Research article
30 Sep 2022
Research article
| 30 Sep 2022
Trace gas fluxes from tidal salt marsh soils: implications for carbon–sulfur biogeochemistry
Margaret Capooci and Rodrigo Vargas
Related authors
No articles found.
Daphne Armas, Mario Guevara, Fernando Bezares, Rodrigo Vargas, Pilar Durante, Víctor Osorio, Wilmer Jiménez, and Cecilio Oyonarte
Earth Syst. Sci. Data, 15, 431–445, https://doi.org/10.5194/essd-15-431-2023, https://doi.org/10.5194/essd-15-431-2023, 2023
Short summary
Short summary
The global need for updated soil datasets has increased. Our main objective was to synthesize and harmonize soil profile information collected by two different projects in Ecuador between 2009 and 2015.The main result was the development of the Harmonized Soil Database of Ecuador (HESD) that includes information from 13 542 soil profiles with over 51 713 measured soil horizons, including 92 different edaphic variables, and follows international standards for archiving and sharing soil data.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-231, https://doi.org/10.5194/bg-2022-231, 2022
Preprint under review for BG
Short summary
Short summary
In the semiarid grassland, increase of soil moisture at shallow depths instantly enhance carbon release by respiration. In contrast, deeper soil water controls carbon uptake by vegetation but with a delay of several days. Previous soil conditions, biological activity and the size and timing of precipitation are important factors determining the amount of carbon released into the atmosphere. Thus, future changes in precipitation pattern could convert ecosystems from sinks to sources of carbon.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Mario Guevara, Michela Taufer, and Rodrigo Vargas
Earth Syst. Sci. Data, 13, 1711–1735, https://doi.org/10.5194/essd-13-1711-2021, https://doi.org/10.5194/essd-13-1711-2021, 2021
Short summary
Short summary
Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a machine learning approach to increase the spatial resolution of satellite-derived soil moisture information. The outcome is a dataset of gap-free global mean annual soil moisture predictions and associated uncertainty for 28 years (1991–2018) across 15 km grids. This dataset has higher agreement with in situ soil moisture and precipitation measurements. Results show a decline of global annual soil moisture.
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci., 21, 879–892, https://doi.org/10.5194/nhess-21-879-2021, https://doi.org/10.5194/nhess-21-879-2021, 2021
Short summary
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that we used satellite data from the European Space Agency from 2009 to 2015. We found an overall soil moisture decline of −0.5 % yr−1 at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system and develop strategies for drought risk reduction and soil moisture conservation.
Jinshi Jian, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, Jason Manzon, Rebecca Marchesi, Darlin Paredes, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, https://doi.org/10.5194/essd-13-255-2021, 2021
Short summary
Short summary
Field soil-to-atmosphere CO2 flux (soil respiration, Rs) observations were compiled into a global database (SRDB) a decade ago. Here, we restructured and updated the database to the fifth version, SRDB-V5, with data published through 2017 included. SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field Rs measurements, and it provides opportunities for the scientific community to better understand the spatial and temporal variability of Rs.
Mario Guevara, Michela Taufer, and Rodrigo Vargas
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-191, https://doi.org/10.5194/essd-2019-191, 2019
Revised manuscript not accepted
Mario Guevara, Guillermo Federico Olmedo, Emma Stell, Yusuf Yigini, Yameli Aguilar Duarte, Carlos Arellano Hernández, Gloria E. Arévalo, Carlos Eduardo Arroyo-Cruz, Adriana Bolivar, Sally Bunning, Nelson Bustamante Cañas, Carlos Omar Cruz-Gaistardo, Fabian Davila, Martin Dell Acqua, Arnulfo Encina, Hernán Figueredo Tacona, Fernando Fontes, José Antonio Hernández Herrera, Alejandro Roberto Ibelles Navarro, Veronica Loayza, Alexandra M. Manueles, Fernando Mendoza Jara, Carolina Olivera, Rodrigo Osorio Hermosilla, Gonzalo Pereira, Pablo Prieto, Iván Alexis Ramos, Juan Carlos Rey Brina, Rafael Rivera, Javier Rodríguez-Rodríguez, Ronald Roopnarine, Albán Rosales Ibarra, Kenset Amaury Rosales Riveiro, Guillermo Andrés Schulz, Adrian Spence, Gustavo M. Vasques, Ronald R. Vargas, and Rodrigo Vargas
SOIL, 4, 173–193, https://doi.org/10.5194/soil-4-173-2018, https://doi.org/10.5194/soil-4-173-2018, 2018
Short summary
Short summary
We provide a reproducible multi-modeling approach for SOC mapping across Latin America on a country-specific basis as required by the Global Soil Partnership of the United Nations. We identify key prediction factors for SOC across each country. We compare and test different methods to generate spatially explicit predictions of SOC and conclude that there is no best method on a quantifiable basis.
A. W. King, R. J. Andres, K. J. Davis, M. Hafer, D. J. Hayes, D. N. Huntzinger, B. de Jong, W. A. Kurz, A. D. McGuire, R. Vargas, Y. Wei, T. O. West, and C. W. Woodall
Biogeosciences, 12, 399–414, https://doi.org/10.5194/bg-12-399-2015, https://doi.org/10.5194/bg-12-399-2015, 2015
P. C. Stoy, M. C. Dietze, A. D. Richardson, R. Vargas, A. G. Barr, R. S. Anderson, M. A. Arain, I. T. Baker, T. A. Black, J. M. Chen, R. B. Cook, C. M. Gough, R. F. Grant, D. Y. Hollinger, R. C. Izaurralde, C. J. Kucharik, P. Lafleur, B. E. Law, S. Liu, E. Lokupitiya, Y. Luo, J. W. Munger, C. Peng, B. Poulter, D. T. Price, D. M. Ricciuto, W. J. Riley, A. K. Sahoo, K. Schaefer, C. R. Schwalm, H. Tian, H. Verbeeck, and E. Weng
Biogeosciences, 10, 6893–6909, https://doi.org/10.5194/bg-10-6893-2013, https://doi.org/10.5194/bg-10-6893-2013, 2013
Related subject area
Biogeochemistry: Greenhouse Gases
Carbon emission and export from the Ket River, western Siberia
Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations
Greenhouse gas fluxes in mangrove forest soil in an Amazon estuary
Temporal patterns and drivers of CO2 emission from dry sediments in a groyne field of a large river
Effects of water table level and nitrogen deposition on methane and nitrous oxide emissions in an alpine peatland
Highest methane concentrations in an Arctic river linked to local terrestrial inputs
Seasonal study of the small-scale variability in dissolved methane in the western Kiel Bight (Baltic Sea) during the European heatwave in 2018
Spatial and temporal variation in δ13C values of methane emitted from a hemiboreal mire: methanogenesis, methanotrophy, and hysteresis
Intercomparison of methods to estimate gross primary production based on CO2 and COS flux measurements
Lateral carbon export has low impact on the net ecosystem carbon balance of a polygonal tundra catchment
The effect of static chamber base on N2O flux in drip irrigation
Controls on autotrophic and heterotrophic respiration in an ombrotrophic bog
Episodic N2O emissions following tillage of a legume–grass cover crop mixture
Variation in CO2 and CH4 fluxes among land cover types in heterogeneous Arctic tundra in northeastern Siberia
Response of vegetation and carbon fluxes to brown lemming herbivory in northern Alaska
Sources of nitrous oxide and the fate of mineral nitrogen in subarctic permafrost peat soils
Data-based estimates of interannual sea–air CO2 flux variations 1957–2020 and their relation to environmental drivers
Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion
Excess soil moisture and fresh carbon input are prerequisites for methane production in podzolic soil
Meteorological responses of carbon dioxide and methane fluxes in the terrestrial and aquatic ecosystems of a subarctic landscape
Low biodegradability of particulate organic carbon mobilized from thaw slumps on the Peel Plateau, NT, and possible chemosynthesis and sorption effects
Grazing enhances carbon cycling but reduces methane emission during peak growing season in the Siberian Pleistocene Park tundra site
Ideas and perspectives: Enhancing research and monitoring of carbon pools and land-to-atmosphere greenhouse gases exchange in developing countries
Ignoring carbon emissions from thermokarst ponds results in overestimation of tundra net carbon uptake
Quantification of potential methane emissions associated with organic matter amendments following oxic-soil inundation
