Articles | Volume 19, issue 15
https://doi.org/10.5194/bg-19-3595-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3595-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying biological carbon pump pathways with a data-constrained mechanistic model ensemble approach
Michael R. Stukel
CORRESPONDING AUTHOR
Department of Earth, Ocean, and Atmospheric Science, Florida State
University, Tallahassee, FL, USA
Center for Ocean-Atmospheric Prediction Studies, Florida State
University, Tallahassee, FL, USA
Moira Décima
Scripps Institution of Oceanography, University of California San
Diego, San Diego, CA, USA
Michael R. Landry
Scripps Institution of Oceanography, University of California San
Diego, San Diego, CA, USA
Related authors
Robert Lampe, Ariel Rabines, Steffaney Wood, Anne Schulberg, Ralf Goericke, Pratap Venepally, Hong Zheng, Michael Stukel, Michael Landry, Andrew Barton, and Andrew Allen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3285, https://doi.org/10.5194/egusphere-2024-3285, 2024
Short summary
Short summary
With the likely emergence of satellite-based phytoplankton pigment data, it is increasingly important to examine relationships between phytoplankton pigments and other metrics of phytoplankton community composition. By using quantitative approaches, we show that phytoplankton pigments correlate with DNA- and RNA-based abundances, and examine how integration of these data addresses ecological questions relating to diversity patterns, harmful algal blooms, and inferring cellular activity.
Robert Lampe, Ariel Rabines, Steffaney Wood, Anne Schulberg, Ralf Goericke, Pratap Venepally, Hong Zheng, Michael Stukel, Michael Landry, Andrew Barton, and Andrew Allen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3285, https://doi.org/10.5194/egusphere-2024-3285, 2024
Short summary
Short summary
With the likely emergence of satellite-based phytoplankton pigment data, it is increasingly important to examine relationships between phytoplankton pigments and other metrics of phytoplankton community composition. By using quantitative approaches, we show that phytoplankton pigments correlate with DNA- and RNA-based abundances, and examine how integration of these data addresses ecological questions relating to diversity patterns, harmful algal blooms, and inferring cellular activity.
Cited articles
Alldredge, A.: The carbon, nitrogen and mass content of marine snow as a
function of aggregate size, Deep-Sea Res. Pt. I, 45, 529–541, 1998.
Alldredge, A. L.: Discarded appendicularian houses as sources of food,
surface habitats, and particulate organic matter in planktonic environments,
Limnol. Oceanogr., 21, 14–23, 1976.
Anderson, T. R.: Plankton functional type modelling: running before we can
walk?, J. Plankton Res., 27, 1073–1081, https://doi.org/10.1093/plankt/fbi076, 2005.
Anderson, T. R., Hessen, D. O., Mitra, A., Mayor, D. J., and Yool, A.:
Sensitivity of secondary production and export flux to choice of trophic
transfer formulation in marine ecosystem models, J. Mar. Sys., 125, 41–53,
https://doi.org/10.1016/j.jmarsys.2012.09.008, 2013.
Anugerahanti, P., Roy, S., and Haines, K.: A perturbed biogeochemistry model ensemble evaluated against in situ and satellite observations, Biogeosciences, 15, 6685–6711, https://doi.org/10.5194/bg-15-6685-2018, 2018.
Anugerahanti, P., Roy, S., and Haines, K.: Perturbed biology and physics
signatures in a 1-D ocean biogeochemical model ensemble, Front. Mar.
Sci., 7, 549, https://doi.org/10.3389/fmars.2020.00549, 2020.
Archibald, K. M., Siegel, D. A., and Doney, S. C.: Modeling the impact of
zooplankton diel vertical migration on the carbon export flux of the
biological pump, Global Biogeochem. Cy., 33, 181–199, 2019.
Bianchi, D., Stock, C., Galbraith, E. D., and Sarmiento, J. L.: Diel
vertical migration: Ecological controls and impacts on the biological pump
in a one-dimensional ocean model, Global Biogeochem. Cy., 27, 478–491,
https://doi.org/10.1002/gbc.20031, 2013a.
Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S., and Stock,
C. A.: Intensification of open-ocean oxygen depletion by vertically
migrating animals, Nat. Geosci., 6, 545–548, https://doi.org/10.1038/ngeo1837, 2013b.
Boeuf, D., Edwards, B. R., Eppley, J. M., Hu, S. K., Poff, K. E., Romano, A.
E., Caron, D. A., Karl, D. M., and DeLong, E. F.: Biological composition and
microbial dynamics of sinking particulate organic matter at abyssal depths
in the oligotrophic open ocean, P. Natl. Acad. Sci. USA, 116,
11824–11832, https://doi.org/10.1073/pnas.1903080116, 2019.
Bopp, L., Aumont, O., Cadule, P., Alvain, S., and Gehlen, M.: Response of
diatoms distribution to global warming and potential implications: A global
model study, Geophys. Res. Lett., 32, L19606, https://doi.org/10.1029/2005gl023653, 2005.
Boyd, P. W.: Toward quantifying the response of the oceans' biological pump
to climate change, Front. Mar. Sci., 2, 77, https://doi.org/10.3389/fmars.2015.00077, 2015.
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the ocean,
Nature, 568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019.
Brett, J. and Groves, T.: Physiological energetics, Fish Physiol., 8,
280–352, 1979.
Bruland, K. W. and Silver, M. W.: Sinking rates of fecal pellets from
gelatinous zooplankton (salps, pteropods, doliolids), Mar. Biol., 63,
295–300, 1981.
Brzezinski, M. A., Krause, J. W., Bundy, R. M., Barbeau, K. A., Franks, P.,
Goericke, R., Landry, M. R., and Stukel, M. R.: Enhanced silica ballasting
from iron stress sustains carbon export in a frontal zone within the
California Current, J. Geophys. Res.-Ocean., 120, 4654–4669,
https://doi.org/10.1002/2015jc010829, 2015.
Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control
particle export and flux attenuation in the twilight zone of the open ocean,
Limnol. Oceanogr., 54, 1210–1232, https://doi.org/10.4319/lo.2009.54.4.1210, 2009.
Buitenhuis, E., Le Quere, C., Aumont, O., Beaugrand, G., Bunker, A., Hirst,
A., Ikeda, T., O'Brien, T., Piontkovski, S., and Straile, D.: Biogeochemical
fluxes through mesozooplankton, Global Biogeochem. Cy., 20, GB2003, https://doi.org/10.1029/2005GB002511, 2006.
Burd, A., Buchan, A., Church, M., Landry, M., McDonnell, A., Passow, U.,
Steinberg, D., and Benway, H.: Towards a transformative understanding of the
ocean's biological pump: Priorities for future research, Hyatt Place New
Orleans, New Orleans, LA, 36 pp., 2016.
Burd, A. B. and Jackson, G. A.: Particle Aggregation, Annu. Rev. Mar. Sci.,
1, 65–90, https://doi.org/10.1146/annurev.marine.010908.163904, 2009.
