Articles | Volume 19, issue 16
https://doi.org/10.5194/bg-19-3911-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3911-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physical mechanisms for biological carbon uptake during the onset of the spring phytoplankton bloom in the northwestern Mediterranean Sea (BOUSSOLE site)
Liliane Merlivat
CORRESPONDING AUTHOR
LOCEAN-IPSL, Sorbonne Université-CNRS-IRD-MNHN, 75005 Paris,
France
Michael Hemming
Coastal and Regional Oceanography Lab, Centre for Marine Science
and Innovation, UNSW Sydney, Sydney, NSW 2052, Australia
Jacqueline Boutin
LOCEAN-IPSL, Sorbonne Université-CNRS-IRD-MNHN, 75005 Paris,
France
David Antoine
Remote Sensing and Satellite Research Group, School of Earth and
Planetary Sciences, Curtin University, Perth, WA 6845, Australia
Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
Vincenzo Vellucci
Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
Melek Golbol
Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
Gareth A. Lee
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ,
UK
Laurence Beaumont
Division Technique, INSU-CNRS, 92195 Meudon CEDEX, France
Related authors
Michael P. Hemming, Jan Kaiser, Jacqueline Boutin, Liliane Merlivat, Karen J. Heywood, Dorothee C. E. Bakker, Gareth A. Lee, Marcos Cobas García, David Antoine, and Kiminori Shitashima
Ocean Sci., 18, 1245–1262, https://doi.org/10.5194/os-18-1245-2022, https://doi.org/10.5194/os-18-1245-2022, 2022
Short summary
Short summary
An underwater glider mission was carried out in spring 2016 near a mooring in the northwestern Mediterranean Sea. The glider deployment served as a test of a prototype ion-sensitive field-effect transistor pH sensor. Mean net community production rates were estimated from glider and buoy measurements of dissolved oxygen and inorganic carbon concentrations before and during the spring bloom. Incorporating advection is important for accurate mass budgets. Unexpected metabolic quotients were found.
David Antoine, Chandanlal Parida, and Camille Grimaldi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3993, https://doi.org/10.5194/egusphere-2025-3993, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
A dataset of phytoplankton cell counts, pigments, particulate organic carbon and optical properties enables comparison of three methods to estimate phytoplankton carbon (Cphyto) in oligotrophic waters, where uncertainties in phytoplankton productivity are still large. Two methods based on chlorophyll concentration and particulate backscattering, are scalable to global scale while cell counts reduce bias from non-algal material. This comparison clarifies uncertainties in optical Cphyto estimates.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Christopher Hunt, Thomas Linkowski, Alison Chase, Nils Haentjens, Pedro C. Junger, Stéphane Pesant, and Douglas Vandemark
Earth Syst. Sci. Data, 17, 3583–3598, https://doi.org/10.5194/essd-17-3583-2025, https://doi.org/10.5194/essd-17-3583-2025, 2025
Short summary
Short summary
The air–sea CO2 flux in coastal waters plays a key role in the global carbon budget but remains poorly understood. In 2021, the Tara schooner collected 14 000 km of CO2 fugacity (fCO2) data along the South American coast. This dataset improves our understanding of fCO2 in the under-sampled Brazilian coastal region and provides a unique insight into the complex biogeochemistry of the Amazon River–ocean continuum.
Daisy Drew Pickup, Dorothee C. E. Bakker, Karen J. Heywood, Francis Glassup, Emily Hammermeister, Sharon E. Stammerjohn, Gareth A. Lee, Socratis Loucaides, Bastien Y. Queste, Benjamin G. M. Webber, and Patricia L. Yager
EGUsphere, https://doi.org/10.5194/egusphere-2025-2441, https://doi.org/10.5194/egusphere-2025-2441, 2025
Short summary
Short summary
Autonomous platforms in the Amundsen Sea have allowed for detection of isolated water masses that are colder, saltier and denser than overlying water. They are also associated with a higher dissolved inorganic carbon concentration and lower pH. The water masses, referred to as lenses, could have implications for the transfer of heat and storage of carbon in the region. We hypothesise that they form in surrounding areas that experience intense cooling and sea ice formation in autumn/winter.
