phenology of pristine northern boreal peatlands by combining digital photography with CO2 flux and remote sensing data
Dissolved organic matter concentration and composition discontinuity at the peat–pool interface in a boreal peatland
Effects of brackish water inflow on methane-cycling microbial communities in a freshwater rewetted coastal fen
High peatland methane emissions following permafrost thaw: enhanced acetoclastic methanogenesis during early successional stages
Peat macropore networks – new insights into episodic and hotspot methane emission
Mangrove sediment organic carbon storage and sources in relation to forest age and position along a deltaic salinity gradient
Plant genotype controls wetland soil microbial functioning in response to sea-level rise
Soil greenhouse gas fluxes from tropical coastal wetlands and alternative agricultural land uses
Carbon balance of a Finnish bog: temporal variability and limiting factors based on 6 years of eddy-covariance data
High-resolution induced polarization imaging of biogeochemical carbon turnover hotspots in a peatland
Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum
Factors controlling Carex brevicuspis leaf litter decomposition and its contribution to surface soil organic carbon pool at different water levels
Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations
Global peatland area and carbon dynamics from the Last Glacial Maximum to the present – a process-based model investigation
Vascular plants affect properties and decomposition of moss-dominated peat, particularly at elevated temperatures
Denitrification and associated nitrous oxide and carbon dioxide emissions from the Amazonian wetlands
Drivers of seasonal- and event-scale DOC dynamics at the outlet of mountainous peatlands revealed by high-frequency monitoring
Comparison of eddy covariance CO2 and CH4 fluxes from mined and recently rewetted sections in a northwestern German cutover bog
Microtopography is a fundamental organizing structure of vegetation and soil chemistry in black ash wetlands
Interacting effects of vegetation components and water level on methane dynamics in a boreal fen
Low methane emissions from a boreal wetland constructed on oil sand mine tailings
Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine
Saltwater reduces potential CO2 and CH4 production in peat soils from a coastal freshwater forested wetland
Reviews and syntheses: Greenhouse gas exchange data from drained organic forest soils – a review of current approaches and recommendations for future research
Effects of sterilization techniques on chemodenitrification and N2O production in tropical peat soil microcosms
Modelling long-term blanket peatland development in eastern Scotland
Cushion bogs are stronger carbon dioxide net sinks than moss-dominated bogs as revealed by eddy covariance measurements on Tierra del Fuego, Argentina
Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio- and photodegradation
Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog
Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland
Katherine A. Haviland and Genevieve L. Noyce
Biogeosciences, 21, 5185–5198, https://doi.org/10.5194/bg-21-5185-2024, https://doi.org/10.5194/bg-21-5185-2024, 2024
Short summary
Short summary
Plant roots release both oxygen and carbon to the surrounding soil. While oxygen leads to less production of methane (a greenhouse gas), carbon often has the opposite effect. We investigated these processes in two plant species, S. patens and S. americanus. We found that S. patens roots produce more carbon and less oxygen than S. americanus. Additionally, the S. patens pool of root-associated carbon compounds was more dominated by compound types known to lead to higher methane production.
Purbasha Mistry, Irena F. Creed, Charles G. Trick, Eric Enanga, and David A. Lobb
Biogeosciences, 21, 4699–4715, https://doi.org/10.5194/bg-21-4699-2024, https://doi.org/10.5194/bg-21-4699-2024, 2024
Short summary
Short summary
Precise and accurate estimates of wetland organic carbon sequestration rates are crucial to track the progress of climate action goals through effective carbon budgeting. Radioisotope dating methods using cesium-137 (137Cs) and lead-210 (210Pb) are needed to provide temporal references for these estimations. The choice between using 137Cs or 210Pb, or their combination, depends on respective study objectives, with careful consideration of factors such as dating range and estimation complexity.
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
Biogeosciences, 21, 3761–3788, https://doi.org/10.5194/bg-21-3761-2024, https://doi.org/10.5194/bg-21-3761-2024, 2024
Short summary
Short summary
During cold seasons, methane release from northern wetlands is important but often underestimated. We studied a boreal bog to understand methane emissions in spring and fall. At cold temperatures, methane release decreases due to lower production rates, but efficient methane transport through plant structures, decaying plants, and the release of methane stored in the pore water keep emissions ongoing. Understanding these seasonal processes can improve models for methane release in cold climates.
Julien Arsenault, Julie Talbot, Tim R. Moore, Klaus-Holger Knorr, Henning Teickner, and Jean-François Lapierre
Biogeosciences, 21, 3491–3507, https://doi.org/10.5194/bg-21-3491-2024, https://doi.org/10.5194/bg-21-3491-2024, 2024
Short summary
Short summary
Peatlands are among the largest carbon (C) sinks on the planet. However, peatland features such as open-water pools emit more C than they accumulate because of higher decomposition than production. With this study, we show that the rates of decomposition vary among pools and are mostly driven by the environmental conditions in pools rather than by the nature of the material being decomposed. This means that changes in pool number or size may modify the capacity of peatlands to accumulate C.
Alice Puppin, Davide Tognin, Massimiliano Ghinassi, Erica Franceschinis, Nicola Realdon, Marco Marani, and Andrea D'Alpaos
Biogeosciences, 21, 2937–2954, https://doi.org/10.5194/bg-21-2937-2024, https://doi.org/10.5194/bg-21-2937-2024, 2024
Short summary
Short summary
This study aims at inspecting organic matter dynamics affecting the survival and carbon sink potential of salt marshes, which are valuable yet endangered wetland environments. Measuring the organic matter content in marsh soils and its relationship with environmental variables, we observed that the organic matter accumulation varies at different scales, and it is driven by the interplay between sediment supply and vegetation, which are affected, in turn, by marine and fluvial influences.
Satyatejas G. Reddy, W. Reilly Farrell, Fengrun Wu, Steven C. Pennings, Jonathan Sanderman, Meagan Eagle, Christopher Craft, and Amanda C. Spivak
EGUsphere, https://doi.org/10.5194/egusphere-2024-1328, https://doi.org/10.5194/egusphere-2024-1328, 2024
Short summary
Short summary
Organic matter decay in salt marsh soils is not well understood. We used the Tea Bag Index, a standardized litter approach, to test how decay changes with soil depth, elevation, and time. The index overestimated decay but one component, rooibos tea, produced comparable rates to natural litter. We found that decay was higher at shallower depths and lower marsh elevations, suggesting that hydrologic setting may be a particularly important control on organic matter loss.
Patrick J. Neale, J. Patrick Megonigal, Maria Tzortziou, Elizabeth A. Canuel, Christina R. Pondell, and Hannah Morrissette
Biogeosciences, 21, 2599–2620, https://doi.org/10.5194/bg-21-2599-2024, https://doi.org/10.5194/bg-21-2599-2024, 2024
Short summary
Short summary
Adsorption/desorption incubations were conducted with tidal marsh soils to understand the differential sorption behavior of colored vs. noncolored dissolved organic carbon. The wetland soils varied in organic content, and a range of salinities of fresh to 35 was used. Soils primarily adsorbed colored organic carbon and desorbed noncolored organic carbon. Sorption capacity increased with salinity, implying that salinity variations may shift composition of dissolved carbon in tidal marsh waters.