Carlson, C. A., Ducklow, H. W., and Michaels, A. F.: Annual flux of
dissolved organic carbon from the euphotic zone in the northwestern Sargasso
Sea, Nature, 371, 405–408, https://doi.org/10.1038/371405a0, 1994.
Cavan, E. L., Henson, S. A., Belcher, A., and Sanders, R.: Role of
zooplankton in determining the efficiency of the biological carbon pump,
Biogeosciences, 14, 177–186, https://doi.org/10.5194/bg-14-177-2017, 2017.
Chenillat, F., Rivière, P., and Ohman, M. D.: On the sensitivity of
plankton ecosystem models to the formulation of zooplankton grazing, PloS
one, 16, e0252033, https://doi.org/10.1371/journal.pone.0252033, 2021.
Ciavatta, S., Torres, R., Martinez-Vicente, V., Smyth, T., Dall'Olmo, G.,
Polimene, L., and Allen, J. I.: Assimilation of remotely-sensed optical
properties to improve marine biogeochemistry modelling, Prog. Oceanogr.,
127, 74–95, 2014.
Copin-Montégut, G. and Avril, B.: Vertical distribution and temporal
variation of dissolved organic carbon in the North-Western Mediterranean
Sea, Deep-Sea Res. Pt. I, 40, 1963–1972, https://doi.org/10.1016/0967-0637(93)90041-Z, 1993.
Décima, M., Landry, M. R., Stukel, M. R., Lopez-Lopez, L., and Krause,
J. W.: Mesozooplankton biomass and grazing in the Costa Rica Dome:
amplifying variability through the plankton food web, J. Plankton Res., 38,
317–330, https://doi.org/10.1093/plankt/fbv091, 2016.
Décima, M., Stukel, M. R., Nodder, S. D., Gutiérrez-Rodríguez,
A., Selph, K. E., Lopes dos Santos, A., Safi, K., Kelly, T. B., Deans, F.,
Latasa, M., Gorbunov, M. Y., and Pinkerton, M.: Salp population-blooms drive
5-fold increases in carbon export flux, Nat. Commun.,
https://doi.org/10.1101/2022.02.07.479467, in review, 2022.
DeVries, T. and Weber, T.: The export and fate of organic matter in the
ocean: New constraints from combining satellite and oceanographic tracer
observations, Global Biogeochem. Cy., 31, 535–555, 2017.
Dietze, M. C., Lebauer, D. S., and Kooper, R.: On improving the
communication between models and data, Plant, Cell Environ., 36, 1575–1585,
2013.
Doney, S. C., Lindsay, K., Caldeira, K., Campin, J. M., Drange, H., Dutay,
J. C., Follows, M., Gao, Y., Gnanadesikan, A., Gruber, N., Ishida, A., Joos,
F., Madec, G., Maier-Reimer, E., Marshall, J. C., Matear, R. J., Monfray,
P., Mouchet, A., Najjar, R., Orr, J. C., Plattner, G. K., Sarmiento, J.,
Schlitzer, R., Slater, R., Totterdell, I. J., Weirig, M. F., Yamanaka, Y.,
and Yool, A.: Evaluating global ocean carbon models: The importance of
realistic physics, Global Biogeochem. Cy., 18, GB3017,
https://doi.org/10.1029/2003gb002150, 2004.
Doron, M., Brasseur, P., Brankart, J.-M., Losa, S. N., and Melet, A.:
Stochastic estimation of biogeochemical parameters from Globcolour ocean
colour satellite data in a North Atlantic 3D ocean coupled
physical–biogeochemical model, J. Mar. Sys., 117, 81–95, 2013.
Ducklow, H. W., Steinberg, D. K., and Buesseler, K. O.: Upper ocean carbon
export and the biological pump, Oceanography, 14, 50–58, 2001.
Dunne, J. P., Armstrong, R. A., Gnanadesikan, A., and Sarmiento, J. L.:
Empirical and mechanistic models for the particle export ratio, Global
Biogeochem. Cy., 19, GB4026, https://doi.org/10.1029/2004GB002390, 2005.
Dutkiewicz, S., Scott, J. R., and Follows, M.: Winners and losers:
Ecological and biogeochemical changes in a warming ocean, Global Biogeochem.
Cy., 27, 463–477, 2013.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.:
Primary production of the biosphere: Integrating terrestrial and oceanic
components, Science, 281, 237–240, 1998.
Follows, M. J. and Dutkiewicz, S.: Modeling Diverse Communities of Marine
Microbes, Ann. Rev. Mar. Sci., 3, 427–451, https://doi.org/10.1146/annurev-marine-120709-142848, 2011.
Follows, M. J., Ito, T., and Dutkiewicz, S.: On the solution of the
carbonate chemistry system in ocean biogeochemistry models, Ocean Model.,
12, 290–301, https://doi.org/10.1016/j.ocemod.2005.05.004, 2006.
Ford, D., Key, S., McEwan, R., Totterdell, I., and Gehlen, M.: Marine Biogeochemical Modelling and Data Assimilation for Operational Forecasting, Reanalysis, and Climate Research, in: New Frontiers in Operational Oceanography, edited by: Chassignet, E., Pascual, A., Tintore, J., and Verron, J., GODAE OceanView, 625–652, https://doi.org/10.17125/gov2018.ch22, 2018.
Fowler, S. W. and Small, L. F.: Sinking rates of euphausiid fecal pellets,
Limnol. Oceanogr., 17, 293–296, 1972.
Franks, P. J. S.: Planktonic ecosystem models: perplexing parameterizations
and a failure to fail, J. Plankton Res., 31, 1299–1306,
https://doi.org/10.1093/plankt/fbp069, 2009.
Freibott, A., Taylor, A. G., Selph, K. E., Liu, H., Zhang, W., and Landry,
M. R.: Biomass and composition of protistan grazers and heterotrophic
bacteria in the Costa Rica Dome during summer 2010, J. Plankton Res., 38,
230–243, https://doi.org/10.1093/plankt/fbv107, 2016.
Friedrichs, M. A. M., Dusenberry, J. A., Anderson, L. A., Armstrong, R. A.,
Chai, F., Christian, J. R., Doney, S. C., Dunne, J., Fujii, M., Hood, R.,
McGillicuddy, D. J., Moore, J. K., Schartau, M., Spitz, Y. H., and Wiggert,
J. D.: Assessment of skill and portability in regional marine biogeochemical
models: Role of multiple planktonic groups, J. Geophys. Res.-Ocean., 112,
22, C08001, https://doi.org/10.1029/2006jc003852, 2007.
Gal, G., Makler-Pick, V., and Shachar, N.: Dealing with uncertainty in
ecosystem model scenarios: application of the single-model ensemble
approach, Environ. Modell. Softw., 61, 360–370, 2014.