Assessing the spatial and temporal variability of greenhouse gas emissions from different configurations of on-site wastewater treatment system using discrete and continuous gas flux measurement
Dimethylated sulfur compounds in the Peruvian upwelling system
Partitioning carbon sources between wetland and well-drained ecosystems to a tropical first-order stream – implications for carbon cycling at the watershed scale (Nyong, Cameroon)
Extreme events driving year-to-year differences in gross primary productivity across the US
Methane gas emissions from savanna fires: what analysis of local burning regimes in a working West African landscape tell us
Methane in Zackenberg Valley, NE Greenland: multidecadal growing season fluxes of a high-Arctic tundra
Field-scale CH4 emission at a subarctic mire with heterogeneous permafrost thaw status
Evaluation of denitrification and decomposition from three biogeochemical models using laboratory measurements of N2, N2O and CO2
Temporal trends in methane emissions from a small eutrophic reservoir: the key role of a spring burst
Greenhouse gases emissions from riparian wetlands: an example from the Inner Mongolia grassland region in China
Variability of North Atlantic CO2 fluxes for the 2000–2017 period estimated from atmospheric inverse analyses
Effects of clear-fell harvesting on soil CO2, CH4, and N2O fluxes in an upland Sitka spruce stand in England
Conventional subsoil irrigation techniques do not lower carbon emissions from drained peat meadows
Different responses of ecosystem CO2 and N2O emissions and CH4 uptake to seasonally asymmetric warming in an alpine grassland of the Tianshan
The role of termite CH4 emissions on the ecosystem scale: a case study in the Amazon rainforest
Biogeochemical and plant trait mechanisms drive enhanced methane emissions in response to whole-ecosystem warming
A decade of dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) measurements in the southwestern Baltic Sea
Methane dynamics in three different Siberian water bodies under winter and summer conditions
Topography-based statistical modelling reveals high spatial variability and seasonal emission patches in forest floor methane flux
Technical note: CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO2 in fresh water
Comparison of greenhouse gas fluxes from tropical forests and oil palm plantations on mineral soil
Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration?
Intraseasonal variability of greenhouse gas emission factors from biomass burning in the Brazilian Cerrado
Evaluating stream CO2 outgassing via drifting and anchored flux chambers in a controlled flume experiment
Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022, https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Short summary
In order to quantify C transport and emission and main environmental factors controlling the C cycle in Siberian rivers, we investigated the largest tributary of the Ob River, the Ket River basin, by measuring spatial and seasonal variations in carbon CO2 and CH4 concentrations and emissions together with hydrochemical analyses. The obtained results are useful for large-scale modeling of C emission and export fluxes from permafrost-free boreal rivers of an underrepresented region of the world.
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022, https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Short summary
Wetlands are the largest natural source of methane, one of the most important climate gases. The JULES land surface model simulates these emissions. We use satellite data to evaluate how well JULES reproduces the methane seasonal cycle over different tropical wetlands. It performs well for most regions; however, it struggles for some African wetlands influenced heavily by river flooding. We explain the reasons for these deficiencies and highlight how future development will improve these areas.
Saúl Edgardo Martínez Castellón, José Henrique Cattanio, José Francisco Berrêdo, Marcelo Rollnic, Maria de Lourdes Ruivo, and Carlos Noriega
Biogeosciences, 19, 5483–5497, https://doi.org/10.5194/bg-19-5483-2022, https://doi.org/10.5194/bg-19-5483-2022, 2022
Short summary
Short summary
We seek to understand the influence of climatic seasonality and microtopography on CO2 and CH4 fluxes in an Amazonian mangrove. Topography and seasonality had a contrasting influence when comparing the two gas fluxes: CO2 fluxes were greater in high topography in the dry period, and CH4 fluxes were greater in the rainy season in low topography. Only CO2 fluxes were correlated with soil organic matter, the proportion of carbon and nitrogen, and redox potential.
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022, https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Wantong Zhang, Zhengyi Hu, Joachim Audet, Thomas A. Davidson, Enze Kang, Xiaoming Kang, Yong Li, Xiaodong Zhang, and Jinzhi Wang
Biogeosciences, 19, 5187–5197, https://doi.org/10.5194/bg-19-5187-2022, https://doi.org/10.5194/bg-19-5187-2022, 2022
Short summary
Short summary
This work focused on the CH4 and N2O emissions from alpine peatlands in response to the interactive effects of altered water table levels and increased nitrogen deposition. Across the 2-year mesocosm experiment, nitrogen deposition showed nonlinear effects on CH4 emissions and linear effects on N2O emissions, and these N effects were associated with the water table levels. Our results imply the future scenario of strengthened CH4 and N2O emissions from an alpine peatland.
Karel Castro-Morales, Anna Canning, Sophie Arzberger, Will A. Overholt, Kirsten Küsel, Olaf Kolle, Mathias Göckede, Nikita Zimov, and Arne Körtzinger
Biogeosciences, 19, 5059–5077, https://doi.org/10.5194/bg-19-5059-2022, https://doi.org/10.5194/bg-19-5059-2022, 2022
Short summary
Short summary
Permafrost thaw releases methane that can be emitted into the atmosphere or transported by Arctic rivers. Methane measurements are lacking in large Arctic river regions. In the Kolyma River (northeast Siberia), we measured dissolved methane to map its distribution with great spatial detail. The river’s edge and river junctions had the highest methane concentrations compared to other river areas. Microbial communities in the river showed that the river’s methane likely is from the adjacent land.
Sonja Gindorf, Hermann W. Bange, Dennis Booge, and Annette Kock
Biogeosciences, 19, 4993–5006, https://doi.org/10.5194/bg-19-4993-2022, https://doi.org/10.5194/bg-19-4993-2022, 2022
Short summary
Short summary
Methane is a climate-relevant greenhouse gas which is emitted to the atmosphere from coastal areas such as the Baltic Sea. We measured the methane concentration in the water column of the western Kiel Bight. Methane concentrations were higher in September than in June. We found no relationship between the 2018 European heatwave and methane concentrations. Our results show that the methane distribution in the water column is strongly affected by temporal and spatial variabilities.
Janne Rinne, Patryk Łakomiec, Patrik Vestin, Joel D. White, Per Weslien, Julia Kelly, Natascha Kljun, Lena Ström, and Leif Klemedtsson
Biogeosciences, 19, 4331–4349, https://doi.org/10.5194/bg-19-4331-2022, https://doi.org/10.5194/bg-19-4331-2022, 2022
Short summary
Short summary
The study uses the stable isotope 13C of carbon in methane to investigate the origins of spatial and temporal variation in methane emitted by a temperate wetland ecosystem. The results indicate that methane production is more important for spatial variation than methane consumption by micro-organisms. Temporal variation on a seasonal timescale is most likely affected by more than one driver simultaneously.
Kukka-Maaria Kohonen, Roderick Dewar, Gianluca Tramontana, Aleksanteri Mauranen, Pasi Kolari, Linda M. J. Kooijmans, Dario Papale, Timo Vesala, and Ivan Mammarella
Biogeosciences, 19, 4067–4088, https://doi.org/10.5194/bg-19-4067-2022, https://doi.org/10.5194/bg-19-4067-2022, 2022
Short summary
Short summary
Four different methods for quantifying photosynthesis (GPP) at ecosystem scale were tested, of which two are based on carbon dioxide (CO2) and two on carbonyl sulfide (COS) flux measurements. CO2-based methods are traditional partitioning, and a new method uses machine learning. We introduce a novel method for calculating GPP from COS fluxes, with potentially better applicability than the former methods. Both COS-based methods gave on average higher GPP estimates than the CO2-based estimates.