Alexandra L. Hedgpeth, Alison M. Hoyt, Kyle Cavanaugh, Karis J. McFarlane, and Daniela F. Cusack
EGUsphere, https://doi.org/10.5194/egusphere-2024-1279, https://doi.org/10.5194/egusphere-2024-1279, 2024
Short summary
Short summary
Tropical peatlands store ancient carbon and have been identified as not only vulnerable to future climate change but take a long time to recover after disturbance. It is unknown if these gases are produced from decomposition of thousand-year-old peat. Radiocarbon dating shows emitted gases are young, indicating surface carbon, not old peat, drives emissions. Preserving these ecosystems can trap old carbon, mitigating climate change.
Leeza Speranskaya, David I. Campbell, Peter M. Lafleur, and Elyn R. Humphreys
Biogeosciences, 21, 1173–1190, https://doi.org/10.5194/bg-21-1173-2024, https://doi.org/10.5194/bg-21-1173-2024, 2024
Short summary
Short summary
Higher evaporation has been predicted in peatlands due to climatic drying. We determined whether the water-conservative vegetation at a Southern Hemisphere bog could cause a different response to dryness compared to a "typical" Northern Hemisphere bog, using decades-long evaporation datasets from each site. At the southern bog, evaporation increased at a much lower rate with increasing dryness, suggesting that this peatland type may be more resilient to climate warming than northern bogs.
James Stegen, Amy Burgin, Michelle Busch, Joshua Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian Deines, Julia Guimond, Peter Regier, Kenton Rod, Edward Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon Sweetman, Jianqiu Zheng, Daniel Allen, Elizabeth Herndon, Beth Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad Patel
EGUsphere, https://doi.org/10.5194/egusphere-2024-98, https://doi.org/10.5194/egusphere-2024-98, 2024
Short summary
Short summary
The loss and gain of surface water (variable inundation) is a common process across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Emilia Chiapponi, Sonia Silvestri, Denis Zannoni, Marco Antonellini, and Beatrice M. S. Giambastiani
Biogeosciences, 21, 73–91, https://doi.org/10.5194/bg-21-73-2024, https://doi.org/10.5194/bg-21-73-2024, 2024
Short summary
Short summary
Coastal wetlands are important for their ability to store carbon, but they also emit methane, a potent greenhouse gas. This study conducted in four wetlands in Ravenna, Italy, aims at understanding how environmental factors affect greenhouse gas emissions. Temperature and irradiance increased emissions from water and soil, while water column depth and salinity limited them. Understanding environmental factors is crucial for mitigating climate change in wetland ecosystems.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Jennifer Williamson, Chris Evans, Bryan Spears, Amy Pickard, Pippa J. Chapman, Heidrun Feuchtmayr, Fraser Leith, Susan Waldron, and Don Monteith
Biogeosciences, 20, 3751–3766, https://doi.org/10.5194/bg-20-3751-2023, https://doi.org/10.5194/bg-20-3751-2023, 2023
Short summary
Short summary
Managing drinking water catchments to minimise water colour could reduce costs for water companies and save their customers money. Brown-coloured water comes from peat soils, primarily around upland reservoirs. Management practices, including blocking drains, removing conifers, restoring peatland plants and reducing burning, have been used to try and reduce water colour. This work brings together published evidence of the effectiveness of these practices to aid water industry decision-making.
Ting Sun and Brian A. Branfireun
Biogeosciences, 20, 2971–2984, https://doi.org/10.5194/bg-20-2971-2023, https://doi.org/10.5194/bg-20-2971-2023, 2023
Short summary
Short summary
Shrub leaves had higher mercury concentrations than sedge leaves in the sedge-dominated peatland. Dead shrub leaves leached less soluble mercury but more bioaccessible dissolved organic matter than dead sedge leaves. Leached mercury was positively related to the aromaticity of dissolved organic matter in leachate. Future plant species composition changes under climate change will affect Hg input from plant leaves to northern peatlands.
Hao Tang, Stefanie Nolte, Kai Jensen, Roy Rich, Julian Mittmann-Goetsch, and Peter Mueller
Biogeosciences, 20, 1925–1935, https://doi.org/10.5194/bg-20-1925-2023, https://doi.org/10.5194/bg-20-1925-2023, 2023
Short summary
Short summary
In order to gain the first mechanistic insight into warming effects and litter breakdown dynamics across whole-soil profiles, we used a unique field warming experiment and standardized plant litter to investigate the degree to which rising soil temperatures can accelerate belowground litter breakdown in coastal wetland ecosystems. We found warming strongly increases the initial rate of labile litter decomposition but has less consistent effects on the stabilization of this material.
Raghab Ray, Rempei Suwa, Toshihiro Miyajima, Jeffrey Munar, Masaya Yoshikai, Maria Lourdes San Diego-McGlone, and Kazuo Nadaoka
Biogeosciences, 20, 911–928, https://doi.org/10.5194/bg-20-911-2023, https://doi.org/10.5194/bg-20-911-2023, 2023
Short summary
Short summary
Mangroves are blue carbon ecosystems known to store large amounts of organic carbon in the sediments. This study is a first attempt to apply a chronosequence (or space-for-time substitution) approach to evaluate the distribution and accumulation rate of carbon in a 30-year-old (maximum age) restored mangrove forest. Using this approach, the contribution of restored or planted mangroves to sedimentary organic carbon presents an increasing pattern with mangrove age.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Daniel L. Pönisch, Anne Breznikar, Cordula N. Gutekunst, Gerald Jurasinski, Maren Voss, and Gregor Rehder
Biogeosciences, 20, 295–323, https://doi.org/10.5194/bg-20-295-2023, https://doi.org/10.5194/bg-20-295-2023, 2023
Short summary
Short summary
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however, short-term nutrient leaching and high CH4 emissions shortly after rewetting are likely to occur. We investigated the rewetting of a coastal peatland with brackish water and its effects on nutrient release and greenhouse gas fluxes. Nutrient concentrations were higher in the peatland than in the adjacent bay, leading to an export. CH4 emissions did not increase, which is in contrast to freshwater rewetting.
Stephen G. Chastain, Karen E. Kohfeld, Marlow G. Pellatt, Carolina Olid, and Maija Gailis
Biogeosciences, 19, 5751–5777, https://doi.org/10.5194/bg-19-5751-2022, https://doi.org/10.5194/bg-19-5751-2022, 2022
Short summary
Short summary
Salt marshes are thought to be important carbon sinks because of their ability to store carbon in their soils. We provide the first estimates of how much blue carbon is stored in salt marshes on the Pacific coast of Canada. We find that the carbon stored in the marshes is low compared to other marshes around the world, likely because of their young age. Still, the high marshes take up carbon at rates faster than the global average, making them potentially important carbon sinks in the future.
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022, https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Short summary
Draining peat causes high CO2 emissions, and rewetting could potentially help solve this problem. In the dry year 2020 we measured that subsurface irrigation reduced CO2 emissions by 28 % and 83 % on two research sites. We modelled a peat parcel and found that the reduction depends on seepage and weather conditions and increases when using pressurized irrigation or maintaining high ditchwater levels. We found that soil temperature and moisture are suitable as indicators of peat CO2 emissions.