Gargett, A. and Garner, T.: Determining Thorpe scales from ship-lowered CTD
density profiles, J. Atmos. Ocean. Tech., 25, 1657–1670, 2008.
Garnier, F., Brankart, J.-M., Brasseur, P., and Cosme, E.: Stochastic
parameterizations of biogeochemical uncertainties in a
NEMO/PISCES model for probabilistic comparisons with ocean color data, J.
Mar. Sys., 155, 59–72, 2016.
Gentleman, W. C. and Neuheimer, A. B.: Functional responses and ecosystem
dynamics: how clearance rates explain the influence of satiation,
food-limitation and acclimation, J. Plankton Res., 30, 1215–1231,
https://doi.org/10.1093/plankt/fbn078, 2008.
Gerard, T., Lamkin, J., Kelly, T. B., Knapp, A. N., Laiz-Carrión, R.,
Malca, E., Selph, K. E., Shiroza, A., Shropshire, T. A., Stukel, M. R.,
Swalethorp, R., Yingling, N., and Landry, M. R.: Bluefin Larvae in
Oligotrophic Ocean Foodwebs, Investigations of Nutrients to Zooplankton:
Overview of the BLOOFINZ-Gulf of Mexico program, J. Plankton Res., fbac038, https://doi.org/10.1093/plankt/fbac038, 2022.
Gharamti, M., Samuelsen, A., Bertino, L., Simon, E., Korosov, A., and
Daewel, U.: Online tuning of ocean biogeochemical model parameters using
ensemble estimation techniques: application to a one-dimensional model in
the North Atlantic, J. Mar. Sys., 168, 1–16, 2017a.
Gharamti, M., Tjiputra, J., Bethke, I., Samuelsen, A., Skjelvan, I.,
Bentsen, M., and Bertino, L.: Ensemble data assimilation for ocean
biogeochemical state and parameter estimation at different sites, Ocean
Modell., 112, 65–89, 2017b.
Goericke, R.: The size structure of marine phytoplankton – What are the
rules?, Cal. Coop. Ocean. Fish., 52,
198–204, 2011.
Guidi, L., Chaffron, S., Bittner, L., Eveillard, D., Larhlimi, A., Roux, S.,
Darzi, Y., Audic, S., Berline, L., Brum, J. R., Coelho, L. P., Espinoza, J.
C. I., Malviya, S., Sunagawa, S., Dimier, C., Kandels-Lewis, S., Picheral,
M., Poulain, J., Searson, S., Tara Oceans Consortium, C., Stemmann, L., Not,
F., Hingamp, P., Speich, S., Follows, M., Karp-Boss, L., Boss, E., Ogata,
H., Pesant, S., Weissenbach, J., Wincker, P., Acinas, S. G., Bork, P., de
Vargas, C., Iudicone, D., Sullivan, M. B., Raes, J., Karsenti, E., Bowler,
C., and Gorsky, G.: Plankton networks driving carbon export in the
oligotrophic ocean, Nature, 532, 465–470, https://doi.org/10.1038/nature16942, 2016.
Hannides, C. C. S., Landry, M. R., Benitez-Nelson, C. R., Styles, R. M.,
Montoya, J. P., and Karl, D. M.: Export stoichiometry and migrant-mediated
flux of phosphorus in the North Pacific Subtropical Gyre, Deep-Sea Res. Pt. I,
56, 73–88, https://doi.org/10.1016/j.dsr.2008.08.003, 2009.
Hansen, J. L. S., Kiorboe, T., and Alldredge, A. L.: Marine snow derived
from abandoned larvacean houses: Sinking rates, particle content and
mechanisms of aggregate formation, Mar. Ecol. Prog. Ser., 141, 205–215,
https://doi.org/10.3354/meps141205, 1996.
Hauck, J., Volker, C., Wolf-Gladrow, D. A., Laufkotter, C., Vogt, M.,
Aumont, O., Bopp, L., Buitenhuis, E. T., Doney, S. C., Dunne, J., Gruber,
N., Hashioka, T., John, J., Le Quere, C., Lima, I. D., Nakano, H., Seferian,
R., and Totterdell, I.: On the Southern Ocean CO2 uptake and the role of the
biological carbon pump in the 21st century, Global Biogeochem. Cy., 29,
1451–1470, https://doi.org/10.1002/2015gb005140, 2015.
Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., and
Quartly, G. D.: A reduced estimate of the strength of the ocean's biological
carbon pump, Geophys. Res. Lett., 38, L04606, https://doi.org/10.1029/2011GL046735, 2011.
Henson, S. A., Yool, A., and Sanders, R.: Variability in efficiency of
particulate organic carbon export: A model study, Global Biogeochem. Cy.,
29, 33–45, https://doi.org/10.1002/2014gb004965, 2015.
Henson, S. A., Laufkötter, C., Leung, S., Giering, S. L. C., Palevsky,
H. I., and Cavan, E. L.: Uncertain response of ocean biological carbon
export in a changing world, Nat. Geosci., 15, 248–254,
https://doi.org/10.1038/s41561-022-00927-0, 2022.
Hernández-León, S., Olivar, M. P., Fernández de Puelles, M. L.,
Bode, A., Castellón, A., López-Pérez, C., Tuset, V. M., and
González-Gordillo, J. I.: Zooplankton and Micronekton Active Flux Across
the Tropical and Subtropical Atlantic Ocean, Front. Mar. Sci., 6, 535,
https://doi.org/10.3389/fmars.2019.00535, 2019.
Hirst, A. and Kiørboe, T.: Mortality of marine planktonic copepods:
global rates and patterns, Mar. Ecol. Prog. Ser., 230, 195–209, 2002.
Honjo, S., Manganini, S. J., Krishfield, R. A., and Francois, R.:
Particulate organic carbon fluxes to the ocean interior and factors
controlling the biological pump: A synthesis of global sediment trap
programs since 1983, Prog. Oceanogr., 76, 217–285,
https://doi.org/10.1016/j.pocean.2007.11.003, 2008.
Hood, R. R., Bates, N. R., Capone, D. G., and Olson, D. B.: Modeling the
effect of nitrogen fixation on carbon and nitrogen fluxes at BATS, Deep-Sea
Res. Pt. II, 48, 1609–1648, 2001.
Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., and
Núñez-Riboni, I.: Global ocean biogeochemistry model HAMOCC: Model
architecture and performance as component of the MPI-Earth system model in
different CMIP5 experimental realizations, J. Adv. Model.
Earth Syst., 5, 287–315, https://doi.org/10.1029/2012ms000178, 2013.
Jackson, G. A.: Effect of coagulation on a model planktonic food web,
Deep-Sea Res. Pt. I, 48, 95–123, 2001.
Janjić, T., Bormann, N., Bocquet, M., Carton, J. A., Cohn, S. E., Dance,
S. L., Losa, S. N., Nichols, N. K., Potthast, R., Waller, J. A., and Weston,
P.: On the representation error in data assimilation, Q. J.