Kirtana Naëck, Jacqueline Boutin, Sebastiaan Swart, Marcel du Plessis, Liliane Merlivat, Laurence Beaumont, Antonio Lourenco, Francesco d'Ovidio, Louise Rousselet, Brian Ward, and Jean-Baptiste Sallée
Biogeosciences, 22, 1947–1968, https://doi.org/10.5194/bg-22-1947-2025, https://doi.org/10.5194/bg-22-1947-2025, 2025
Short summary
Short summary
In summer 2022, a CARbon Interface OCean Atmosphere (CARIOCA) drifting buoy observed an anomalously strong ocean carbon sink in the subpolar Southern Ocean associated with large plumes of chlorophyll a. Lagrangian backward trajectories indicate that these waters originated from the sea ice edge in spring 2021. Our study highlights the northward migration of the CO2 sink associated with early sea ice retreat.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 17, 1075–1100, https://doi.org/10.5194/essd-17-1075-2025, https://doi.org/10.5194/essd-17-1075-2025, 2025
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones, and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and includes the quality flag for each sample.
Clovis Thouvenin-Masson, Jacqueline Boutin, Vincent Échevin, Alban Lazar, and Jean-Luc Vergely
Ocean Sci., 20, 1547–1566, https://doi.org/10.5194/os-20-1547-2024, https://doi.org/10.5194/os-20-1547-2024, 2024
Short summary
Short summary
We focus on understanding the impact of river runoff and precipitation on sea surface salinity (SSS) in the eastern North Tropical Atlantic (e-NTA) region off northwestern Africa. By analyzing regional simulations and observational data, we find that river flows significantly influence SSS variability, particularly after the rainy season. Our findings underscore that a main source of uncertainty representing SSS variability in this region is from river runoff estimates.
Michael Hemming, Moninya Roughan, and Amandine Schaeffer
Earth Syst. Sci. Data, 16, 887–901, https://doi.org/10.5194/essd-16-887-2024, https://doi.org/10.5194/essd-16-887-2024, 2024
Short summary
Short summary
We present new datasets that are useful for exploring extreme ocean temperature events in Australian coastal waters. These datasets span multiple decades, starting from the 1940s and 1950s, and include observations from the surface to the bottom at four coastal sites. The datasets provide valuable insights into the intensity, frequency and timing of extreme warm and cold temperature events and include event characteristics such as duration, onset and decline rates and their categorisation.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Michael P. Hemming, Moninya Roughan, Neil Malan, and Amandine Schaeffer
Ocean Sci., 19, 1145–1162, https://doi.org/10.5194/os-19-1145-2023, https://doi.org/10.5194/os-19-1145-2023, 2023
Short summary
Short summary
We estimate subsurface linear and non-linear temperature trends at five coastal sites adjacent to the East Australian Current (EAC). We see accelerating trends at both 34.1 and 42.6 °S and place our results in the context of previously reported trends, highlighting that magnitudes are depth-dependent and vary across latitude. Our results indicate the important role of regional dynamics and show the necessity of subsurface data for the improved understanding of regional climate change impacts.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Michael P. Hemming, Jan Kaiser, Jacqueline Boutin, Liliane Merlivat, Karen J. Heywood, Dorothee C. E. Bakker, Gareth A. Lee, Marcos Cobas García, David Antoine, and Kiminori Shitashima
Ocean Sci., 18, 1245–1262, https://doi.org/10.5194/os-18-1245-2022, https://doi.org/10.5194/os-18-1245-2022, 2022
Short summary
Short summary
An underwater glider mission was carried out in spring 2016 near a mooring in the northwestern Mediterranean Sea. The glider deployment served as a test of a prototype ion-sensitive field-effect transistor pH sensor. Mean net community production rates were estimated from glider and buoy measurements of dissolved oxygen and inorganic carbon concentrations before and during the spring bloom. Incorporating advection is important for accurate mass budgets. Unexpected metabolic quotients were found.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Monica Miranda Mugica, Christina Day, Brandon McHale, Kay Louis McGuinness, Gareth Lee, Daisy Pickup, and Nathan Scott Lawrence
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-126, https://doi.org/10.5194/os-2021-126, 2022
Revised manuscript not accepted
Short summary
Short summary
ANB Sensors has developed a novel solid-state technology for monitoring the pH of estuarine environments. It was shown to respond effectively to pH in laboratory environments where the pH of the sea water solution was manipulated by injections of CO2. Field tests were conducted in an estuarine environment close to Oban, Scotland. The sensor was validated against a sampled solution and the data highlighted the efficiency of the sensor to monitor the tidal variations of pH.