Maiju Linkosalmi, Juha-Pekka Tuovinen, Olli Nevalainen, Mikko Peltoniemi, Cemal M. Taniş, Ali N. Arslan, Juuso Rainne, Annalea Lohila, Tuomas Laurila, and Mika Aurela
Biogeosciences, 19, 4747–4765, https://doi.org/10.5194/bg-19-4747-2022, https://doi.org/10.5194/bg-19-4747-2022, 2022
Short summary
Short summary
Vegetation greenness was monitored with digital cameras in three northern peatlands during five growing seasons. The greenness index derived from the images was highest at the most nutrient-rich site. Greenness indicated the main phases of phenology and correlated with CO2 uptake, though this was mainly related to the common seasonal cycle. The cameras and Sentinel-2 satellite showed consistent results, but more frequent satellite data are needed for reliable detection of phenological phases.
Antonin Prijac, Laure Gandois, Laurent Jeanneau, Pierre Taillardat, and Michelle Garneau
Biogeosciences, 19, 4571–4588, https://doi.org/10.5194/bg-19-4571-2022, https://doi.org/10.5194/bg-19-4571-2022, 2022
Short summary
Short summary
Pools are common features of peatlands. We documented dissolved organic matter (DOM) composition in pools and peat of an ombrotrophic boreal peatland to understand its origin and potential role in the peatland carbon budget. The survey reveals that DOM composition differs between pools and peat, although it is derived from the peat vegetation. We investigated which processes are involved and estimated that the contribution of carbon emissions from DOM processing in pools could be substantial.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022, https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
Petri Kiuru, Marjo Palviainen, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, Vincent Gauci, Iñaki Urzainki, and Annamari Laurén
Biogeosciences, 19, 1959–1977, https://doi.org/10.5194/bg-19-1959-2022, https://doi.org/10.5194/bg-19-1959-2022, 2022
Short summary
Short summary
Peatlands are large sources of methane (CH4), and peat structure controls CH4 production and emissions. We used X-ray microtomography imaging, complex network theory methods, and pore network modeling to describe the properties of peat macropore networks and the role of macropores in CH4-related processes. We show that conditions for gas transport and CH4 production vary with depth and are affected by hysteresis, which may explain the hotspots and episodic spikes in peatland CH4 emissions.
Rey Harvey Suello, Simon Lucas Hernandez, Steven Bouillon, Jean-Philippe Belliard, Luis Dominguez-Granda, Marijn Van de Broek, Andrea Mishell Rosado Moncayo, John Ramos Veliz, Karem Pollette Ramirez, Gerard Govers, and Stijn Temmerman
Biogeosciences, 19, 1571–1585, https://doi.org/10.5194/bg-19-1571-2022, https://doi.org/10.5194/bg-19-1571-2022, 2022
Short summary
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
Hao Tang, Susanne Liebner, Svenja Reents, Stefanie Nolte, Kai Jensen, Fabian Horn, and Peter Mueller
Biogeosciences, 18, 6133–6146, https://doi.org/10.5194/bg-18-6133-2021, https://doi.org/10.5194/bg-18-6133-2021, 2021
Short summary
Short summary
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning in a mesocosm experiment using two genotypes of a dominant salt-marsh grass characterized by differences in flooding sensitivity. Larger variability in microbial community structure, enzyme activity, and litter breakdown in soils with the more sensitive genotype supports our hypothesis that effects of climate change on soil microbial functioning can be controlled by plant intraspecific adaptations.
Naima Iram, Emad Kavehei, Damien T. Maher, Stuart E. Bunn, Mehran Rezaei Rashti, Bahareh Shahrabi Farahani, and Maria Fernanda Adame
Biogeosciences, 18, 5085–5096, https://doi.org/10.5194/bg-18-5085-2021, https://doi.org/10.5194/bg-18-5085-2021, 2021
Short summary
Short summary
Greenhouse gas emissions were measured and compared from natural coastal wetlands and their converted agricultural lands across annual seasonal cycles in tropical Australia. Ponded pastures emitted ~ 200-fold-higher methane than any other tested land use type, suggesting the highest greenhouse gas mitigation potential and financial incentives by the restoration of ponded pastures to natural coastal wetlands.
Pavel Alekseychik, Aino Korrensalo, Ivan Mammarella, Samuli Launiainen, Eeva-Stiina Tuittila, Ilkka Korpela, and Timo Vesala
Biogeosciences, 18, 4681–4704, https://doi.org/10.5194/bg-18-4681-2021, https://doi.org/10.5194/bg-18-4681-2021, 2021
Short summary
Short summary
Bogs of northern Eurasia represent a major type of peatland ecosystem and contain vast amounts of carbon, but carbon balance monitoring studies on bogs are scarce. The current project explores 6 years of carbon balance data obtained using the state-of-the-art eddy-covariance technique at a Finnish bog Siikaneva. The results reveal relatively low interannual variability indicative of ecosystem resilience to both cool and hot summers and provide new insights into the seasonal course of C fluxes.
Timea Katona, Benjamin Silas Gilfedder, Sven Frei, Matthias Bücker, and Adrian Flores-Orozco
Biogeosciences, 18, 4039–4058, https://doi.org/10.5194/bg-18-4039-2021, https://doi.org/10.5194/bg-18-4039-2021, 2021
Short summary
Short summary
We used electrical geophysical methods to map variations in the rates of microbial activity within a wetland. Our results show that the highest electrical conductive and capacitive properties relate to the highest concentrations of phosphates, carbon, and iron; thus, we can use them to characterize the geometry of the biogeochemically active areas or hotspots.
Jurek Müller and Fortunat Joos
Biogeosciences, 18, 3657–3687, https://doi.org/10.5194/bg-18-3657-2021, https://doi.org/10.5194/bg-18-3657-2021, 2021
Short summary
Short summary
We present long-term projections of global peatland area and carbon with a continuous transient history since the Last Glacial Maximum. Our novel results show that large parts of today’s northern peatlands are at risk from past and future climate change, with larger emissions clearly connected to larger risks. The study includes comparisons between different emission and land-use scenarios, driver attribution through factorial simulations, and assessments of uncertainty from climate forcing.
Lianlian Zhu, Zhengmiao Deng, Yonghong Xie, Xu Li, Feng Li, Xinsheng Chen, Yeai Zou, Chengyi Zhang, and Wei Wang
Biogeosciences, 18, 1–11, https://doi.org/10.5194/bg-18-1-2021, https://doi.org/10.5194/bg-18-1-2021, 2021
Short summary
Short summary
We conducted a Carex brevicuspis leaf litter input experiment to clarify the intrinsic factors controlling litter decomposition and quantify its contribution to the soil organic carbon pool at different water levels. Our results revealed that the water level in natural wetlands influenced litter decomposition mainly by leaching and microbial activity, by extension, and affected the wetland surface carbon pool.
Robert J. Parker, Chris Wilson, A. Anthony Bloom, Edward Comyn-Platt, Garry Hayman, Joe McNorton, Hartmut Boesch, and Martyn P. Chipperfield
Biogeosciences, 17, 5669–5691, https://doi.org/10.5194/bg-17-5669-2020, https://doi.org/10.5194/bg-17-5669-2020, 2020
Short summary
Short summary
Wetlands contribute the largest uncertainty to the atmospheric methane budget. WetCHARTs is a simple, data-driven model that estimates wetland emissions using observations of precipitation and temperature. We perform the first detailed evaluation of WetCHARTs against satellite data and find it performs well in reproducing the observed wetland methane seasonal cycle for the majority of wetland regions. In regions where it performs poorly, we highlight incorrect wetland extent as a key reason.