Roy. Meteorol. Soc., 144, 1257–1278,
https://doi.org/https://doi.org/10.1002/qj.3130, 2018.
Jones, R. I.: Mixotrophy in planktonic protists: an overview, Freshwater
Biol., 45, 219–226, 2000.
Kahru, M., Goericke, R., Kelly, T. B., and Stukel, M. R.: Satellite
estimation of carbon export by sinking particles in the California Current
calibrated with sediment trap data, Deep-Sea Res. Pt. II, 173, 104639,
https://doi.org/10.1016/j.dsr2.2019.104639, 2020.
Kaufman, D. E., Friedrichs, M. A. M., Hemmings, J. C. P., and Smith Jr., W. O.: Assimilating bio-optical glider data during a phytoplankton bloom in the southern Ross Sea, Biogeosciences, 15, 73–90, https://doi.org/10.5194/bg-15-73-2018, 2018.
Kelly, T. B., Davison, P. R., Goericke, R., Landry, M. R., Ohman, M. D., and
Stukel, M. R.: The Importance of Mesozooplankton Diel Vertical Migration for
Supporting a Mesopelagic Ecosystem, Front. Mar. Sci., 6, 508,
https://doi.org/10.3389/fmars.2019.00508, 2019.
Kiko, R., Brandt, P., Christiansen, S., Faustmann, J., Kriest, I.,
Rodrigues, E., Schütte, F., and Hauss, H.: Zooplankton-Mediated Fluxes
in the Eastern Tropical North Atlantic, Front. Mar. Sci., 7, 358,
https://doi.org/10.3389/fmars.2020.00358, 2020.
Kim, H. H., Luo, Y.-W., Ducklow, H. W., Schofield, O. M., Steinberg, D. K., and Doney, S. C.: WAP-1D-VAR v1.0: development and evaluation of a one-dimensional variational data assimilation model for the marine ecosystem along the West Antarctic Peninsula, Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021, 2021.
Kirchner, M.: Microbial colonization of copepod body surfaces and chitin
degradation in the sea, Helgolander Meeresun., 49, 201–212, 1995.
Kishi, M. J., Kashiwai, M., Ware, D. M., Megrey, B. A., Eslinger, D. L.,
Werner, F. E., Noguchi-Aita, M., Azumaya, T., Fujii, M., Hashimoto, S.,
Huang, D. J., Iizumi, H., Ishida, Y., Kang, S., Kantakov, G. A., Kim, H. C.,
Komatsu, K., Navrotsky, V. V., Smith, S. L., Tadokoro, K., Tsuda, A.,
Yamamura, O., Yamanaka, Y., Yokouchi, K., Yoshie, N., Zhang, J., Zuenko, Y.
I., and Zvalinsky, V. I.: NEMURO – a lower trophic level model for the North
Pacific marine ecosystem, Ecol. Model., 202, 12–25,
https://doi.org/10.1016/j.ecolmodel.2006.08.021, 2007.
Kishi, M. J., Ito, S.-I., Megrey, B. A., Rose, K. A., and Werner, F. E.: A
review of the NEMURO and NEMURO.FISH models and their application to marine
ecosystem investigations, J. Oceanogr., 67, 3–16, 2011.
Knapp, A. N., Thomas, R. K., Stukel, M. R., Kelly, T. B., Landry, M. R.,
Selph, K. E., Malca, E., Gerard, T., and Lamkin, J.: Constraining the
sources of nitrogen fueling export production in the Gulf of Mexico using
nitrogen isotope budgets, J. Plankton Res., fbab049, https://doi.org/10.1093/plankt/fbab049, 2021.
Kranz, S. A., Wang, S., Kelly, T. B., Stukel, M. R., Goericke, R., Landry,
M. R., and Cassar, N.: Lagrangian Studies of Marine Production: A
Multimethod Assessment of Productivity Relationships in the California
Current Ecosystem Upwelling Region, J. Geophys. Res.-Ocean., 125,
e2019JC015984, https://doi.org/10.1029/2019jc015984, 2020.
Krause, J. W., Brzezinski, M. A., Goericke, R., Landry, M. R., Ohman, M. D.,
Stukel, M. R., and Taylor, A. G.: Variability in diatom contributions to
biomass, organic matter production and export across a frontal gradient in
the California Current Ecosystem, J. Geophys. Res.-Ocean., 120, 1032–1047,
https://doi.org/10.1002/2014jc010472, 2015.
Krause, J. W., Stukel, M. R., Taylor, A. G., Taniguchi, D. A., De Verneil,
A., and Landry, M. R.: Net biogenic silica production and the contribution
of diatoms to new production and organic matter export in the Costa Rica
Dome ecosystem, J. Plankton Res., 38, 216–229, https://doi.org/10.1093/plankt/fbv077, 2016.
Kriest, I., Sauerland, V., Khatiwala, S., Srivastav, A., and Oschlies, A.: Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0), Geosci. Model Dev., 10, 127–154, https://doi.org/10.5194/gmd-10-127-2017, 2017.
Kwon, E. Y., Primeau, F., and Sarmiento, J. L.: The impact of
remineralization depth on the air-sea carbon balance, Nat. Geosci., 2,
630–635, https://doi.org/10.1038/NGEO612, 2009.
Landry, M. R. and Swalethorp, R.: Mesozooplankton biomass, grazing and
trophic structure in the bluefin tuna spawning area of the oceanic Gulf of
Mexico, J. Plankton Res., fbab008, https://doi.org/10.1093/plankt/fbab008, 2021.
Landry, M. R., Ohman, M. D., Goericke, R., Stukel, M. R., and Tsyrklevich,
K.: Lagrangian studies of phytoplankton growth and grazing relationships in
a coastal upwelling ecosystem off Southern California, Prog. Oceanogr., 83,
208–216, https://doi.org/10.1016/j.pocean.2009.07.026, 2009.
Landry, M. R., Selph, K. E., Taylor, A. G., Décima, M., Balch, W. M.,
and Bidigare, R. R.: Phytoplankton growth, grazing and production balances
in the HNLC equatorial Pacific, Deep-Sea Res. Pt. II, 58, 524-535, 2011.
Landry, M. R., De Verneil, A., Goes, J. I., and Moffett, J. W.: Plankton
dynamics and biogeochemical fluxes in the Costa Rica Dome: introduction to
the CRD Flux and Zinc Experiments, J. Plankton Res., 38, 167–182,
https://doi.org/10.1093/plankt/fbv103, 2016a.
Landry, M. R., Selph, K. E., Decima, M., Gutierrez-Rodriquez, A., Stukel, M.
R., Taylor, A. G., and Pasulka, A. L.: Phytoplankton production and grazing
balances in the Costa Rica Dome, J. Plankton Res., 38, 366–379,
https://doi.org/10.1093/plankt/fbv089, 2016b.