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
Shahar Baram, Asher Bar-Tal, Alon Gal, Shmulik P. Friedman, and David Russo
Biogeosciences, 19, 3699–3711, https://doi.org/10.5194/bg-19-3699-2022, https://doi.org/10.5194/bg-19-3699-2022, 2022
Short summary
Short summary
Static chambers are the most common tool used to measure greenhouse gas (GHG) fluxes. We tested the impact of such chambers on nitrous oxide emissions in drip irrigation. Field measurements and 3-D simulations show that the chamber base drastically affects the water and nutrient distribution in the soil and hence the measured GHG fluxes. A nomogram is suggested to determine the optimal diameter of a cylindrical chamber that ensures minimal disturbance.
Tracy E. Rankin, Nigel T. Roulet, and Tim R. Moore
Biogeosciences, 19, 3285–3303, https://doi.org/10.5194/bg-19-3285-2022, https://doi.org/10.5194/bg-19-3285-2022, 2022
Short summary
Short summary
Peatland respiration is made up of plant and peat sources. How to separate these sources is not well known as peat respiration is not straightforward and is more influenced by vegetation dynamics than previously thought. Results of plot level measurements from shrubs and sparse grasses in a woody bog show that plants' respiration response to changes in climate is related to their different root structures, implying a difference in the mechanisms by which they obtain water resources.
Alison Bressler and Jennifer Blesh
Biogeosciences, 19, 3169–3184, https://doi.org/10.5194/bg-19-3169-2022, https://doi.org/10.5194/bg-19-3169-2022, 2022
Short summary
Short summary
Our field experiment tested if a mixture of a nitrogen-fixing legume and non-legume cover crop could reduce nitrous oxide (N2O) emissions following tillage, compared to the legume grown alone. We found higher N2O following both legume treatments, compared to those without, and lower emissions from the cover crop mixture at one of the two test sites, suggesting that interactions between cover crop types and soil quality influence N2O emissions.
Sari Juutinen, Mika Aurela, Juha-Pekka Tuovinen, Viktor Ivakhov, Maiju Linkosalmi, Aleksi Räsänen, Tarmo Virtanen, Juha Mikola, Johanna Nyman, Emmi Vähä, Marina Loskutova, Alexander Makshtas, and Tuomas Laurila
Biogeosciences, 19, 3151–3167, https://doi.org/10.5194/bg-19-3151-2022, https://doi.org/10.5194/bg-19-3151-2022, 2022
Short summary
Short summary
We measured CO2 and CH4 fluxes in heterogenous Arctic tundra in eastern Siberia. We found that tundra wetlands with sedge and grass vegetation contributed disproportionately to the landscape's ecosystem CO2 uptake and CH4 emissions to the atmosphere. Moreover, we observed high CH4 consumption in dry tundra, particularly in barren areas, offsetting part of the CH4 emissions from the wetlands.
Jessica Plein, Rulon W. Clark, Kyle A. Arndt, Walter C. Oechel, Douglas Stow, and Donatella Zona
Biogeosciences, 19, 2779–2794, https://doi.org/10.5194/bg-19-2779-2022, https://doi.org/10.5194/bg-19-2779-2022, 2022
Short summary
Short summary
Tundra vegetation and the carbon balance of Arctic ecosystems can be substantially impacted by herbivory. We tested how herbivory by brown lemmings in individual enclosure plots have impacted carbon exchange of tundra ecosystems via altering carbon dioxide (CO2) and methane (CH4) fluxes. Lemmings significantly decreased net CO2 uptake while not affecting CH4 emissions. There was no significant difference in the subsequent growing season due to recovery of the vegetation.
Jenie Gil, Maija E. Marushchak, Tobias Rütting, Elizabeth M. Baggs, Tibisay Pérez, Alexander Novakovskiy, Tatiana Trubnikova, Dmitry Kaverin, Pertti J. Martikainen, and Christina Biasi
Biogeosciences, 19, 2683–2698, https://doi.org/10.5194/bg-19-2683-2022, https://doi.org/10.5194/bg-19-2683-2022, 2022
Short summary
Short summary
N2O emissions from permafrost soils represent up to 11.6 % of total N2O emissions from natural soils, and their contribution to the global N2O budget will likely increase due to climate change. A better understanding of N2O production from permafrost soil is needed to evaluate the role of arctic ecosystems in the global N2O budget. By studying microbial N2O production processes in N2O hotspots in permafrost peatlands, we identified denitrification as the dominant source of N2O in these surfaces.
Christian Rödenbeck, Tim DeVries, Judith Hauck, Corinne Le Quéré, and Ralph F. Keeling
Biogeosciences, 19, 2627–2652, https://doi.org/10.5194/bg-19-2627-2022, https://doi.org/10.5194/bg-19-2627-2022, 2022
Short summary
Short summary
The ocean is an important part of the global carbon cycle, taking up about a quarter of the anthropogenic CO2 emitted by burning of fossil fuels and thus slowing down climate change. However, the CO2 uptake by the ocean is, in turn, affected by variability and trends in climate. Here we use carbon measurements in the surface ocean to quantify the response of the oceanic CO2 exchange to environmental conditions and discuss possible mechanisms underlying this response.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Mika Korkiakoski, Tiia Määttä, Krista Peltoniemi, Timo Penttilä, and Annalea Lohila
Biogeosciences, 19, 2025–2041, https://doi.org/10.5194/bg-19-2025-2022, https://doi.org/10.5194/bg-19-2025-2022, 2022
Short summary
Short summary
We measured CH4 fluxes and production and oxidation potentials from irrigated and non-irrigated podzolic soil in a boreal forest. CH4 sink was smaller at the irrigated site but did not cause CH4 emission, with one exception. We also showed that under laboratory conditions, not only wet conditions, but also fresh carbon, are needed to make podzolic soil into a CH4 source. Our study provides important data for improving the process models describing the upland soil CH4 dynamics.
Lauri Heiskanen, Juha-Pekka Tuovinen, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Henriikka Vekuri, Annalea Lohila, Juha Mikola, and Mika Aurela
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-69, https://doi.org/10.5194/bg-2022-69, 2022
Revised manuscript accepted for BG
Short summary
Short summary
We measured and modelled the CO2 and CH4 fluxes of the terrestrial and aquatic ecosystems of the subarctic landscape for two years. The landscape was an annual CO2 sink and a CH4 source. The forest had the largest contribution to the landscape-level CO2 sink and the peatland to the CH4 emissions. The lakes released 20 % of the annual net C uptake of the landscape back to the atmosphere. The C fluxes were affected most by the rainy peak growing season of 2017 and the drought event in July 2018.
Sarah Shakil, Suzanne E. Tank, Jorien E. Vonk, and Scott Zolkos
Biogeosciences, 19, 1871–1890, https://doi.org/10.5194/bg-19-1871-2022, https://doi.org/10.5194/bg-19-1871-2022, 2022
Short summary
Short summary
Permafrost thaw-driven landslides in the western Arctic are increasing organic carbon delivered to headwaters of drainage networks in the western Canadian Arctic by orders of magnitude. Through a series of laboratory experiments, we show that less than 10 % of this organic carbon is likely to be mineralized to greenhouse gases during transport in these networks. Rather most of the organic carbon is likely destined for burial and sequestration for centuries to millennia.
Wolfgang Fischer, Christoph K. Thomas, Nikita Zimov, and Mathias Göckede
Biogeosciences, 19, 1611–1633, https://doi.org/10.5194/bg-19-1611-2022, https://doi.org/10.5194/bg-19-1611-2022, 2022
Short summary
Short summary
Arctic permafrost ecosystems may release large amounts of carbon under warmer future climates and may therefore accelerate global climate change. Our study investigated how long-term grazing by large animals influenced ecosystem characteristics and carbon budgets at a Siberian permafrost site. Our results demonstrate that such management can contribute to stabilizing ecosystems to keep carbon in the ground, particularly through drying soils and reducing methane emissions.