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
Lilli Zeh, Marie Theresa Igel, Judith Schellekens, Juul Limpens, Luca Bragazza, and Karsten Kalbitz
Biogeosciences, 17, 4797–4813, https://doi.org/10.5194/bg-17-4797-2020, https://doi.org/10.5194/bg-17-4797-2020, 2020
Jérémy Guilhen, Ahmad Al Bitar, Sabine Sauvage, Marie Parrens, Jean-Michel Martinez, Gwenael Abril, Patricia Moreira-Turcq, and José-Miguel Sánchez-Pérez
Biogeosciences, 17, 4297–4311, https://doi.org/10.5194/bg-17-4297-2020, https://doi.org/10.5194/bg-17-4297-2020, 2020
Short summary
Short summary
The quantity of greenhouse gases (GHGs) released to the atmosphere by human industries and agriculture, such as carbon dioxide (CO2) and nitrous oxide (N2O), has been constantly increasing for the last few decades.
This work develops a methodology which makes consistent both satellite observations and modelling of the Amazon basin to identify and quantify the role of wetlands in GHG emissions. We showed that these areas produce non-negligible emissions and are linked to land use.
Thomas Rosset, Stéphane Binet, Jean-Marc Antoine, Emilie Lerigoleur, François Rigal, and Laure Gandois
Biogeosciences, 17, 3705–3722, https://doi.org/10.5194/bg-17-3705-2020, https://doi.org/10.5194/bg-17-3705-2020, 2020
Short summary
Short summary
Peatlands export a large amount of DOC through inland waters. This study aims at identifying the mechanisms controlling the DOC concentration at the outlet of two mountainous peatlands in the French Pyrenees. Peat water temperature and water table dynamics are shown to drive seasonal- and event-scale DOC concentration variation. According to water recession times, peatlands appear as complexes of different hydrological and biogeochemical units supplying inland waters at different rates.
David Holl, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences, 17, 2853–2874, https://doi.org/10.5194/bg-17-2853-2020, https://doi.org/10.5194/bg-17-2853-2020, 2020
Short summary
Short summary
We measured greenhouse gas (GHG) fluxes at a bog site in northwestern Germany that has been heavily degraded by peat mining. During the 2-year investigation period, half of the area was still being mined, whereas the remaining half had been rewetted shortly before. We could therefore estimate the impact of rewetting on GHG flux dynamics. Rewetting had a considerable effect on the annual GHG balance and led to increased (up to 84 %) methane and decreased (up to 40 %) carbon dioxide release.
Jacob S. Diamond, Daniel L. McLaughlin, Robert A. Slesak, and Atticus Stovall
Biogeosciences, 17, 901–915, https://doi.org/10.5194/bg-17-901-2020, https://doi.org/10.5194/bg-17-901-2020, 2020
Short summary
Short summary
Many wetland systems exhibit lumpy, or uneven, soil surfaces where higher points are called hummocks and lower points are called hollows. We found that, while hummocks extended only ~ 20 cm above hollow surfaces, they exhibited distinct plant communities, plant growth, and soil properties. Differences between hummocks and hollows were the greatest in wetter sites, supporting the hypothesis that plants create and maintain their own hummocks in response to saturated soil conditions.
Terhi Riutta, Aino Korrensalo, Anna M. Laine, Jukka Laine, and Eeva-Stiina Tuittila
Biogeosciences, 17, 727–740, https://doi.org/10.5194/bg-17-727-2020, https://doi.org/10.5194/bg-17-727-2020, 2020
Short summary
Short summary
We studied the role of plant species groups in peatland methane fluxes under natural conditions and lowered water level. At a natural water level, sedges and mosses increased the fluxes. At a lower water level, the impact of plant groups on the fluxes was small. Only at a high water level did vegetation regulate the fluxes. The results are relevant for assessing peatland methane fluxes in a changing climate, as peatland water level and vegetation are predicted to change.
M. Graham Clark, Elyn R. Humphreys, and Sean K. Carey
Biogeosciences, 17, 667–682, https://doi.org/10.5194/bg-17-667-2020, https://doi.org/10.5194/bg-17-667-2020, 2020
Short summary
Short summary
Natural and restored wetlands typically emit methane to the atmosphere. However, we found that a wetland constructed after oil sand mining in boreal Canada using organic soils from local peatlands had negligible emissions of methane in its first 3 years. Methane production was likely suppressed due to an abundance of alternate inorganic electron acceptors. Methane emissions may increase in the future if the alternate electron acceptors continue to decrease.
Hendrik Reuter, Julia Gensel, Marcus Elvert, and Dominik Zak
Biogeosciences, 17, 499–514, https://doi.org/10.5194/bg-17-499-2020, https://doi.org/10.5194/bg-17-499-2020, 2020
Short summary
Short summary
Using infrared spectroscopy, we developed a routine to disentangle microbial nitrogen (N) and plant N in decomposed litter. In a decomposition experiment in three wetland soils, this routine revealed preferential protein depolymerization as a decomposition-site-dependent parameter, unaffected by variations in initial litter N content. In Sphagnum peat, preferential protein depolymerization led to a N depletion of still-unprocessed litter tissue, i.e., a gradual loss of litter quality.
Kevan J. Minick, Bhaskar Mitra, Asko Noormets, and John S. King
Biogeosciences, 16, 4671–4686, https://doi.org/10.5194/bg-16-4671-2019, https://doi.org/10.5194/bg-16-4671-2019, 2019
Short summary
Short summary
Sea level rise alters hydrology and vegetation in coastal wetlands. We studied effects of freshwater, saltwater, and wood on soil microbial activity in a freshwater forested wetland. Saltwater reduced CO2/CH4 production compared to freshwater, suggesting large changes in greenhouse gas production and microbial activity are possible due to saltwater intrusion into freshwater wetlands but that the availability of C in the form of dead wood (as forests transition to marsh) may alter the magnitude.
Jyrki Jauhiainen, Jukka Alm, Brynhildur Bjarnadottir, Ingeborg Callesen, Jesper R. Christiansen, Nicholas Clarke, Lise Dalsgaard, Hongxing He, Sabine Jordan, Vaiva Kazanavičiūtė, Leif Klemedtsson, Ari Lauren, Andis Lazdins, Aleksi Lehtonen, Annalea Lohila, Ainars Lupikis, Ülo Mander, Kari Minkkinen, Åsa Kasimir, Mats Olsson, Paavo Ojanen, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Lars Vesterdal, and Raija Laiho
Biogeosciences, 16, 4687–4703, https://doi.org/10.5194/bg-16-4687-2019, https://doi.org/10.5194/bg-16-4687-2019, 2019
Short summary
Short summary
We collated peer-reviewed publications presenting GHG flux data for drained organic forest soils in boreal and temperate climate zones, focusing on data that have been used, or have the potential to be used, for estimating net annual soil GHG emission/removals. We evaluated the methods in data collection and identified major gaps in background/environmental data. Based on these, we developed suggestions for future GHG data collection to increase data applicability in syntheses and inventories.