Landry, M. R., Selph, K. E., Stukel, M. R., Swalethorp, R., Kelly, T. B.,
Beatty, J. L., and Quackenbush, C. R.: Microbial food web dynamics in the
oceanic Gulf of Mexico, J. Plankton Res., fbab021, https://doi.org/10.1093/plankt/fbab021, 2021.
Laws, E. A. and Maiti, K.: The relationship between primary production and
export production in the ocean: Effects of time lags and temporal
variability, Deep-Sea Res. Pt. I, 148, 100–107, https://doi.org/10.1016/j.dsr.2019.05.006, 2019.
Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H., and McCarthy, J.
J.: Temperature effects on export production in the open ocean, Global
Biogeochem. Cy., 14, 1231–1246, 2000.
Laws, E. A., D'Sa, E., and Naik, P.: Simple equations to estimate ratios of
new or export production to total production from satellite-derived
estimates of sea surface temperature and primary production, Limnol.
Oceanogr. Meth., 9, 593–601, https://doi.org/10.4319/lom.2011.9.593, 2011.
Lawson, L. M., Spitz, Y. H., Hofmann, E. E., and Long, R. B.: A Data
Assimilation Technique Applied to a Predator-Prey Model, Bull.
Mathemat. Biol., 57, 593–617, 1995.
Lebrato, M., Mendes, P. D., Steinberg, D. K., Cartes, J. E., Jones, B. M.,
Birsa, L. M., Benavides, R., and Oschlies, A.: Jelly biomass sinking speed
reveals a fast carbon export mechanism, Limnol. Oceanogr., 58, 1113–1122,
https://doi.org/10.4319/lo.2013.58.3.1113, 2013.
Levy, M., Bopp, L., Karleskind, P., Resplandy, L., Ethe, C., and Pinsard,
F.: Physical pathways for carbon transfers between the surface mixed layer
and the ocean interior, Global Biogeochem. Cy., 27, 1001–1012,
https://doi.org/10.1002/gbc.20092, 2013.
Li, Q. P., Franks, P. J. S., Landry, M. R., Goericke, R., and Taylor, A. G.:
Modeling phytoplankton growth rates and chlorophyll to carbon ratios in
California coastal and pelagic ecosystems, J. Geophys.
Res.-Biogeo., 115, G04003, https://doi.org/10.29/2009JG001111, 2010.
Llort, J., Langlais, C., Matear, R., Moreau, S., Lenton, A., and Strutton,
P. G.: Evaluating Southern Ocean Carbon Eddy-Pump From Biogeochemical-Argo
Floats, J. Geophys. Res.-Ocean., 123, 971–984, https://doi.org/10.1002/2017jc012861, 2018.
Longhurst, A. R., Bedo, A. W., Harrison, W. G., Head, E. J. H., and Sameoto,
D. D.: Vertical flux of respiratory carbon by oceanic diel migrant biota,
Deep-Sea Res., 37, 685–694, 1990.
Löptien, U. and Dietze, H.: Constraining parameters in marine pelagic ecosystem models – is it actually feasible with typical observations of standing stocks?, Ocean Sci., 11, 573–590, https://doi.org/10.5194/os-11-573-2015, 2015.
Luo, Y. W., Friedrichs, M. A. M., Doney, S. C., Church, M. J., and Ducklow,
H. W.: Oceanic heterotrophic bacterial nutrition by semilabile DOM as
revealed by data assimilative modeling, Aquat. Microb. Ecol., 60,
273–287, https://doi.org/10.3354/ame01427, 2010.
Marsay, C. M., Sanders, R. J., Henson, S. A., Pabortsava, K., Achterberg, E.
P., and Lampitt, R. S.: Attenuation of sinking particulate organic carbon
flux through the mesopelagic ocean, P. Natl. Acad. Sci. USA, 112,
1089–1094, https://doi.org/10.1073/pnas.1415311112, 2015.
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: Vertex:
carbon cycling in the northeast Pacific, Deep-Sea Res., 34, 267–285, 1987.
Mattern, J. P. and Edwards, C. A.: A Simple Finite Difference-Based
Approximation for Biogeochemical Tangent Linear and Adjoint Models, J.
Geophys. Res.-Ocean., 124, 4–26, 2019.
Mattern, J. P., Fennel, K., and Dowd, M.: Periodic time-dependent parameters
improving forecasting abilities of biological ocean models, Geophys. Res.
Lett., 41, 6848–6854, https://doi.org/10.1002/2014gl061178, 2014.
Mattern, J. P., Song, H., Edwards, C. A., Moore, A. M., and Fiechter, J.:
Data assimilation of physical and chlorophyll a observations in the
California Current System using two biogeochemical models, Ocean Model.,
109, 55–71, 2017.
Meier, H. M., Andersson, H. C., Eilola, K., Gustafsson, B. G., Kuznetsov,
I., Müller-Karulis, B., Neumann, T., and Savchuk, O. P.: Hypoxia in
future climates: A model ensemble study for the Baltic Sea, Geophys. Res.
Lett., 38,
L24608, https://doi.org/10.1029/2011GL049929, 2011.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E.: Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087–1092, 1953.
Michaels, A. F., Karl, D. M., and Capone, D. G.: Element stoichiometry, new
production and nitrogen fixation, Oceanogr.
Soc., 14, 68–77, 2001.
Mislan, K. A. S., Stock, C. A., Dunne, J. P., and Sarmiento, J. L.: Group
behavior among model bacteria influences particulate carbon remineralization
depths, J. Mar. Res., 72, 183–218, https://doi.org/10.1357/002224014814901985, 2014.
Morrow, R. M., Ohman, M. D., Goericke, R., Kelly, T. B., Stephens, B. M.,
and Stukel, M. R.: Primary Productivity, Mesozooplankton Grazing, and the
Biological Pump in the California Current Ecosystem: Variability and
Response to El Niño, Deep-Sea Res. Pt. I, 140, 52–62,
https://doi.org/10.1016/j.dsr.2018.07.012, 2018.
Nowicki, M., DeVries, T., and Siegel, D. A.: Quantifying the Carbon Export
and Sequestration Pathways of the Ocean's Biological Carbon Pump, Global
Biogeochem. Cy., 36, e2021GB007083, https://doi.org/10.1029/2021GB007083, 2022.
Ohman, M. D. and Hirche, H. J.: Density-dependent mortality in an oceanic
copepod population, Nature, 412, 638–641, 2001.
Ohman, M. D., Barbeau, K., Franks, P. J. S., Goericke, R., Landry, M. R.,
and Miller, A. J.: Ecological Transitions in a Coastal Upwelling Ecosystem,
Oceanography, 26, 210–219, 2013.
Omand, M. M., D'Asaro, E. A., Lee, C. M., Perry, M. J., Briggs, N.,
Cetinić, I., and Mahadevan, A.: Eddy-driven subduction exports
particulate organic carbon from the spring bloom, Science, 348, 222–225,
https://doi.org/10.1126/science.1260062, 2015.