Dong-Gill Kim, Ben Bond-Lamberty, Youngryel Ryu, Bumsuk Seo, and Dario Papale
Biogeosciences, 19, 1435–1450, https://doi.org/10.5194/bg-19-1435-2022, https://doi.org/10.5194/bg-19-1435-2022, 2022
Short summary
Short summary
As carbon (C) and greenhouse gas (GHG) research has adopted appropriate technology and approach (AT&A), low-cost instruments, open-source software, and participatory research and their results were well accepted by scientific communities. In terms of cost, feasibility, and performance, the integration of low-cost and low-technology, participatory and networking-based research approaches can be AT&A for enhancing C and GHG research in developing countries.
Lutz Beckebanze, Zoé Rehder, David Holl, Christian Wille, Charlotta Mirbach, and Lars Kutzbach
Biogeosciences, 19, 1225–1244, https://doi.org/10.5194/bg-19-1225-2022, https://doi.org/10.5194/bg-19-1225-2022, 2022
Short summary
Short summary
Arctic permafrost landscapes feature many water bodies. In contrast to the terrestrial parts of the landscape, the water bodies release carbon to the atmosphere. We compare carbon dioxide and methane fluxes from small water bodies to the surrounding tundra and find not accounting for the carbon dioxide emissions leads to an overestimation of the tundra uptake by 11 %. Consequently, changes in hydrology and water body distribution may substantially impact the overall carbon budget of the Arctic.
Brian Scott, Andrew H. Baldwin, and Stephanie A. Yarwood
Biogeosciences, 19, 1151–1164, https://doi.org/10.5194/bg-19-1151-2022, https://doi.org/10.5194/bg-19-1151-2022, 2022
Short summary
Short summary
Carbon dioxide and methane contribute to global warming. What can we do? We can build wetlands: they store carbon dioxide and should cause global cooling. But when first built they produce excess methane. Eventually built wetlands will cause cooling, but it may take decades or even centuries. How we build wetlands matters. We show that a common practice, using organic matter, such as manure, can make a big difference whether or not the wetlands we build start global cooling within our lifetime.
Jan Knappe, Celia Somlai, and Laurence W. Gill
Biogeosciences, 19, 1067–1085, https://doi.org/10.5194/bg-19-1067-2022, https://doi.org/10.5194/bg-19-1067-2022, 2022
Short summary
Short summary
Two domestic on-site wastewater treatment systems have been monitored for greenhouse gas (carbon dioxide, methane and nitrous oxide) emissions coming from the process units, soil and vent pipes. This has enabled the net greenhouse gas per person to be quantified for the first time, as well as the impact of pre-treatment on the effluent before being discharged to soil. These decentralised wastewater treatment systems serve approx. 20 % of the population in both Europe and the United States.
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Moussa Moustapha, Loris Deirmendjian, David Sebag, Jean-Jacques Braun, Stéphane Audry, Henriette Ateba Bessa, Thierry Adatte, Carole Causserand, Ibrahima Adamou, Benjamin Ngounou Ngatcha, and Frédéric Guérin
Biogeosciences, 19, 137–163, https://doi.org/10.5194/bg-19-137-2022, https://doi.org/10.5194/bg-19-137-2022, 2022
Short summary
Short summary
We monitor the spatio-temporal variability of organic and inorganic carbon (C) species in the tropical Nyong River (Cameroon), across groundwater and increasing stream orders. We show the significant contribution of wetland as a C source for tropical rivers. Thus, ignoring the river–wetland connectivity might lead to the misrepresentation of C dynamics in tropical watersheds. Finally, total fluvial carbon losses might offset ~10 % of the net C sink estimated for the whole Nyong watershed.
Alexander J. Turner, Philipp Köhler, Troy S. Magney, Christian Frankenberg, Inez Fung, and Ronald C. Cohen
Biogeosciences, 18, 6579–6588, https://doi.org/10.5194/bg-18-6579-2021, https://doi.org/10.5194/bg-18-6579-2021, 2021
Short summary
Short summary
This work builds a high-resolution estimate (500 m) of gross primary productivity (GPP) over the US using satellite measurements of solar-induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI) between 2018 and 2020. We identify ecosystem-specific scaling factors for estimating gross primary productivity (GPP) from TROPOMI SIF. Extreme precipitation events drive four regional GPP anomalies that account for 28 % of year-to-year GPP differences across the US.
Paul Laris, Moussa Koné, Fadiala Dembélé, Christine M. Rodrigue, Lilian Yang, Rebecca Jacobs, and Quincy Laris
Biogeosciences, 18, 6229–6244, https://doi.org/10.5194/bg-18-6229-2021, https://doi.org/10.5194/bg-18-6229-2021, 2021
Short summary
Short summary
Savanna fires play a key role in the global carbon cycle because they release methane. Although it burns the most, there are few studies from West Africa. We conducted 36 experimental fires according to local practice to collect smoke samples. We found that fires set early in the season had higher methane emissions than those set later, and head fires had double the emissions of backfires. We conclude policies to reduce emissions will not have the desired effects if fire type is not considered.
Johan H. Scheller, Mikhail Mastepanov, Hanne H. Christiansen, and Torben R. Christensen
Biogeosciences, 18, 6093–6114, https://doi.org/10.5194/bg-18-6093-2021, https://doi.org/10.5194/bg-18-6093-2021, 2021
Short summary
Short summary
Our study presents a time series of methane emissions in a high-Arctic-tundra landscape over 14 summers, which shows large variations between years. The methane emissions from the valley are expected to more than double in the late 21st century. This warming increases permafrost thaw, which could increase surface erosion in the valley. Increased erosion could offset some of the rise in methane fluxes from the valley, but this would require large-scale impacts on vegetated surfaces.
Patryk Łakomiec, Jutta Holst, Thomas Friborg, Patrick Crill, Niklas Rakos, Natascha Kljun, Per-Ola Olsson, Lars Eklundh, Andreas Persson, and Janne Rinne
Biogeosciences, 18, 5811–5830, https://doi.org/10.5194/bg-18-5811-2021, https://doi.org/10.5194/bg-18-5811-2021, 2021
Short summary
Short summary
Methane emission from the subarctic mire with heterogeneous permafrost status was measured for the years 2014–2016. Lower methane emission was measured from the palsa mire sector while the thawing wet sector emitted more. Both sectors have a similar annual pattern with a gentle rise during spring and a decrease during autumn. The highest emission was observed in the late summer. Winter emissions were positive during the measurement period and have a significant impact on the annual budgets.
Balázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, Mohammad Ibrahim Khalil, Simone Merl, Andreas Rode, Bianca Ziehmer, Amanda Matson, and Hongxing He
Biogeosciences, 18, 5681–5697, https://doi.org/10.5194/bg-18-5681-2021, https://doi.org/10.5194/bg-18-5681-2021, 2021
Short summary
Short summary
To assure quality predictions biogeochemical models must be current. We use data measured using novel incubation methods to test the denitrification sub-modules of three models. We aim to identify limitations in the denitrification modeling to inform next steps for development. Several areas are identified, most urgently improved denitrification control parameters and further testing with high-temporal-resolution datasets. Addressing these would significantly improve denitrification modeling.