Steffen Buessecker, Kaitlyn Tylor, Joshua Nye, Keith E. Holbert, Jose D. Urquiza Muñoz, Jennifer B. Glass, Hilairy E. Hartnett, and Hinsby Cadillo-Quiroz
Biogeosciences, 16, 4601–4612, https://doi.org/10.5194/bg-16-4601-2019, https://doi.org/10.5194/bg-16-4601-2019, 2019
Short summary
Short summary
We investigated the potential for chemical reduction of nitrite into nitrous oxide (N2O) in soils from tropical peat. Among treatments, irradiation resulted in the lowest biological interference and least change of native soil chemistry (iron and organic matter). Nitrite depletion was as high in live or irradiated soils, and N2O production was significant in all tests. Thus, nonbiological production of N2O may be widely underestimated in wetlands and tropical peatlands.
Ward Swinnen, Nils Broothaerts, and Gert Verstraeten
Biogeosciences, 16, 3977–3996, https://doi.org/10.5194/bg-16-3977-2019, https://doi.org/10.5194/bg-16-3977-2019, 2019
Short summary
Short summary
In this study, a new model is presented, which was specifically designed to study the development and carbon storage of blanket peatlands since the last ice age. In the past, two main processes (declining forest cover and rising temperatures) have been proposed as drivers of blanket peatland development on the British Isles. The simulations performed in this study support the temperature hypothesis for the blanket peatlands in the Cairngorms Mountains of central Scotland.
David Holl, Verónica Pancotto, Adrian Heger, Sergio Jose Camargo, and Lars Kutzbach
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019, https://doi.org/10.5194/bg-16-3397-2019, 2019
Short summary
Short summary
We present 2 years of eddy covariance carbon dioxide flux data from two Southern Hemisphere peatlands on Tierra del Fuego. One of the investigated sites is a type of bog exclusive to the Southern Hemisphere, which is dominated by vascular, cushion-forming plants and is particularly understudied. One result of this study is that these cushion bogs apparently are highly productive in comparison to Northern and Southern Hemisphere moss-dominated bogs.
Liudmila S. Shirokova, Artem V. Chupakov, Svetlana A. Zabelina, Natalia V. Neverova, Dahedrey Payandi-Rolland, Carole Causserand, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 16, 2511–2526, https://doi.org/10.5194/bg-16-2511-2019, https://doi.org/10.5194/bg-16-2511-2019, 2019
Short summary
Short summary
Regardless of the size and landscape context of surface water in frozen peatland in NE Europe, the bio- and photo-degradability of dissolved organic matter (DOM) over a 1-month incubation across a range of temperatures was below 10 %. We challenge the paradigm of dominance of photolysis and biodegradation in DOM processing in surface waters from frozen peatland, and we hypothesize peat pore-water DOM degradation and respiration of sediments to be the main drivers of CO2 emission in this region.
Elisa Männistö, Aino Korrensalo, Pavel Alekseychik, Ivan Mammarella, Olli Peltola, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 16, 2409–2421, https://doi.org/10.5194/bg-16-2409-2019, https://doi.org/10.5194/bg-16-2409-2019, 2019
Short summary
Short summary
We studied methane emitted as episodic bubble release (ebullition) from water and bare peat surfaces of a boreal bog over three years. There was more ebullition from water than from bare peat surfaces, and it was controlled by peat temperature, water level, atmospheric pressure and the weekly temperature sum. However, the contribution of methane bubbles to the total ecosystem methane emission was small. This new information can be used to improve process models of peatland methane dynamics.
Franziska Koebsch, Matthias Winkel, Susanne Liebner, Bo Liu, Julia Westphal, Iris Schmiedinger, Alejandro Spitzy, Matthias Gehre, Gerald Jurasinski, Stefan Köhler, Viktoria Unger, Marian Koch, Torsten Sachs, and Michael E. Böttcher
Biogeosciences, 16, 1937–1953, https://doi.org/10.5194/bg-16-1937-2019, https://doi.org/10.5194/bg-16-1937-2019, 2019
Short summary
Short summary
In natural coastal wetlands, high supplies of marine sulfate suppress methane production. We found these natural methane suppression mechanisms to be suspended by humane interference in a brackish wetland. Here, diking and freshwater rewetting had caused an efficient depletion of the sulfate reservoir and opened up favorable conditions for an intensive methane production. Our results demonstrate how human disturbance can turn coastal wetlands into distinct sources of the greenhouse gas methane.
Cited articles
Albrecht, R., Sebag, D., and Verrecchia, E.: Organic matter decomposition:
bridging the gap between Rock–Eval pyrolysis and chemical characterization
(CPMAS13C NMR), Biogeochemistry, 122, 101–111,
https://doi.org/10.1007/s10533-014-0033-8, 2015.
a, b, c, d
Alexander, W. J. R., Stormanns, C., and Breen, C.: Some aspects of the
hydrology of the Mkuze Swamp system, in: Proceedings of the Greater Mkuze
Swamp System Symposium and Workshop, Institute of Natural Resources,
Pietermaritzburg, pp. 4–7, https://saeis.saeon.ac.za/Document/2093 (last access: 02 June 2022), 1986. a
Ardón, M., Helton, A. M., and Bernhardt, E. S.: Drought and saltwater
incursion synergistically reduce dissolved organic carbon export from coastal
freshwater wetlands, Biogeochemistry, 127, 411–426, 2016. a
Baas, M., Pancost, R., Van Geel, B., and Sinninghe Damsté, J. S.: A
comparative study of lipids in Sphagnum species, Org. Geochem., 31,
535–541, https://doi.org/10.1016/S0146-6380(00)00037-1, 2000. a, b
Badewien, T., Vogts, A., and Rullkötter, J.: n-Alkane distribution and
carbon stable isotope composition in leaf waxes of C3 and C4 plants from
Angola, Org. Geochem., 89–90, 71–79,
https://doi.org/10.1016/j.orggeochem.2015.09.002, 2015. a
Barnes, K., Ellery, W. N., and Kindness, A.: A preliminary analysis of water
chemistry of the Mkuze Wetland System, KwaZulu-Natal: A mass balance
approach, Water SA, 28, 1–12, https://doi.org/10.4314/wsa.v28i1.4861, 2002. a, b, c, d
Behar, F., Beaumont, V., and Penteado, H. L. D. B.: Rock-Eval 6 technology:
performances and developments, Oil Gas Sci. Technol., 56,
111–134, 2001. a
Benallack, K., Green, A. N., Humphries, M. S., Cooper, J. A., Dladla, N. N.,
and Finch, J. M.: The stratigraphic evolution of a large back-barrier lagoon
system with a non-migrating barrier, Mar. Geol., 379, 64–77,
https://doi.org/10.1016/j.margeo.2016.05.001, 2016. a