Oschlies, A.: On the use of data assimilation in biogeochemical modelling,
Ocean Weather Forecasting: An Integrated View of Oceanography, Springer,
Dordrecht, 525–547, https://doi.org/10.1007/1-4020-4028-8_24, 2006.
Oschlies, A., Schulz, K. G., Riebesell, U., and Schmittner, A.: Simulated
21st century's increase in oceanic suboxia by CO2-enhanced biotic carbon
export, Global Biogeochem. Cy., 22, GB4008, https://doi.org/10.1029/2007gb003147, 2008.
Owens, S. A., Buesseler, K. O., and Sims, K. W. W.: Re-evaluating the
238U-salinity relationship in seawater: Implications for the
238U-234Th disequilibrium method, Mar. Chem., 127, 31–39,
https://doi.org/10.1016/j.marchem.2011.07.005, 2011.
Parekh, P., Follows, M. J., Dutkiewicz, S., and Ito, T.: Physical and
biological regulation of the soft tissue carbon pump, Paleoceanography, 21,
Pa3001,
https://doi.org/10.1029/2005pa001258, 2006.
Passow, U., Alldredge, A. L., and Logan, B. E.: The role of particulate
carbohydrate exudates in the flocculation of diatom blooms, Deep-Sea Res. Pt. I,
41, 335–357, 1994.
Plattner, G. K., Gruber, N., Frenzel, H., and McWilliams, J. C.: Decoupling
marine export production from new production, Geophys. Res. Lett.,
32, L11612, https://doi.org/10.1029/2005GL022660, 2005.
Poulsen, L. K. and Kiorboe, T.: Coprophagy and coprorhexy in the copepods
Acartia tonsa and Temora longicornis: clearance rates and feeding behaviour, Mar. Ecol. Prog. Ser., 299,
217–227, 2005.
Preston, C. M., Durkin, C. A., and Yamahara, K. M.: DNA metabarcoding
reveals organisms contributing to particulate matter flux to abyssal depths
in the North East Pacific ocean, Deep-Sea Res. Pt. II,
173, 104708, https://doi.org/10.1016/j.dsr2.2019.104708, 2019.
Prowe, A. F., Pahlow, M., Dutkiewicz, S., Follows, M., and Oschlies, A.:
Top-down control of marine phytoplankton diversity in a global ecosystem
model, Prog. Oceanogr., 101, 1–13, 2012.
Ramondenc, S., Eveillard, D., Guidi, L., Lombard, F., and Delahaye, B.:
Probabilistic modeling to estimate jellyfish ecophysiological properties and
size distributions, Sci. Rep., 10, 1–13, 2020.
Resplandy, L., Martin, A. P., Le Moigne, F., Martin, P., Aquilina, A.,
Memery, L., Levy, M., and Sanders, R.: How does dynamical spatial
variability impact 234Th-derived estimates of organic export?, Deep-Sea Res.
Pt. I, 68, 24–45, https://doi.org/10.1016/j.dsr.2012.05.015, 2012.
Resplandy, L., Lévy, M., and Mcgillicuddy, D. J.: Effects of eddy-driven
subduction on ocean biological carbon pump, Global Biogeochem. Cy., 33,
1071–1084, https://doi.org/10.1029/2018GB006125, 2019.
Riebesell, U., Schulz, K. G., Bellerby, R. G. J., Botros, M., Fritsche, P.,
Meyerhofer, M., Neill, C., Nondal, G., Oschlies, A., Wohlers, J., and
Zollner, E.: Enhanced biological carbon consumption in a high CO2 ocean,
Nature, 450, 545–548, https://doi.org/10.1038/nature06267, 2007.
Robinson, C., Steinberg, D. K., Anderson, T. R., Arístegui, J.,
Carlson, C. A., Frost, J. R., Ghiglione, J.-F., Hernández-León, S.,
Jackson, G. A., Koppelmann, R., Quéguiner, B., Ragueneau, O.,
Rassoulzadegan, F., Robison, B. H., Tamburini, C., Tanaka, T., Wishner, K.
F., and Zhang, J.: Mesopelagic zone ecology and biogeochemistry – a
synthesis, Deep-Sea Res. Pt. II, 57, 1504–1518, https://doi.org/10.1016/j.dsr2.2010.02.018,
2010.
Sailley, S. F., Vogt, M., Doney, S. C., Aita, M. N., Bopp, L., Buitenhuis,
E. T., Hashioka, T., Lima, I., Le Quere, C., and Yamanaka, Y.: Comparing
food web structures and dynamics across a suite of global marine ecosystem
models, Ecol. Model., 261, 43–57, https://doi.org/10.1016/j.ecolmodel.2013.04.006, 2013.
Sailley, S. F., Polimene, L., Mitra, A., Atkinson, A., and Allen, J. I.:
Impact of zooplankton food selectivity on plankton dynamics and nutrient
cycling, J. Plankton Res., 37, 519–529, 2015.
Saito, M. A., Rocap, G., and Moffett, J. W.: Production of cobalt binding
ligands in a Synechococcus feature at the Costa Rica upwelling dome, Limnol.
Oceanogr., 50, 279–290, 2005.
Schartau, M., Oschlies, A., and Willebrand, J.: Parameter estimates of a
zero-dimensional ecosystem model applying the adjoint method, Deep-Sea
Res. Pt. II, 48, 1769–1800,
https://doi.org/10.1016/s0967-0645(00)00161-2, 2001.
Schartau, M., Wallhead, P., Hemmings, J., Löptien, U., Kriest, I., Krishna, S., Ward, B. A., Slawig, T., and Oschlies, A.: Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling, Biogeosciences, 14, 1647–1701, https://doi.org/10.5194/bg-14-1647-2017, 2017.
Schlitzer, R.: Applying the adjoint method for biogeochemical modeling:
export of particulate organic matter in the world ocean, Geophys.
Monogr., 114, 107–124, 2000.
Schlitzer, R.: Carbon export fluxes in the Southern Ocean: results from
inverse modeling and comparison with satellite-based estimates, Deep-Sea
Res. Pt. II, 49, 1623–1644, 2002.
Schlitzer, R.: Export production in the equatorial and North Pacific derived
from dissolved oxygen, nutrient and carbon data, J. Oceanogr.,
60, 53–62, https://doi.org/10.1023/B:JOCE.0000038318.38916.e6, 2004.
Schlunegger, S., Rodgers, K. B., Sarmiento, J. L., Frölicher, T. L.,
Dunne, J. P., Ishii, M., and Slater, R.: Emergence of anthropogenic signals
in the ocean carbon cycle, Nat. Clim. Change, 9, 719–725, 2019.
Selph, K. E., Swalethorp, R., Stukel, M. R., Kelly, T. B., Knapp, A. N.,
Fleming, K., Hernandez, T., and Landry, M. R.: Phytoplankton community
composition and biomass in the oligotrophic Gulf of Mexico, J. Plankton
Res., fbab006, https://doi.org/10.1093/plankt/fbab006, 2021.