Sarah Waldo, Jake J. Beaulieu, William Barnett, D. Adam Balz, Michael J. Vanni, Tanner Williamson, and John T. Walker
Biogeosciences, 18, 5291–5311, https://doi.org/10.5194/bg-18-5291-2021, https://doi.org/10.5194/bg-18-5291-2021, 2021
Short summary
Short summary
Human-made reservoirs impact the carbon cycle. In particular, the breakdown of organic matter in reservoir sediments can result in large emissions of greenhouse gases (especially methane) to the atmosphere. This study takes an intensive look at the patterns in greenhouse gas emissions from a single reservoir in Ohio (United States) and the role of water temperature, precipitation, and algal blooms in emissions. We saw a "spring burst" of elevated emissions that challenged our assumptions.
Xinyu Liu, Xixi Lu, Ruihong Yu, Heyang Sun, Hao Xue, Zhen Qi, Zhengxu Cao, Zhuangzhuang Zhang, and Tingxi Liu
Biogeosciences, 18, 4855–4872, https://doi.org/10.5194/bg-18-4855-2021, https://doi.org/10.5194/bg-18-4855-2021, 2021
Short summary
Short summary
Gradual riparian wetland drying is increasingly sensitive to global warming and contributes to climate change. We analyzed the emissions of CO2, CH4, and N2O from riparian wetlands in the Xilin River basin to understand the role of these ecosystems in greenhouse gas emissions. Our study showed that anthropogenic activities have extensively changed the hydrological characteristics of the riparian wetlands and might accelerate carbon loss, which could further affect greenhouse gas emissions.
Zhaohui Chen, Parvadha Suntharalingam, Andrew J. Watson, Ute Schuster, Jiang Zhu, and Ning Zeng
Biogeosciences, 18, 4549–4570, https://doi.org/10.5194/bg-18-4549-2021, https://doi.org/10.5194/bg-18-4549-2021, 2021
Short summary
Short summary
As the global temperature continues to increase, carbon dioxide (CO2) is a major driver of this global warming. The increased CO2 is mainly caused by emissions from fossil fuel use and land use. At the same time, the ocean is a significant sink in the carbon cycle. The North Atlantic is a critical ocean region in reducing CO2 concentration. We estimate the CO2 uptake in this region based on a carbon inverse system and atmospheric CO2 observations.
Sirwan Yamulki, Jack Forster, Georgios Xenakis, Adam Ash, Jacqui Brunt, Mike Perks, and James I. L. Morison
Biogeosciences, 18, 4227–4241, https://doi.org/10.5194/bg-18-4227-2021, https://doi.org/10.5194/bg-18-4227-2021, 2021
Short summary
Short summary
The effect of clear-felling on soil greenhouse gas (GHG) fluxes was assessed in a Sitka spruce forest. Measurements over 4 years showed that CO2, CH4, and N2O fluxes responded differently to clear-felling due to significant changes in soil biotic and abiotic factors and showed large variations between years. Over 3 years since felling, the soil GHG flux was reduced by 45% due to a much larger reduction in CO2 efflux than increases in N2O (up to 20%) and CH4 (changed from sink to source) fluxes.
Stefan Theodorus Johannes Weideveld, Weier Liu, Merit van den Berg, Leon Peter Maria Lamers, and Christian Fritz
Biogeosciences, 18, 3881–3902, https://doi.org/10.5194/bg-18-3881-2021, https://doi.org/10.5194/bg-18-3881-2021, 2021
Short summary
Short summary
Raising the groundwater table (GWT) trough subsoil irrigation does not lead to a reduction of carbon emissions from drained peat meadows, even though there was a clear increase in the GWT during summer. Most likely, the largest part of the peat oxidation takes place in the top 70 cm of the soil, which stays above the GWT with the use of subsoil irrigation. We conclude that the use of subsoil irrigation is ineffective as a mitigation measure to sufficiently lower peat oxidation rates.
Yanming Gong, Ping Yue, Kaihui Li, Anwar Mohammat, and Yanyan Liu
Biogeosciences, 18, 3529–3537, https://doi.org/10.5194/bg-18-3529-2021, https://doi.org/10.5194/bg-18-3529-2021, 2021
Short summary
Short summary
At present, data on the influence of asymmetric warming on the GHG flux on a temporal scale are scarce. GHG fluxes were measured using static chambers and a gas chromatograph. Our study showed that the effect of seasonally asymmetrical warming on CO2 flux was obvious, with the GHG flux being able to adapt to continuous warming. Warming in the non-growing season increased the temperature dependence of GHG flux.
Hella van Asperen, João Rafael Alves-Oliveira, Thorsten Warneke, Bruce Forsberg, Alessandro Carioca de Araújo, and Justus Notholt
Biogeosciences, 18, 2609–2625, https://doi.org/10.5194/bg-18-2609-2021, https://doi.org/10.5194/bg-18-2609-2021, 2021
Short summary
Short summary
Termites are insects that are highly abundant in tropical ecosystems. It is known that termites emit CH4, an important greenhouse gas, but their absolute emission remains uncertain. In the Amazon rainforest, we measured CH4 emissions from termite nests and groups of termites. In addition, we tested a fast and non-destructive field method to estimate termite nest colony size. We found that termites play a significant role in an ecosystem's CH4 budget and probably emit more than currently assumed.
Genevieve L. Noyce and J. Patrick Megonigal
Biogeosciences, 18, 2449–2463, https://doi.org/10.5194/bg-18-2449-2021, https://doi.org/10.5194/bg-18-2449-2021, 2021
Short summary
Short summary
Methane (CH4) is a potent greenhouse gas that contributes to global radiative forcing. A mechanistic understanding of how wetland CH4 cycling will respond to global warming is crucial for improving prognostic models. We present results from the first 4 years of a novel whole-ecosystem warming experiment in a coastal wetland, showing that warming increases CH4 emissions and identifying four potential mechanisms that can be added to future modeling efforts.
Yanan Zhao, Cathleen Schlundt, Dennis Booge, and Hermann W. Bange
Biogeosciences, 18, 2161–2179, https://doi.org/10.5194/bg-18-2161-2021, https://doi.org/10.5194/bg-18-2161-2021, 2021
Short summary
Short summary
We present a unique and comprehensive time-series study of biogenic sulfur compounds in the southwestern Baltic Sea, from 2009 to 2018. Dimethyl sulfide is one of the key players regulating global climate change, as well as dimethylsulfoniopropionate and dimethyl sulfoxide. Their decadal trends did not follow increasing temperature but followed some algae group abundances at the Boknis Eck Time Series Station.
Ingeborg Bussmann, Irina Fedorova, Bennet Juhls, Pier Paul Overduin, and Matthias Winkel
Biogeosciences, 18, 2047–2061, https://doi.org/10.5194/bg-18-2047-2021, https://doi.org/10.5194/bg-18-2047-2021, 2021
Short summary
Short summary
Arctic rivers, lakes, and bays are affected by a warming climate. We measured the amount and consumption of methane in waters from Siberia under ice cover and in open water. In the lake, methane concentrations under ice cover were much higher than in summer, and methane consumption was highest. The ice cover leads to higher methane concentration under ice. In a warmer Arctic, there will be more time with open water when methane is consumed by bacteria, and less methane will escape into the air.
Elisa Vainio, Olli Peltola, Ville Kasurinen, Antti-Jussi Kieloaho, Eeva-Stiina Tuittila, and Mari Pihlatie
Biogeosciences, 18, 2003–2025, https://doi.org/10.5194/bg-18-2003-2021, https://doi.org/10.5194/bg-18-2003-2021, 2021
Short summary
Short summary
We studied forest floor methane exchange over an area of 10 ha in a boreal pine forest. The results demonstrate high spatial variability in soil moisture and consequently in the methane flux. We detected wet patches emitting high amounts of methane in the early summer; however, these patches turned to methane uptake in the autumn. We concluded that the small-scale spatial variability of the boreal forest methane flux highlights the importance of soil chamber placement in similar studies.