Paula Maria Salgado-Hernanz, Aurore Regaudie-de-Gioux, David Antoine, and Gotzon Basterretxea
Biogeosciences, 19, 47–69, https://doi.org/10.5194/bg-19-47-2022, https://doi.org/10.5194/bg-19-47-2022, 2022
Short summary
Short summary
For the first time, this study presents the characteristics of primary production in coastal regions of the Mediterranean Sea based on satellite-borne observations for the period 2002–2016. The study concludes that there are significant spatial and temporal variations among different regions. Quantifying primary production is of special importance in the marine food web and in the sequestration of carbon dioxide from the atmosphere to the deep waters.
Paolo Lazzari, Stefano Salon, Elena Terzić, Watson W. Gregg, Fabrizio D'Ortenzio, Vincenzo Vellucci, Emanuele Organelli, and David Antoine
Ocean Sci., 17, 675–697, https://doi.org/10.5194/os-17-675-2021, https://doi.org/10.5194/os-17-675-2021, 2021
Short summary
Short summary
Multispectral optical sensors and models are increasingly adopted to study marine systems. In this work, bio-optical mooring and biogeochemical Argo float optical observations are combined with the Ocean-Atmosphere Spectral Irradiance Model (OASIM) to analyse the variability of sunlight at the sea surface. We show that the model skill in simulating data varies according to the wavelength of light and temporal scale considered and that it is significantly affected by cloud dynamics.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Anastasiia Tarasenko, Alexandre Supply, Nikita Kusse-Tiuz, Vladimir Ivanov, Mikhail Makhotin, Jean Tournadre, Bertrand Chapron, Jacqueline Boutin, Nicolas Kolodziejczyk, and Gilles Reverdin
Ocean Sci., 17, 221–247, https://doi.org/10.5194/os-17-221-2021, https://doi.org/10.5194/os-17-221-2021, 2021
Short summary
Short summary
Data from the ARKTIKA-2018 expedition and new satellite data help us to follow rapid changes in the upper layer of the Laptev and East Siberian seas (LS, ESS) in summer 2018. With satellite-derived surface temperature, an improved SMOS salinity, and wind, we study how the fresh river water is mixed with cold sea water and ice-melted water at small time and spatial scales. The wind pushes fresh water northward and northeastward, close to and under the ice, forcing it into the deep Arctic Ocean.
Cited articles
Álvarez, M., Sanleón-Bartolomé, H., Tanhua, T., Mintrop,
L., Luchetta, A., Cantoni, C., Schroeder, K., and Civitarese, G.: The CO2
system in the Mediterranean Sea: a basin wide perspective, Ocean Sci., 10,
69–92, https://doi.org/10.5194/os-10-69-2014, 2014.
Andersen, V. and Prieur, L.: One-month study in the open NW Mediterranean
Sea (DYNAPROC experiment, May 1995): Overview of hydrobiogeochemical
structures and effects of wind events, Deep-Sea Res. Pt. I, 47, 397–422, 2000.