Shen, C., Shi, H., Liu, Y., Li, F., and Ding, D.: Discussion of skill
improvement in marine ecosystem dynamic models based on parameter
optimization and skill assessment, Chin. J. Oceanol.
Limn., 34, 683–696, 2016.
Shropshire, T. A., Morey, S. L., Chassignet, E. P., Bozec, A., Coles, V. J.,
Landry, M. R., Swalethorp, R., Zapfe, G., and Stukel, M. R.: Quantifying
spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico
with a physical-biogeochemical model, Biogeosciences, 17, 3385–3407,
https://doi.org/10.5194/bg-17-3385-2020, 2020.
Siegel, D. A., Buesseler, K. O., Doney, S. C., Sailley, S. F., Behrenfeld,
M. J., and Boyd, P. W.: Global assessment of ocean carbon export by
combining satellite obervations and food-web models, Global Biogeochem. Cy., 28, 181–196, https://doi.org/10.1002/2013GB004743, 2014.
Siegel, D. A., Buesseler, K. O., Behrenfeld, M. J., Benitez-Nelson, C. R.,
Boss, E., Brzezinski, M. A., Burd, A., Carlson, C. A., D'Asaro, E. A., and
Doney, S. C.: Prediction of the export and fate of global ocean net primary
production: the EXPORTS science plan, Front. Mar. Sci., 3, 22, https://doi.org/10.3389/fmars.2016.00022, 2016.
Siegel, D. A., Cetinić, I., Graff, J. R., Lee, C. M., Nelson, N., Perry,
M. J., Ramos, I. S., Steinberg, D. K., Buesseler, K., and Hamme, R.: An
operational overview of the EXport Processes in the Ocean from RemoTe
Sensing (EXPORTS) Northeast Pacific field deployment, Elementa Science of the Anthropocene, 9, 00107, https://doi.org/10.1525/elementa.2020.00107, 2021.
Simon, M., Grossart, H. P., Schweitzer, B., and Ploug, H.: Microbial ecology
of organic aggregates in aquatic ecosystems, Aquat. Microb. Ecol., 28,
175–211, 2002.
Singh, A., Baer, S. E., Riebesell, U., Martiny, A. C., and Lomas, M. W.: C : N : P stoichiometry at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean, Biogeosciences, 12, 6389–6403, https://doi.org/10.5194/bg-12-6389-2015, 2015.
Small, L. F., Fowler, S. W., and Unlu, M. Y.: Sinking rates of natural
copepod fecal pellets, Mar. Biol., 51, 233–241, 1979.
Smayda, T. J.: The suspension and sinking of phytoplankton in the sea,
Oceanogr. Mar. Biol. Ann. Rev., 8, 353–414, 1970.
Steinberg, D. K. and Landry, M. R.: Zooplankton and the ocean carbon cycle,
Annu. Rev. Mar. Sci., 9, 413–444, 2017.
Steinberg, D. K., Carlson, C. A., Bates, N. R., Goldthwait, S. A., Madin, L.
P., and Michaels, A. F.: Zooplankton vertical migration and the active
transport of dissolved organic and inorganic carbon in the Sargasso Sea,
Deep-Sea Res. Pt. I, 47, 137–158, 2000.
Steinberg, D. K., Van Mooy, B. A. S., Buesseler, K. O., Boyd, P. W., Kobari,
T., and Karl, D. M.: Bacterial vs. zooplankton control of sinking particle
flux in the ocean's twilight zone, Limnol. Oceanogr., 53, 1327–1338,
https://doi.org/10.4319/lo.2008.53.4.1327, 2008.
Stephens, B., Porrachia, M., Dovel, S., Roadman, M., Goericke, R., and
Aluwihare, L.: Non-sinking organic matter production in the California
Current, Global Biogeochem. Cy., 32, 1386–1405, https://doi.org/10.1029/2018GB005930, 2018.
Stoecker, D. K., Hansen, P. J., Caron, D. A., and Mitra, A.: Mixotrophy in
the Marine Plankton, Annu. Rev. Mar. Sci., 9, 311–335, 2017.
Stukel, M. R. and Ducklow, H. W.: Stirring up the biological pump: Vertical
mixing and carbon export in the Southern Ocean, Global Biogeochem. Cy.,
31, 1420–1434, https://doi.org/10.1002/2017GB005652, 2017.
Stukel, M. R., Décima, M., Selph, K. E., Taniguchi, D. A. A., and
Landry, M. R.: The role of Synechococcus in vertical flux in the Costa Rica upwelling
dome, Prog. Oceanogr., 112/113, 49–59, https://doi.org/10.1016/j.pocean.2013.04.003, 2013.
Stukel, M. R., Kahru, M., Benitez-Nelson, C. R., Decima, M., Goericke, R.,
Landry, M. R., and Ohman, M. D.: Using Lagrangian-based process studies to
test satellite algorithms of vertical carbon flux in the eastern North
Pacific Ocean, J. Geophys. Res.-Ocean., 120, 7208–7222,
https://doi.org/10.1002/2015JC011264, 2015.
Stukel, M. R., Benitez-Nelson, C., Décima, M., Taylor, A. G., Buchwald,
C., and Landry, M. R.: The biological pump in the Costa Rica Dome: An open
ocean upwelling system with high new production and low export, J. Plankton
Res., 38, 348–365, https://doi.org/10.1093/plankt/fbv097, 2016.
Stukel, M. R., Aluwihare, L. I., Barbeau, K. A., Chekalyuk, A. M., Goericke,
R., Miller, A. J., Ohman, M. D., Ruacho, A., Song, H., Stephens, B. M., and
Landry, M. R.: Mesoscale ocean fronts enhance carbon export due to
gravitational sinking and subduction, P. Natl. Acad. Sci. USA, 114,
1252–1257, https://doi.org/10.1073/pnas.1609435114, 2017.
Stukel, M. R., Décima, M., and Kelly, T. B.: A new approach for
incorporating 15N isotopic data into linear inverse ecosystem models with
Markov Chain Monte Carlo sampling, PloS one, 13, e0199123,
https://doi.org/10.1371/journal.pone.0199123, 2018a.
Stukel, M. R., Song, H., Goericke, R., and Miller, A. J.: The role of
subduction and gravitational sinking in particle export, carbon
sequestration, and the remineralization length scale in the California
Current Ecosystem, Limnol. Oceanogr., 63, 363–383, https://doi.org/10.1002/lno.10636, 2018b.
Stukel, M. R., Ohman, M. D., Kelly, T. B., and Biard, T.: The roles of
suspension-feeding and flux-feeding zooplankton as gatekeepers of particle
flux into the mesopelagic ocean, Front. Mar. Sci., 6, 397,
https://doi.org/10.3389/fmars.2019.00397, 2019a.