Matthias Koschorreck, Yves T. Prairie, Jihyeon Kim, and Rafael Marcé
Biogeosciences, 18, 1619–1627, https://doi.org/10.5194/bg-18-1619-2021, https://doi.org/10.5194/bg-18-1619-2021, 2021
Short summary
Short summary
The concentration of carbon dioxide (CO2) in water samples is often measured using a gas chromatograph. Depending on the chemical composition of the water, this method can produce wrong results. We quantified the possible error and how it depends on water composition and the analytical procedure. We propose a method to correct wrong results by additionally analysing alkalinity in the samples. We provide an easily usable computer code to perform the correction calculations.
Julia Drewer, Melissa M. Leduning, Robert I. Griffiths, Tim Goodall, Peter E. Levy, Nicholas Cowan, Edward Comynn-Platt, Garry Hayman, Justin Sentian, Noreen Majalap, and Ute M. Skiba
Biogeosciences, 18, 1559–1575, https://doi.org/10.5194/bg-18-1559-2021, https://doi.org/10.5194/bg-18-1559-2021, 2021
Short summary
Short summary
In Southeast Asia, oil palm plantations have largely replaced tropical forests. The impact of this shift in land use on greenhouse gas fluxes and soil microbial communities remains uncertain. We have found emission rates of the potent greenhouse gas nitrous oxide on mineral soil to be higher from oil palm plantations than logged forest over a 2-year study and concluded that emissions have increased over the last 42 years in Sabah, with the proportion of emissions from plantations increasing.
Lutz Merbold, Charlotte Decock, Werner Eugster, Kathrin Fuchs, Benjamin Wolf, Nina Buchmann, and Lukas Hörtnagl
Biogeosciences, 18, 1481–1498, https://doi.org/10.5194/bg-18-1481-2021, https://doi.org/10.5194/bg-18-1481-2021, 2021
Short summary
Short summary
Our study investigated the exchange of the three major greenhouse gases (GHGs) over a temperate grassland prior to and after restoration through tillage in central Switzerland. Our results show that irregular management events, such as tillage, have considerable effects on GHG emissions in the year of tillage while leading to enhanced carbon uptake and similar nitrogen losses via nitrous oxide in the years following tillage to those observed prior to tillage.
Roland Vernooij, Marcos Giongo, Marco Assis Borges, Máximo Menezes Costa, Ana Carolina Sena Barradas, and Guido R. van der Werf
Biogeosciences, 18, 1375–1393, https://doi.org/10.5194/bg-18-1375-2021, https://doi.org/10.5194/bg-18-1375-2021, 2021
Short summary
Short summary
We used drones to measure greenhouse gas emission factors from fires in the Brazilian Cerrado. We compared early-dry-season management fires and late-dry-season fires to determine if fire management can be a tool for abating emissions.
Although we found some evidence of increased CO and CH4 emission factors, the seasonal effect was smaller than that found in previous studies. For N2O, the third most important greenhouse gas, we found opposite trends in grass- and shrub-dominated areas.
Filippo Vingiani, Nicola Durighetto, Marcus Klaus, Jakob Schelker, Thierry Labasque, and Gianluca Botter
Biogeosciences, 18, 1223–1240, https://doi.org/10.5194/bg-18-1223-2021, https://doi.org/10.5194/bg-18-1223-2021, 2021
Short summary
Short summary
Flexible foil chamber design and the anchored deployment might be useful techniques to enhance the robustness and the accuracy of CO2 measurements in low-order streams. Moreover, the study demonstrates the value of analytical and numerical techniques for the estimation of gas exchange velocities. These results may contribute to the development of novel procedures for chamber data analysis which might improve the robustness and reliability of chamber-based CO2 measurements in first-order streams.
Lauri Heiskanen, Juha-Pekka Tuovinen, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Timo Penttilä, Maiju Linkosalmi, Juha Mikola, Tuomas Laurila, and Mika Aurela
Biogeosciences, 18, 873–896, https://doi.org/10.5194/bg-18-873-2021, https://doi.org/10.5194/bg-18-873-2021, 2021
Short summary
Short summary
We studied ecosystem- and plant-community-level carbon (C) exchange between subarctic mire and the atmosphere during 2017–2018. We found strong spatial variation in CO2 and CH4 dynamics between the main plant communities. The earlier onset of growing season in 2018 strengthened the CO2 sink of the ecosystem, but this gain was counterbalanced by a later drought period. Variation in water table level, soil temperature and vegetation explained most of the variation in ecosystem-level C exchange.
Cited articles
Al-Haj, A. N. and Fulweiler, R. W.: A synthesis of methane emissions from
shallow vegetated coastal ecosystems, Glob. Change Biol., 26, 2988–3005,
https://doi.org/10.1111/gcb.15046, 2020.
Andreae, M. O. and Jaeschke, W. A.: Exchange of sulfur between biosphere and
atmosphere over temperate and tropical regions, in: Sulfur Cycling on the
Continents, edited by: Howarth, R. W., Stewart, J. W. B., and Ivanov, M. V.,
Wiley, New York, John Wiley & Sons,
ISBN: 0-471-93153-5, 1992.
Bahlmann, E., Weinberg, I., Lavrič, J. V., Eckhardt, T., Michaelis, W., Santos, R., and Seifert, R.: Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal), Biogeosciences, 12, 1683–1696, https://doi.org/10.5194/bg-12-1683-2015, 2015.
Barba, J., Cueva, A., Bahn, M., Barron-Gafford, G. A., Bond-Lamberty, B.,
Hanson, P. J., Jaimes, A., Kulmala, L., Pumpanen, J., Scott, R. L.,
Wohlfahrt, G., and Vargas, R.: Comparing ecosystem and soil respiration:
Review and key challenges of tower-based and soil measurements, Agr. Forest
Meteorol., 249, 434–443, https://doi.org/10.1016/j.agrformet.2017.10.028,
2018.
Barbier, E., Hacker, S., Kennedy, C., Stier, A., and Silliman, B.: The value
of estuarine and coastal ecosystem services, Ecol. Monogr., 81, 169–193,
2011.
Bartlett, K. B., Harriss, R. C., and Sebacher, D. I.: Methane Flux from
Coastal Salt Marshes, J. Geophys. Res., 90, 5710–5720, 1985.
Bauza, J. F., Morell, J. M., and Corredor, J. E.: Biogeochemistry of nitrous
oxide production in the red mangrove (Rhizophora mangle) forest sediments,
Estuar. Coast. Shelf Sci., 55, 697–704,
https://doi.org/10.1006/ecss.2001.0913, 2002.
Bridgham, S. D. and Richardson, C. J.: Mechanisms controlling soil
respiration (CO2 and CH4) in southern peatlands, Soil Biol. Biochem., 24,
1089–1099, https://doi.org/10.1016/0038-0717(92)90058-6, 1992.
Brimblecombe, P.: The Global Sulfur Cycle, in: Treatise on Geochemistry, vol. 10, edited by: Holland, H. D. and Turekian, K. K., Elsevier Science, 559–591, https://doi.org/10.1016/B978-0-08-095975-7.00814-7, 2014.
Brühl, C., Lelieveld, J., Crutzen, P. J., and Tost, H.: The role of
carbonyl sulphide as a source of stratospheric sulphate aerosol and its
impact on climate, Atmos. Chem. Phys., 12, 1239–1253,
https://doi.org/10.5194/acp-12-1239-2012, 2012.
Capone, D. G. and Kiene, R. P.: Comparison of microbial dynamics in marine
and freshwater sediment, Limnol. Ocean., 33, 725–749, 1988.
Capooci, M. and Vargas, R.: Diel and seasonal patterns of soil CO2 efflux in
a temperate tidal marsh, Sci. Total Environ., 802, 149715,
https://doi.org/10.1016/j.scitotenv.2021.149715, 2022a.
Capooci, M. and Vargas, R.: Data of Trace gas fluxes from tidal salt marsh soils (CO2, CH4, N2O, CS2 and DMS), figshare, [data set], https://doi.org/10.6084/m9.figshare.20449131, 2022b.