Antoine, D., Guevel, P., Desté, J.-F., Bécu, G., Louis, F., Scott, A. J.,
and Bardey, P.: The “BOUSSOLE” buoy; a new transparent-to-swell taut
mooring dedicated to marine optics: design, tests and performance at sea,
J. Atmos. Ocean. Technol., 25, 968–989, 2008a.
Antoine, D., d'Ortenzio, F., Hooker, S. B., Bécu, G., Gentili, B.,
Tailliez, D., and Scott, A. J.: Assessment of uncertainty in the ocean
reflectance determined by three satellite ocean color sensors (MERIS,
SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE
project), J. Geophys. Res., 113, CO7013, https://doi.org/10.1029/2007JC004472, 2008b.
Antoine, D. M., Chami, H., Claustre, F., D'Ortenzio, A., Morel, G., Bécu, B.,
Gentili, F., Louis, J., Ras, E., Roussier, A. J., Scott, D., Tailliez, S. B.,
Hooker, P., Guevel, J.-F., Desté, C., Dempsey, C., and Adams, D.: BOUSSOLE: a joint CNRS-INSU, ESA, CNES and NASA Ocean Color Calibration and
Validation Activity, NASA Technical memorandum, no. TM-2006-214147,
NASA/GSFC, Greenbelt, USA, National Aeronautics and Space Administration, Washington, DC 20546-0001, 2006.
Begovic, M. and Copin-Montegut, C.: Processes controlling annual variations
in the partial pressure of fCO2 in surface waters of the central
northwestern Mediterranean sea (Dyfamed site), Deep-Sea Res. Pt. II, 49,
2031–2047, 2002.
Behrenfeld, M. and Boss, E.: Resurrecting the ecological underpinnings of
ocean plankton blooms, Ann. Rev. Mar. Sci., 6, 167–194,
https://doi.org/10.1146/annurev-marine-052913-021325, 2014.
Behrenfeld, M. J.: Abandoning Sverdrup's critical depth hypothesis on
phytoplankton blooms, Ecology, 91, 977–989, 2010.
Boutin, J. and Merlivat, L.: New in situ estimates of carbon biological production rates in the Southern Ocean from CARIOCA drifter measurements, Geophys. Res. Lett., 36, L13608, https://doi.org/10.1029/2009GL038307, 2009.
Brainerd, K. E. and Gregg, M. C.: Surface mixed and mixing layer depths.
Deep-Sea Res. Pt. I, 42, 1521–1543, 1995.
Brody, S. and Lozier, M.: Changes in dominant mixing length scale as a driver
of phytoplankton bloom initiation in the North Atlantic, Geophys.
Res. Lett., 41, 3197–3206, 2014.
Brody, S. R. and Lozier, M. S.: Characterizing upper-ocean mixing and its
effect on the spring phytoplankton bloom with in situ data, ICES J.
Mar. Sci., 72, 1961–1970, 2015.
Chiswell, S. M.: Annual cycles and spring blooms in phytoplankton: don't
abandon Sverdrup completely, Mar. Ecol. Prog. Ser., 443, 39–50,
2011.
Copin-Montégut, C. and Begovic, M.: Distributions of carbonate properties
and oxygen along the water column (0–2000 m) in the central part of the NW
Mediterranean Sea (Dyfamed site), Influence of winter vertical mixing on
air–sea CO2 and O2 exchanges, Deep-Sea Res. Pt. 2,
49, 2049–2066, 2002.
Copin-Montégut, C., Bégovic, M., and Merlivat, L.: Variability of the
partial pressure of CO2 on diel to annual time scales in the Northwestern
Mediterranean Sea, Mar. Chem., 85, 169–189, 2004.
Coppola, L., Legendre, L., Lefevre, D., Prieur, L., Taillandier, V., and
Riquier, E. D.:
Seasonal and inter–annual variations of dissolved oxygen in the
northwestern Mediterranean Sea (DYFAMED site), Prog. Oceanogr.,
2018.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium
constants for the dissociation of carbonic acid in seawater media, Deep-Sea
Res. Pt. A, 34, 1733–1743 1987.