Bianchi, T. S., Garcia-Tigreros, F., Yvon-Lewis, S. A., Shields, M., Mills,
H. J., Butman, D., Osburn, C., Raymond, P., Shank, G. C., DiMarco, S. F.,
Walker, N., Reese, B. K., Mullins-Perry, R., Quigg, A., Aiken, G. R., and
Grossman, E. L.: Enhanced transfer of terrestrially derived carbon to the
atmosphere in a flooding event, Geophys. Res. Lett., 40, 116–122,
https://doi.org/10.1029/2012GL054145, 2013. a
Blair, N. E., Leithold, E. L., and Aller, R. C.: From bedrock to burial: The
evolution of particulate organic carbon across coupled watershed-continental
margin systems, Mar. Chem., 92, 141–156,
https://doi.org/10.1016/j.marchem.2004.06.023, 2004. a
Bush, R. T. and McInerney, F. A.: Leaf wax n-alkane distributions in and
across modern plants: Implications for paleoecology and chemotaxonomy,
Geochim. Cosmochim. Ac., 117, 161–179,
https://doi.org/10.1016/j.gca.2013.04.016, 2013. a, b
Carr, A. S., Boom, A., Grimes, H. L., Chase, B. M., Meadows, M. E., and Harris,
A.: Leaf wax n-alkane distributions in arid zone South African flora:
Environmental controls, chemotaxonomy and palaeoecological implications,
Org. Geochem., 67, 72–84,
https://doi.org/10.1016/j.orggeochem.2013.12.004, 2014. a, b, c
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 171–184,
https://doi.org/10.1007/s10021-006-9013-8, 2007. a, b
Collins, J. A., Schefuß, E., Heslop, D., Mulitza, S., Prange, M., Zabel,
M., Tjallingii, R., Dokken, T. M., Huang, E., MacKensen, A., Schulz, M.,
Tian, J., Zarriess, M., and Wefer, G.: Interhemispheric symmetry of the
tropical African rainbelt over the past 23 000 years, Nat. Geosci., 4,
42–45, https://doi.org/10.1038/ngeo1039, 2011. a
Collister, J. W., Rieley, G., Stern, B., Eglinton, G., and Fry, B.:
Compound-specific δ13C analyses of leaf lipids from plants with
differing carbon dioxide metabolisms, Org. Geochem., 21, 619–627,
https://doi.org/10.1016/0146-6380(94)90008-6, 1994. a
Cooper, J. E. and Bray, E. E.: A postulated role of fatty acids in petroleum
formation, Geochim. Cosmochim. Ac., 27, 1113–1127, 1963. a
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468,
https://doi.org/10.3402/tellusa.v16i4.8993, 1964. a
Disnar, J.-R.: Étude expérimentale de la fixation de divers
métaux sur une matière organique sédimentaire d'origine
algaire: maturation thermique des composés formés, PhD thesis, https://tel.archives-ouvertes.fr/tel-00586303 (last access: 2 June 2022), 1982. a
Disnar, J. R.: Determination of maximum paleotemperatures of burial (MPTB) of
sedimentary rocks from pyrolysis data on the associated organic matter: basic
principles and practical application, Chem. Geol., 118, 289–299,
https://doi.org/10.1016/0009-2541(94)90182-1, 1994. a
Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C., and Sebag, D.: Soil
organic matter (SOM) characterization by Rock-Eval pyrolysis: Scope and
limitations, Org. Geochem., 34, 327–343,
https://doi.org/10.1016/S0146-6380(02)00239-5, 2003. a, b, c, d
Eglinton, G. and Hamilton, R. J.: Leaf epicuticular waxes, Science, 156,
1322–1335, https://doi.org/10.1126/science.156.3780.1322, 1967. a
Ellery, W. N., Grenfell, S. E., Grenfell, M. C., Humphries, M. S., and Barnes,
K. B.: The wetlands, in: Ecology and Conservation of Estuarine Ecosystems:
Lake St. Lucia as a Global Model, May 2019, chap. 6, edited by: Perissinotto, R., Stretch, D. D., and Taylor, R. H., Cambridge
University Press, 95–112, https://doi.org/10.1017/CBO9781139095723.008, 2011. a, b
Espitalié, J., Laporte, J., Madec, M., Marquis, F., Leplat, P., Paulet,
J., and Boutefeu, A.: Méthode rapide de caractérisation des
roches mètres, de leur potentiel pétrolier et de leur degré
d'évolution, Rev. Inst. Fr. Pet, 32, 23–42, 1977. a
Espitalie, J., Deroo, G., and Marquis, F.: Rock-Eval pyrolysis and its
applications (part one), Oil Gas Sci. Technol.,
40, 563–579, 1985. a
Espitalié, J., Deroo, G., and Marquis, F.: La pyrolyse Rock-Eval et ses
applications, Deuxième partie, Rev. I. Fr. Petrol., 40, 755–784, 1985. a
Garcin, Y., Schefuß, E., Schwab, V. F., Garreta, V., Gleixner, G., Vincens,
A., Todou, G., Séné, O., Onana, J. M., Achoundong, G., and
Sachse, D.: Reconstructing C3 and C4 vegetation cover using n-alkane carbon
isotope ratios in recent lake sediments from Cameroon, Western Central
Africa, Geochim. Cosmochim. Ac., 142, 482–500,
https://doi.org/10.1016/j.gca.2014.07.004, 2014. a, b
Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu.
Rev. Earth Planet. Sc., 24, 225–262,
https://doi.org/10.1146/annurev.earth.24.1.225, 1996. a
Gensel, J., Humphries, M., Zabel, M., Sebag, D., Hahn, A., and Schefuß, E.: Bulk organic matter composition, n-alkane distribution patterns, and compound-specific stable isotope compositions of modern surface sediments and plants of South Africa's largest freshwater wetland, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.935586, 2021. a
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an
assessment and speculative synthesis – a comment, Mar. Chem., 49,
81–115, https://doi.org/10.1016/0304-4203(95)00011-F, 1995. a
Hemingway, J. D., Schefuß, E., Dinga, B. J., Pryer, H., and Galy, V. V.:
Multiple plant-wax compounds record differential sources and ecosystem
structure in large river catchments, Geochim. Cosmochim. Ac., 184,
20–40, https://doi.org/10.1016/j.gca.2016.04.003, 2016. a
Hemingway, J. D., Schefuß, E., Spencer, R. G., Dinga, B. J., Eglinton,
T. I., McIntyre, C., and Galy, V. V.: Hydrologic controls on seasonal and
inter-annual variability of Congo River particulate organic matter source and
reservoir age, Chem. Geol., 466, 454–465,
https://doi.org/10.1016/j.chemgeo.2017.06.034, 2017. a, b, c
Hemond, H. F. and Benoit, J.: Cumulative Impacts o n Water Quality Functions
of Wetlands, Environ. Manage., 12, 639–653, 1988. a
Herrmann, N., Boom, A., Carr, A. S., Chase, B. M., Granger, R., Hahn, A.,
Zabel, M., and Schefuß, E.: Sources, transport and deposition of
terrestrial organic material: A case study from southwestern Africa,
Quaternary Sci. Rev., 149, 215–229,
https://doi.org/10.1016/j.quascirev.2016.07.028, 2016. a
Herrmann, N., Boom, A., Carr, A. S., Chase, B. M., West, A. G., Zabel, M., and
Schefuß, E.: Hydrogen isotope fractionation of leaf wax n-alkanes in
southern African soils, Org. Geochem., 109, 1–13,
https://doi.org/10.1016/j.orggeochem.2017.03.008, 2017. a
Hockun, K., Mollenhauer, G., Ling, S., Hefter, J., Ohlendorf, C., Zolitschka,
B., Mayr, C., Lücke, A., and Schefuß, E.: Using distributions and