Capooci, M., Barba, J., Seyfferth, A. L., and Vargas, R.: Experimental
influence of storm-surge salinity on soil greenhouse gas emissions from a
tidal salt marsh, Sci. Total Environ., 686, 1164–1172,
https://doi.org/10.1016/j.scitotenv.2019.06.032, 2019.
Carroll, M. A., Heidt, L. E., Cicerone, R. J., and Prinn, R. G.: OCS, H2S,
and CS2 fluxes from a salt water marsh, J. Atmos. Chem., 4, 375–395,
https://doi.org/10.1007/BF00053811, 1986.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326,
655–661, https://doi.org/10.1038/326655a0, 1987.
Cheng, X., Peng, R., Chen, J., Luo, Y., Zhang, Q., An, S., Chen, J., and Li,
B.: CH4 and N2O emissions from Spartina alterniflora and Phragmites
australis in experimental mesocosms, Chemosphere, 68, 420–427,
https://doi.org/10.1016/J.CHEMOSPHERE.2007.01.004, 2007.
Cooper, D. J., De Mello, W. Z., Cooper, W. J., Zika, R. G., Saltzman, E. S.,
Prospero, J. M., and Savoie, D. L.: Short-term variability in biogenic
sulphur emissions from a Florida Spartina alterniflora marsh, Atmos.
Environ., 21, 7–12, 1987a.
Cooper, W. J., Cooper, D. J., Saltzman, E. S., Mello, W. Z. d., Savoie, D.
L., Zika, R. G., and Prospero, J. M.: Emissions of biogenic sulphur
compounds from several wetland soils in Florida, Atmos. Environ., 21,
1491–1495, https://doi.org/10.1016/0004-6981(87)90311-8, 1987b.
Dacey, J. W. H., King, G. M., and Wakeham, S. G.: Factors controlling
emission of dimethylsulphide from salt marshes, Nature, 330, 643–645,
https://doi.org/10.1038/330643a0, 1987.
DeLaune, R. D., Devai, I., and Lindau, C. W.: Flux of reduced sulfur gases
along a salinity gradient in Louisiana coastal marshes, Estuar. Coast. Shelf
Sci., 54, 1003–1011, https://doi.org/10.1006/ecss.2001.0871, 2002.
De Mello, W. Z., Cooper, D. J., Cooper, W. J., Saltzman, E. S., Zika, R. G.,
Savoie, D. L., and Prospero, J. M.: Spatial and diel variability in the
emissions of some biogenic sulfur compounds from a Florida Spartina alterniflora coastal zone, Atmos. Environ., 21, 987–990,
https://doi.org/10.1016/0004-6981(87)90095-3, 1987.
Diefenderfer, H. L., Cullinan, V. I., Borde, A. B., Gunn, C. M., and Thom,
R. M.: High-frequency greenhouse gas flux measurement system detects winter
storm surge effects on salt marsh, Glob. Change Biol., 24, 5961–5971,
https://doi.org/10.1111/gcb.14430, 2018.
DNREC: Delaware National Esturaine Research Reserve Estuarine Profile, 158 pp., 1999.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Emery, H. E. and Fulweiler, R. W.: Spartina alterniflora and invasive
Phragmites australis stands have similar greenhouse gas emissions in a New
England marsh, Aquat. Bot., 116, 83–92,
https://doi.org/10.1016/j.aquabot.2014.01.010, 2014.
Emmer, I., Needelman, B., Emmett-Mattox, S., Crooks, S., Beers, L.,
Megonigal, P., Myers, D., Oreska, M., McGlathery, K., and Shoch, D.:
Methodology for Tidal Wetland and Seagrass Restoration, 1–115, 2021.
Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Folker, M.,
Richardson, A. D., and Tomelleri, E.: phenopix: Process Digital Images of a
Vegetation Cover, R Packag, version 2.4.2, 2020.
Finster, K., King, G. M., Bak, F., and Finster, K.: Formation of
methylmercaptan and dimethylsulfide from methoxylated aromatic compounds in
anoxic marine and fresh water sediments, FEMS Microbiol. Ecol., 74,
295–302, https://doi.org/10.1111/j.1574-6968.1990.tb04076.x, 1990.
Goldan, P. D., Kuster, W. C., Albritton, D. L., and Fehsenfeld, F. C.: The
measurement of natural sulfur emissions from soils and vegetation: Three
sites in the Eastern United States revisited, J. Atmos. Chem., 5, 439–467,
https://doi.org/10.1007/BF00113905, 1987.
Granville, K. E., Ooi, S. K., Koenig, L. E., Lawrence, B. A., Elphick, C.
S., and Helton, A. M.: Seasonal Patterns of Denitrification and N2O
Production in a Southern New England Salt Marsh, Wetlands, 41, 1–13,
https://doi.org/10.1007/s13157-021-01393-x, 2021.
Hill, A. C. and Vargas, R.: Methane and Carbon Dioxide Fluxes in a Temperate
Tidal Salt Marsh: Comparisons Between Plot and Ecosystem Measurements, J.
Geophys. Res.-Biogeo., 127, e2022JG006943,
https://doi.org/10.1029/2022JG006943, 2022.
Hill, A. C., Vázquez-Lule, A., and Vargas, R.: Linking vegetation
spectral reflectance with ecosystem carbon phenology in a temperate salt
marsh, Agr. Forest Meteorol., 307, 108481,
https://doi.org/10.1016/j.agrformet.2021.108481, 2021.
Hines, M. E.: Emissions of sulfur gases from wetlands, Internationale Vereinigung für Theoretische und Angewandte Limnologie, 25, 153–161,
https://doi.org/10.1080/05384680.1996.11904076, 1996.
Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M., and
Peichl, M.: Partitioning of the net CO2 exchange using an automated chamber
system reveals plant phenology as key control of production and respiration
fluxes in a boreal peatland, Glob. Change Biol., 24, 3436–3451,
https://doi.org/10.1111/gcb.14292, 2018.
Jha, C. S., Rodda, S. R., Thumaty, K. C., Raha, A. K., and Dadhwal, V. K.:
Eddy covariance based methane flux in Sundarbans mangroves, India, J. Earth
Syst. Sci., 123, 1089–1096, https://doi.org/10.1007/s12040-014-0451-y,
2014.
Jørgensen, B. B. and Okholm-Hansen, B.: Emissions of biogenic sulfur
gases from a danish estuary, Atmos. Environ., 19, 1737–1749,
https://doi.org/10.1016/0004-6981(85)90001-0, 1985.
Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L., and Martell, E.
A.: The Sulfur Cycle, Science, 175, 587–596,
https://doi.org/10.1016/S0074-6142(08)62696-0, 1972.
Kiene, R. P.: Dimethyl sulfide metabolism in salt marsh sediments, FEMS
Microbiol. Lett., 53, 71–78, https://doi.org/10.1016/0378-1097(88)90014-6,
1988.
Kiene, R. P. and Visscher, P. T.: Production and fate of methylated sulfur
mompounds from methionine and dimethylsulfoniopropionate in anoxic salt
marsh sediments, Appl. Environ. Microbiol., 53, 2426–2434, 1987.
Kim, J., Verma, S. B., Billesbach, D. P., and Clement, R. J.: Diel variation
in methane emission from a midlatitude prairie wetland: Significance of
convective throughflow in Phragmites australis, J. Geophys. Res.-Atmos.,
103, 28029–28039, https://doi.org/10.1029/98JD02441, 1998.
Koskinen, M., Minkkinen, K., Ojanen, P., Kämäräinen, M., Laurila, T., and Lohila, A.: Measurements of CO2 exchange with an automated chamber system throughout the year: challenges in measuring night-time respiration on porous peat soil, Biogeosciences, 11, 347–363, https://doi.org/10.5194/bg-11-347-2014, 2014.
Laursen, A. E. and Seitzinger, S. P.: Measurement of denitrification in
rivers: an integrated, whole reach approach, Hydrobiologia, 485, 67–81,
2002.