Enriquez, R. M. and Taylor, J. R: Numerical simulations of the competition
between wind-driven mixing and surface heating in triggering spring
phytoplankton blooms, ICES J. Mar. Sci. J. Cons., fsv071, 2015.
Globcolour ESA consortium: https://www.globcolour.info, Globcolour [data set], https://hermes.acri.fr/, last access: 18 July 2022.
Golbol, M., Vellucci, V., and Antoine, D.: BOUSSOLE, https://doi.org/10.18142/1, 2000.
Hemming, M. P., Kaiser, J., Heywood, K. J., Bakker, D. C. E., Boutin, J., Shitashima, K., Lee, G., Legge, O., and Onken, R.: Measuring pH variability using an experimental sensor on an underwater glider, Ocean Sci., 13, 427–442, https://doi.org/10.5194/os-13-427-2017, 2017.
Holte, J. and Talley, L.: A new algorithm for finding mixed layer depths
with applications to Argo data and Subantarctic Mode Water formation,
J. Atmos. Ocean. Technol., 26, 1920–1939, 2009.
Hood, E. M. and Merlivat, L.: Annual and interannual variations of fCO2 in
the northwestern Mediterranean Sea: Results from hourly measurements made by
CARIOCA buoys, 1995–1997, J. Mar. Res., 59, 113–131, 2001.
Kaiser, J. and Hemming, M. P.: Deployment of UEA Seaglider sg537 (“Fin”) near the Boussole time series site (Mediterranean Sea) with pH p(CO2) ISFET sensor testing, March–April 2016. NERC EDS British Oceanographic Data Centre NOC, https://doi.org/10.5285/e686816f-8bdd-4782-e053-6c86abc07adc, 2022.
Lacour, L., Briggs, N., Claustre, H., Ardyna, M., and Dall'Olmo, G.: The
intraseasonal dynamics of the mixed layer pump in the subpolar North
Atlantic Ocean: A Biogeochemical-Argo float approach, Global Biogeochem.
Cy., 33, 266–281, 2019.
Lee, Z., Weidemann, A., Kindle, J., Arnone, R., Carder, K. L., and Davis,
C.: Euphotic
zone depth: Its derivation and implication to ocean-color remote sensing,
J. Geophys. Res.-Ocean., 112, https://doi.org/10.1029/2006JC003802, 2007.
Mahadevan, A., D'asaro, E., Lee, C., and Perry, M. J. : Eddy-driven
stratification initiates North Atlantic spring phytoplankton blooms,
Science, 337, 54–58, 2012.
Marty, J.-C. and Chiavérini, J.: Seasonal and interannual variations in
phytoplankton
production at DYFAMED time-series station, northwestern Mediterranean Sea,
Deep-Sea Res. Pt. II, 49, 2017–2030, 2002.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M.:
Measurement of the apparent dissociation constants of carbonic acid in
seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, 1973.
Merlivat, L. and Boutin, J.: Mediterranean Sea surface CO2
partial pressure and temperature data, SEANOE [data set], https://doi.org/10.17882/56709, 2022.
Merlivat, L. and Brault, P.: CARIOCA BUOY, Carbon Dioxide Monitor, Sea
Technol., 10, 23–30, 1995.
Merlivat, L., Boutin, J., and Antoine, D.: Roles of biological and
physical processes in driving seasonal air–sea CO2 flux in the Southern
Ocean: New insights from CARIOCA pCO2, J. Mar. Syst., 147,
9–20, 2015.
Merlivat, L., Boutin, J., Antoine, D., Beaumont, L., Golbol, M., and Vellucci, V.: Increase of dissolved inorganic carbon and decrease in pH in near-surface waters in the Mediterranean Sea during the past two decades, Biogeosciences, 15, 5653–5662, https://doi.org/10.5194/bg-15-5653-2018, 2018.
Millot: Circulation in the Western Mediterranean Sea, J. Mar.