stable isotopes of n-alkanes to disentangle organic matter contributions to
sediments of Laguna Potrok Aike, Argentina, Org. Geochem., 102,
110–119, https://doi.org/10.1016/j.orggeochem.2016.10.001, 2016. a
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P.: The
world's worst weeds. Distribution and biology, University press of Hawaii, ISBN: 0824802950, 1977. a
Hou, J., D'Andrea, W. J., MacDonald, D., and Huang, Y.: Evidence for water use
efficiency as an important factor in determining the δD values of tree
leaf waxes, Org. Geochem., 38, 1251–1255,
https://doi.org/10.1016/j.orggeochem.2007.03.011, 2007. a
Humphries, M., Green, A., Higgs, C., Strachan, K., Hahn, A., Pillay, L., and
Zabel, M.: High-resolution geochemical records of extreme drought in
southeastern Africa during the past 7000 years, Quaternary Sci. Rev.,
236, 106294, https://doi.org/10.1016/j.quascirev.2020.106294, 2020. a
Humphries, M. S., Kindness, A., Ellery, W. N., Hughes, J. C., and
Benitez-Nelson, C. R.: 137Cs and 210Pb derived sediment accumulation rates
and their role in the long-term development of the Mkuze River floodplain,
South Africa, Geomorphology, 119, 88–96,
https://doi.org/10.1016/j.geomorph.2010.03.003, 2010. a, b
Hutchison, I. P. G.: The hydrology of the St. Lucia system, in: St. Lucia
scientific advisory council workshop meeting at Charters Creek, Charters Creek, 15–17 February 1976, https://saeis.saeon.ac.za/Document/2092 (last access: 2 June 2022), 1976. a
Jansen, B. and Wiesenberg, G. L. B.: Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science, SOIL, 3, 211–234, https://doi.org/10.5194/soil-3-211-2017, 2017. a
Jenks, M. A. and Ashworth, E. N.: Plant epicuticular waxes: function,
production, and genetics, Horticultural Reviews, 23, 1–68, 1999. a
Johnston, C. A.: Sediment and nutrient retention by freshwater wetlands:
Effects on surface water quality, Crit. Rev. Env. Contr.,
21, 491–565, https://doi.org/10.1080/10643389109388425, 1991. a
Junk, W. J. and An, S.: Current state of knowledge regarding the world's
wetlands and their future under global climate change: a synthesis, Aquat. Sci., 75, 151–167, https://doi.org/10.1007/s00027-012-0278-z, 2013. a
Kahmen, A., Hoffmann, B., Schefuß, E., Arndt, S. K., Cernusak, L. A., West,
J. B., and Sachse, D.: Leaf water deuterium enrichment shapes leaf wax
n-alkane δD values of angiosperm plants II: Observational evidence and
global implications, Geochim. Cosmochim. Ac., 111, 50–63,
https://doi.org/10.1016/j.gca.2012.09.004, 2013. a
Keil, R. G., Mayer, L. M., Quay, P. D., Richey, J. E., and Hedges, J. I.: Loss
of organic matter from riverine particles in deltas, Geochim. Cosmochim. Ac., 61, 1507–1511, https://doi.org/10.1016/S0016-7037(97)00044-6, 1997. a
Liu, J., An, Z., and Liu, H.: Leaf wax n-alkane distributions across plant
types in the central Chinese Loess Plateau, Org. Geochem., 125,
260–269, https://doi.org/10.1016/j.orggeochem.2018.09.006, 2018. a
Magill, C. R., Eglinton, G., and Eglinton, T. I.: Isotopic variance among
plant lipid homologues correlates with biodiversity patterns of their source
communities, PLoS ONE, 14, 1–17, https://doi.org/10.1371/journal.pone.0212211, 2019. a
Malou, O. P., Sebag, D., Moulin, P., Chevallier, T., Badiane-Ndour, N. Y.,
Thiam, A., and Chapuis-Lardy, L.: The Rock-Eval® signature
of soil organic carbon in arenosols of the Senegalese groundnut basin. How do
agricultural practices matter?, Agr. Ecosyst. Environ.,
301, 107030, https://doi.org/10.1016/j.agee.2020.107030, 2020. a, b
McKnight, D. M., Bencala, K. E., Zellweger, G. W., Aiken, G. R., Feder, G. L.,
and Thorn, K. A.: Sorption of dissolved organic carbon by hydrous aluminum
and iron oxides occurring at the confluence of Deer Creek with the Snake
River, Summit County, Colorado, Environ. Sci. Technol., 26,
1388–1396, 1992. a
Mitsch, W. J. and Gosselink, J. G.: Wetlands, 5th edn., John Wiley & Sons, https://doi.org/10.1108/rr-09-2015-0230, 2015. a
Perissinotto, R., Stretch, D. D., and Taylor, R. H.: Ecology and conservation
of estuarine ecosystems: Lake St. Lucia as a global model, Cambridge
University Press, Online ISBN: 9781139095723, https://doi.org/10.1017/CBO9781139095723, 2013. a
Pillot, D., Deville, E., and Prinzhofer, A.: Identification and quantification
of carbonate species using Rock-Eval pyrolysis, Oil Gas Sci.
Technol., 69, 341–349, 2014. a
Porter, R. N.: South Africa's first world heritage site, in: Ecology and
Conservation of Estuarine Ecosystems: Lake St. Lucia as a Global Model, chap. 1, Perissinotto, R., Stretch, D. D., and Taylor, R. H., Cambridge University Press, New York, 1–21, Online ISBN: 9781139095723, https://doi.org/10.1017/CBO9781139095723, 2013. a
Poynter, J. and Eglinton, G.: 14. Molecular composition of three sediments
from hole 717c: The Bengal fan, in: Proceedings of the Ocean Drilling
Program: Scientific results, distal Bengal Fan, 02 July 1987–19 August 1987, 116, 155–161, https://doi.org/10.2973/odp.proc.sr.116.151.1990, 1990. a, b
Poynter, J. and Eglinton, G.: The biomarker concept - strengths and
weaknesses, Fresen. J. Anal. Chem., 339, 725–731,
https://doi.org/10.1007/BF00321733, 1991. a
Quay, P. D., Wilbur, D., Richey, J. E., Hedges, J. I., Devol, A. H., and
Victoria, R.: Carbon cycling in the Amazon River: Implications from the 13C
compositions of particles and solutes, Limnol. Oceanogr., 37,
857–871, https://doi.org/10.4319/lo.1992.37.4.0857, 1992. a
Rebelo, A. G. and Low, A. B.: Vegetation of South Africa, Lesotho and
Swaziland, Department of Environmental Affairs and Tourism, ISBN: 9780621173161, 1996. a
Reddy, K. R. and Debusk, T. A.: State-of-the-art utilization of aquatic plants
in water pollution control, Water Sci. Technol., 19, 61–79, 1987. a
Rommerskirchen, F., Plader, A., Eglinton, G., Chikaraishi, Y., and
Rullkötter, J.: Chemotaxonomic significance of distribution and stable
carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass
waxes, Org. Geochem., 37, 1303–1332,
https://doi.org/10.1016/j.orggeochem.2005.12.013, 2006. a, b
Rudolph, J. C., Arendt, C. A., Hounshell, A. G., Paerl, H. W., and Osburn,
C. L.: Use of Geospatial, Hydrologic, and Geochemical Modeling to Determine
the Influence of Wetland-Derived Organic Matter in Coastal Waters in Response
to Extreme Weather Events, Frontiers in Marine Science, 7, 1–18,
https://doi.org/10.3389/fmars.2020.00018, 2020. a