Stukel, M. R., Kelly, T. B., Aluwihare, L. I., Barbeau, K. A., Goericke, R.,
Krause, J. W., Landry, M. R., and Ohman, M. D.: The Carbon: 234Thorium
ratios of sinking particles in the California Current Ecosystem 1:
Relationships with plankton ecosystem dynamics, Mar. Chem., 212, 1–15,
https://doi.org/10.1016/j.marchem.2019.01.003, 2019b.
Stukel, M. R., Kelly, T. B., Landry, M. R., Selph, K. E., and Swalethorp,
R.: Sinking carbon, nitrogen, and pigment flux within and beneath the
euphotic zone in the oligotrophic, open-ocean Gulf of Mexico, J. Plankton
Res.,
fbab001, https://doi.org/10.1093/plankt/fbab001, 2021.
Stukel, M. R.: NEMURO_bcp Code, Zenodo [code], https://doi.org/10.5281/zenodo.6928851, 2022a.
Stukel, M. R.: OEP_MCMC_NEMURObcp Code, Zenodo [code], https://doi.org/10.5281/zenodo.6928875, 2022b.
Taylor, A. G., Goericke, R., Landry, M. R., Selph, K. E., Wick, D. A., and
Roadman, M. J.: Sharp gradients in phytoplankton community structure across
a frontal zone in the California Current Ecosystem, J. Plankton Res., 34,
778–789, https://doi.org/10.1093/plankt/fbs036, 2012.
Taylor, A. G., Landry, M. R., Freibott, A., Selph, K. E., and
Gutierrez-Rodriguez, A.: Patterns of microbial community biomass,
composition and HPLC diagnostic pigments in the Costa Rica upwelling dome,
J. Plankton Res., 34, 778–789, https://doi.org/10.1093/plankt/fbv086, 2016.
Turner, J. T.: Zooplankton fecal pellets, marine snow, phytodetritus and the
ocean's biological pump, Prog. Oceanogr., 130, 205–248,
https://doi.org/10.1016/j.pocean.2014.08.005, 2015.
Valencia, B., Stukel, M. R., Allen, A. E., McCrow, J. P., Rabines, A.,
Palenik, B., and Landry, M. R.: Relating sinking and suspended microbial
communities in the California Current Ecosystem: digestion resistance and
the contributions of phytoplankton taxa to export, Environ.
Microbiol., 23, 6734–6748, https://doi.org/10.1111/1462-2920.15736, 2021.
Vervatis, V. D., De Mey-Frémaux, P., Ayoub, N., Karagiorgos, J.,
Ciavatta, S., Brewin, R. J., and Sofianos, S.: Assessment of a regional
physical–biogeochemical stochastic ocean model, Part 2: Empirical
consistency, Ocean Model., 160, 101770, https://doi.org/10.1016/j.ocemod.2021.101770, 2021a.
Vervatis, V. D., De Mey-Frémaux, P., Ayoub, N., Karagiorgos, J.,
Ghantous, M., Kailas, M., Testut, C.-E., and Sofianos, S.: Assessment of a
regional physical–biogeochemical stochastic ocean model, Part 1: Ensemble
generation, Ocean Model., 160, 101781, https://doi.org/10.1016/j.ocemod.2021.101781, 2021b.
Volk, T. and Hoffert, M. I.: Ocean carbon pumps: Analysis of relative
strengths and efficiencies in ocean-driven atmospheric CO2 changes, in:
The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present,
edited by: Sundquist, E. T., and Broeker, W. S., American Geophysical Union,
Washington, DC, 99–110, https://doi.org/10.1029/GM032p0099, 1985.
Wang, C. H., Li, X. Y., and Lv, X. Q.: Adjoint Assimilation of SeaWiFS data
into a Marine Ecosystem Dynamical Model of the Bohai Sea and the North
Yellow Sea, 18th Biennial Isem Conference on Ecological Modelling for Global
Change and Coupled Human and Natural System, Procedia Environmental Sciences, 13, 2045–2061,
https://doi.org/10.1016/j.proenv.2012.01.195, 2012.
Ward, B. A., Schartau, M., Oschlies, A., Martin, A. P., Follows, M. J., and
Anderson, T. R.: When is a biogeochemical model too complex? Objective model
reduction and selection for North Atlantic time-series sites, Prog.
Oceanogr., 116, 49–65, https://doi.org/10.1016/j.pocean.2013.06.002, 2013.
Xiao, Y. and Friedrichs, M. A. M.: Using biogeochemical data assimilation to
assess the relative skill of multiple ecosystem models in the Mid-Atlantic
Bight: effects of increasing the complexity of the planktonic food web,
Biogeosciences, 11, 3015–3030, https://doi.org/10.5194/bg-11-3015-2014, 2014a.
Xiao, Y. J. and Friedrichs, M. A. M.: The assimilation of satellite-derived
data into a one-dimensional lower trophic level marine ecosystem model, J.
Geophys. Res.-Ocean., 119, 2691–2712, https://doi.org/10.1002/2013jc009433, 2014b.
Yamamoto, A., Abe-Ouchi, A., and Yamanaka, Y.: Long-term response of oceanic carbon uptake to global warming via physical and biological pumps, Biogeosciences, 15, 4163–4180, https://doi.org/10.5194/bg-15-4163-2018, 2018.
Yingling, N., Kelly, T. B., Selph, K. E., Landry, M. R., Knapp, A. N.,
Kranz, S. A., and Stukel, M. R.: Taxon-specific phytoplankton growth,
nutrient limitation, and light limitation in the oligotrophic Gulf of
Mexico, J. Plankton Res.,
fbab028, https://doi.org/10.1093/plankt/fbab028, 2021.
Yoshie, N., Yamanaka, Y., Rose, K. A., Eslinger, D. L., Ware, D. M., and
Kishi, M. J.: Parameter sensitivity study of the NEMURO lower trophic level
marine ecosystem model, Ecol. Model., 202, 26–37,
https://doi.org/10.1016/j.ecolmodel.2006.07.043, 2007.
Yoshikawa, C., Yamanaka, Y., and Nakatsuka, T.: An Ecosystem Model Including
Nitrogen Isotopes: Perspectives on a Study of the Marine Nitrogen Cycle,
J. Oceanogr., 61, 921–942, https://doi.org/10.1007/s10872-006-0010-5, 2005.
Short summary
The biological carbon pump (BCP) transports carbon into the deep ocean, leading to long-term marine carbon sequestration. It is driven by many physical, chemical, and ecological processes. We developed a model of the BCP constrained using data from 11 cruises in 4 different ocean regions. Our results show that sinking particles and vertical mixing are more important than transport mediated by vertically migrating zooplankton. They also highlight the uncertainty in current estimates of the BCP.
The biological carbon pump (BCP) transports carbon into the deep ocean, leading to long-term...
Altmetrics
Final-revised paper
Preprint