Syst., 20, 423–442, 1999.
Morel, A. and Berthon, J. F.: Surface pigments, algal biomass profiles,
and potential production of the euphotic layer: relationships reinvestigated
in review of remote-sensing applications, Limnol. Oceanogr., 34, 1545–1562,
1989.
Niewiadomska, K., Claustre, H., Prieur, L., and d'Ortenzio,
F.: Submesoscale physical-biogeochemical coupling across the
Ligurian current (northwestern Mediterranean) using a bio-optical glider,
Limnol. Oceanogr., 53, 2210–2225, https://doi.org/10.4319/lo.2008.53.5_part_2.2210, 2008.
Papaioannou, G., Papanikolaou, N., and Retalis, D.: Relationships of
photosynthetically active radiation and shortwave irradiance, Theor.
Appl. Climatol., 48, 23–27, 1993.
Pasqueron de Fommervault, O., Migon, C., D'Ortenzio, F., Ribera
d'Alcalà, M., and Coppola, L.: Temporal variability of nutrient
concentrations in the northwestern Mediterranean sea (DYFAMED time-series
station), Deep-Sea Res. Pt. I, 100, 1–12, 2015.
Pellichero, V., Boutin, J., Claustre, H., Merlivat, L., Sallée, J.-B.,
and Blain, S.: Relaxation of wind stress drives the abrupt onset of
biological carbon uptake in the Kerguelen bloom: a multisensor approach,
Geophys. Res. Lett., 47, e2019GL085992,
https://doi.org/10.1029/2019GL085992, 2020.
Rödenbeck, C., Keeling, R. F., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., and Heimann, M.: Global surface-ocean pCO2 and sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme, Ocean Sci., 9, 193–216, https://doi.org/10.5194/os-9-193-2013, 2013.
Rumyantseva, A., Henson, S., Martin, A., Thompson, A. F., Damerell, G. M., Kaiser,
J., and Heywood, K. J.: Phytoplankton spring bloom initiation: The impact of
atmospheric forcing and light in the temperate North Atlantic Ocean,
Prog. Oceanogr., 178, 102202,
https://doi.org/10.1016/j.pocean.2019.102202, 2019.
Siegel, D. A., Doney, S. C., and Yoder, J. A.: The North Atlantic
spring phytoplankton bloom and Sverdrup's critical depth hypothesis,
Science, 296, 730–733, 2022.
Sverdrup, H. U.: On vernal blooming of phytoplankton, Conseil Exp. Mer, 18,
287–295, 1953.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Kortzinger, A., Steinhoff, T., Hoppema, M.,
Olafsson, J., Arnarson, T. S., Tillbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2 and net sea-air
CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577, 2009.
Taylor, J. R. and Ferrari, R.: Shutdown of turbulent convection as a new
criterion for the onset
of spring phytoplankton blooms, Limnol. Oceanogr., 56,
2293–2307, 2011.
Venables, H. and Moore, C. M.: Phytoplankton and light limitation in the
Southern Ocean: Learning from high nutrient, high chlorophyll areas, J. Geophys. Res.-Ocean., 115, https://doi.org/10.1029/2009JC005361, 2010.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Method., 12, 351–362, 2014.
Weiss, R.: Carbon dioxide in water and seawater: the solubility of a
non-ideal gas, Mar. Chem., 2, 203–215, 1974
Short summary
We use in situ high-temporal-resolution measurements of dissolved inorganic carbon and atmospheric parameters at the air–sea interface to analyse phytoplankton bloom initiation identified as the net rate of biological carbon uptake in the Mediterranean Sea. The shift from wind-driven to buoyancy-driven mixing creates conditions for blooms to begin. Active mixing at the air–sea interface leads to the onset of the surface phytoplankton bloom due to the relaxation of wind speed following storms.
We use in situ high-temporal-resolution measurements of dissolved inorganic carbon and...
Altmetrics
Final-revised paper
Preprint