Runge, J.: The Congo River, Central Africa, in: Large Rivers: Geomorphology and Management, edited by: Gupta, A., Wiley Blackwell, 293–309, ISBN: 9780470723722, https://doi.org/10.1002/9780470723722.ch14, 2007. a
Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E.,
Feakins, S. J., Freeman, K. H., Magill, C. R., McInerney, F. A., and Van Der
Meer, M. T. J.: Molecular paleohydrology: interpreting the
hydrogen-isotopic composition of lipid biomarkers from photosynthesizing
organisms, Annu. Rev. Earth Pl. Sc., 40, 221–249,
2012. a, b
Schefuß, E., Kuhlmann, H., Mollenhauer, G., Prange, M., and Pätzold,
J.: Forcing of wet phases in southeast Africa over the past 17 000 years,
Nature, 480, 509–512, https://doi.org/10.1038/nature10685, 2011. a
Schefuß, E., Eglinton, T. I., Spencer-Jones, C. L., Rullkötter, J.,
De Pol-Holz, R., Talbot, H. M., Grootes, P. M., and Schneider, R. R.:
Hydrologic control of carbon cycling and aged carbon discharge in the Congo
River basin, Nat. Geosci., 9, 687–690, https://doi.org/10.1038/ngeo2778, 2016. a
Sebag, D., Disnar, J. R., Guillet, B., Di Giovanni, C., Verrecchia, E. P.,
and Durand, A.: Monitoring organic matter dynamics in soil profiles by
'Rock-Eval pyrolysis': Bulk characterization and quantification of
degradation, E. J. Soil Sci., 57, 344–355,
https://doi.org/10.1111/j.1365-2389.2005.00745.x, 2006. a, b, c
Sebag, D., Verrecchia, E. P., Cécillon, L., Adatte, T., Albrecht, R.,
Aubert, M., Bureau, F., Cailleau, G., Copard, Y., Decaens, T., Disnar, J. R.,
Hetényi, M., Nyilas, T., and Trombino, L.: Dynamics of soil organic
matter based on new Rock-Eval indices, Geoderma, 284, 185–203,
https://doi.org/10.1016/j.geoderma.2016.08.025, 2016. a, b, c, d, e, f, g, h
Sebag, D., Garcin, Y., Adatte, T., Deschamps, P., Ménot, G., and
Verrecchia, E. P.: Correction for the siderite effect on Rock-Eval
parameters: application to the sediments of Lake Barombi (southwest
Cameroon), Org. Geochem., 123, 126–135, 2018. a
Sessions, A. L.: Factors controlling the deuterium contents of sedimentary
hydrocarbons, Org. Geochem., 96, 43–64, 2016. a
Strobel, P., Bliedtner, M., Carr, A. S., Frenzel, P., Klaes, B., Salazar, G., Struck, J., Szidat, S., Zech, R., and Haberzettl, T.: Holocene sea level and environmental change at the southern Cape – an 8.5 kyr multi-proxy paleoclimate record from Lake Voëlvlei, South Africa, Clim. Past, 17, 1567–1586, https://doi.org/10.5194/cp-17-1567-2021, 2021. a
Taylor, R., Kelbe, B., Haldorsen, S., Botha, G. A., Wejden, B., Väret,
L., and Simonsen, M. B.: Groundwater-dependent ecology of the shoreline of
the subtropical Lake St. Lucia estuary, Environ. Geol., 49, 586–600,
https://doi.org/10.1007/s00254-005-0095-y, 2006. a
Taylor, R. H.: St. Lucia Estuary: the aquatic environment, the physical and
chemical characteristics, St. Lucia Research Review, 42–56, 1982a. a
Taylor, R. H.: The past and present human involvement in the Mkuze swamp
system, in: Proceedings of the greater Mkuze swamp system symposium and
workshop, Institute of Natural Resources, Report, 22, 1986. a
Taylor, R. H.: Management history, in: Ecology and conservation of estuarine
ecosystems: Lake St. Lucia as a global model, May 2019, chap. 2, edited by: Perissinotto, R., Stretch, D. D., and Taylor, R. H., Cambridge
University Press, 21–46, https://doi.org/10.1017/CBO9781139095723.004, 2013. a
Tinley, K.: a preliminary report on the ecology of the Pongola and Mkuze flood plains, 1959. a
Tooth, S. and McCarthy, T. S.: Wetlands in drylands: geomorphological and
sedimentological characteristics, with emphasis on examples from southern
Africa, Progress in Physical Geography: Earth and Environment, 31, 3–41,
https://doi.org/10.1177/0309133307073879, 2007. a
Van Heerden, I. L. and Swart, D. H.: St. Lucia Research: An assessment of
past and present geomorphological and sedimentary processes operative in the
St. Lucia Estuary and environs, a technical research report, vol. 569, Marine Geoscience and Sediment
Dynamics Divisions, National Research, https://saeis.saeon.ac.za/Document/1725 (last access: 2 June 2022), 1986. a
Vogts, A., Moossen, H., Rommerskirchen, F., and Rullkötter, J.:
Distribution patterns and stable carbon isotopic composition of alkanes and
alkan-1-ols from plant waxes of African rain forest and savanna C3 species,
Org. Geochem., 40, 1037–1054, https://doi.org/10.1016/j.orggeochem.2009.07.011,
2009. a, b
Vogts, A., Schefuß, E., Badewien, T., and Rullkötter, J.: n-Alkane
parameters from a deep sea sediment transect off southwest Africa reflect
continental vegetation and climate conditions, Org. Geochem., 47,
109–119, https://doi.org/10.1016/j.orggeochem.2012.03.011, 2012. a, b
Ward, N. D., Bianchi, T. S., Medeiros, P. M., Seidel, M., Richey, J. E., Keil,
R. G., and Sawakuchi, H. O.: Where Carbon Goes When Water Flows: Carbon
Cycling across the Aquatic Continuum, Frontiers in Marine Science, 4, 1–27,
https://doi.org/10.3389/fmars.2017.00007, 2017. a
Watkeys, M. K., Mason, T. R., and Goodman, P. S.: The rôle of geology in
the development of Maputaland, South Africa, J. Afr. Earth
Sci., 16, 205–221, https://doi.org/10.1016/0899-5362(93)90168-P, 1993. a, b
Wetzel, R. G.: Sediments and microflora, in: Limnology: lake and river
ecosystems, chap. 21, Elsevier, 631–664, https://doi.org/10.1016/b978-0-08-057439-4.50025-3, 2001. a
Wiesenberg, G. L., Dorodnikov, M., and Kuzyakov, Y.: Source determination of
lipids in bulk soil and soil density fractions after four years of wheat
cropping, Geoderma, 156, 267–277, https://doi.org/10.1016/j.geoderma.2010.02.026,
2010. a
Zhang, D., Beverly, E. J., Levin, N. E., Vidal, E., Matia, Y., and Feakins,
S. J.: Carbon isotopic composition of plant waxes, bulk organics and
carbonates from soils of the Serengeti grasslands, Geochim. Cosmochim. Ac., 311, 316–331, https://doi.org/10.1016/j.gca.2021.07.005, 2021. a, b, c, d
Short summary
We investigated organic matter (OM) and plant-wax-derived biomarkers in sediments and plants along the Mkhuze River to constrain OM's origin and transport pathways within South Africa's largest freshwater wetland. Presently, it efficiently captures OM, so neither transport from upstream areas nor export from the swamp occurs. Thus, we emphasize that such geomorphological features can alter OM provenance, questioning the assumption of watershed-integrated information in downstream sediments.
We investigated organic matter (OM) and plant-wax-derived biomarkers in sediments and plants...
Altmetrics
Final-revised paper
Preprint