Lin, Y. S., Heuer, V. B., Ferdelman, T. G., and Hinrichs, K.-U.: Microbial conversion of inorganic carbon to dimethyl sulfide in anoxic lake sediment (Plußsee, Germany), Biogeosciences, 7, 2433–2444, https://doi.org/10.5194/bg-7-2433-2010, 2010.
Livesley, S. J. and Andrusiak, S. M.: Temperate mangrove and salt marsh
sediments are a small methane and nitrous oxide source but important carbon
store, Estuar. Coast. Shelf Sci., 97, 19–27,
https://doi.org/10.1016/j.ecss.2011.11.002, 2012.
Lomans, B. P., Van der Drift, C., Pol, A., and Op den Camp, H. J. M.:
Microbial cycling of volatile organic sulfur compounds, Water Sci. Technol.,
45, 55–60, https://doi.org/10.1007/s00018-002-8450-6, 2002.
Macreadie, P. I., Costa, M. D. P., Atwood, T. B., Friess, D. A., Kelleway,
J. J., Kennedy, H., Lovelock, C. E., Serrano, O., and Duarte, C. M.: Blue
carbon as a natural climate solution, Nat. Rev. Earth Environ., 2, 826–839,
https://doi.org/10.1038/s43017-021-00224-1, 2021.
McTigue, N. D., Walker, Q. A., and Currin, C. A.: Refining Estimates of
Greenhouse Gas Emissions From Salt Marsh “Blue Carbon” Erosion and
Decomposition, Front. Mar. Sci., 8, 1–13,
https://doi.org/10.3389/fmars.2021.661442, 2021.
Middelburg, J. J., Klaver, G., Nieuwenhuize, J., Wielemaker, A., de Hass,
W., Vlug, T., and van der Nat, J. F. W. A.: Organic matter mineral sediments
along an estuarine gradient, Mar. Ecol. Prog. Ser., 132, 157–168, 1996.
Moffett, K. B., Wolf, A., Berry, J. A., and Gorelick, S. M.: Salt
marsh-atmosphere exchange of energy, water vapor, and carbon dioxide:
Effects of tidal flooding and biophysical controls, Water Resour. Res.,
46,
https://doi.org/10.1029/2009WR009041, 2010.
Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., Van
Wesenbeeck, B. K., Wolters, G., Jensen, K., Bouma, T. J., Miranda-Lange, M.,
and Schimmels, S.: Wave attenuation over coastal salt marshes under storm
surge conditions, Nat. Geosci., 7, 727–731,
https://doi.org/10.1038/NGEO2251, 2014.
Moran, J. J., House, C. H., Vrentas, J. M., and Freeman, K. H.: Methyl
sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans, Appl. Environ. Microbiol., 74, 540–542,
https://doi.org/10.1128/AEM.01750-07, 2008.
Morrison, M. C. and Hines, M. E.: The variability of biogenic sulfur flux
from a temperate salt marsh on short time and space scales, Atmos. Environ.
Part A, 24, 1771–1779,
https://doi.org/10.1016/0960-1686(90)90509-L, 1990.
Moseman-Valtierra, S., Gonzalez, R., Kroeger, K. D., Tang, J., Chao, W. C.,
Crusius, J., Bratton, J., Green, A., and Shelton, J.: Short-term nitrogen
additions can shift a coastal wetland from a sink to a source of N2O, Atmos.
Environ., 45, 4390–4397, https://doi.org/10.1016/j.atmosenv.2011.05.046,
2011.
Moseman-Valtierra, S., Abdul-Aziz, O. I., Tang, J., Ishtiaq, K. S.,
Morkeski, K., Mora, J., Quinn, R. K., Martin, R. M., Egan, K., Brannon, E.
Q., Carey, J., and Kroeger, K. D.: Carbon dioxide fluxes reflect plant
zonation and belowground biomass in a coastal marsh, Ecosphere,
7, https://doi.org/10.1002/ecs2.1560, e01560, 2016.
Murray, R. H., Erler, D. V., and Eyre, B. D.: Nitrous oxide fluxes in
estuarine environments: response to global change, Glob. Change Biol., 21,
3219–3245, https://doi.org/10.1111/gcb.12923, 2015.
Neubauer, S. C. and Megonigal, J. P.: Correction to: Moving Beyond Global
Warming Potentials to Quantify the Climatic Role of Ecosystems, Ecosyst., 22, 1931–1932, https://doi.org/10.1007/S10021-019-00422-5, 2019.
NOAA National Estuarine Research Reserve System (NERRS): System-Wide Monitoring Progra, [data set], https://cdmo.baruch.sc.edu/, last access: 26 July 2021.
Oremland, R. S., Marsh, L. M., and Polcin, S.: Methane production and
simultaneous sulphate reduction in anoxic, salt marsh sediments, Nature,
296, 143–145, 1982.
Peterson, P. M., Romaschenko, K., Arrieta, Y. H., and Saarela, J. M.: A
molecular phylogeny and new subgeneric classification of Sporobolus
(Poaceae: Chloridoideae: Sporobolinae), Taxon, 63, 1212–1243,
https://doi.org/10.12705/636.19, 2014.
Petrakis, S., Seyfferth, A., Kan, J., Inamdar, S., and Vargas, R.: Influence
of experimental extreme water pulses on greenhouse gas emissions from soils,
Biogeochemistry, 133, 147–164, https://doi.org/10.1007/s10533-017-0320-2,
2017.
Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S., Tuovinen, J.
P., Tuittila, E. S., and Vesala, T.: Annual cycle of methane emission from a
boreal fen measured by the eddy covariance technique, Tellus B, 59, 449–457,
https://doi.org/10.1111/j.1600-0889.2007.00261.x, 2007.
Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H., and Eyre, B.
D.: Methane emissions partially offset “blue carbon” burial in mangroves,
Sci. Adv., 4, eaao4985, https://doi.org/10.1126/SCIADV.AAO4985, 2018.
Rosentreter, J. A., Al-Haj, A. N., Fulweiler, R. W., and Williamson, P.:
Methane and Nitrous Oxide Emissions Complicate Coastal Blue Carbon
Assessments, Global Biogeochem. Cy., 35, e2020GB006858,
https://doi.org/10.1029/2020GB006858, 2021.
Savage, K., Phillips, R., and Davidson, E.: High temporal frequency measurements of greenhouse gas emissions from soils, Biogeosciences, 11, 2709–2720, https://doi.org/10.5194/bg-11-2709-2014, 2014.
Sela-Adler, M., Said-Ahmad, W., Sivan, O., Eckert, W., Kiene, R. P., and
Amrani, A.: Isotopic evidence for the origin of dimethylsulfide and
dimethylsulfoniopropionate-like compounds in a warm, monomictic freshwater
lake, Environ. Chem., 13, 340–351,
https://doi.org/10.1071/EN15042, 2015.
Seyednasrollah, B., Young, A. M., Hufkens, K., Milliman, T., Friedl, M. A.,
Frolking, S., Richardson, A. D., Abraha, M., Allen, D. W., Apple, M., Arain,
M. A., Baker, J., Baker, J. M., Baldocchi, D., Bernacchi, C. J.,
Bhattacharjee, J., Blanken, P., Bosch, D. D., Boughton, R., Boughton, E. H.,
and Zona, D.: PhenoCam dataset v2.0: Vegetation phenology from digital
camera imagery, Oak Ridge, Tennessee, ORNL DAAC [data set],
https://doi.org/10.3334/ORNLDAAC/1674, 2019.
Seyfferth, A. L., Bothfeld, F., Vargas, R., Stuckey, J. W., Wang, J.,
Kearns, K., Michael, H. A., Guimond, J., Yu, X., and Sparks, D. L.: Spatial
and temporal heterogeneity of geochemical controls on carbon cycling in a
tidal salt marsh, Geochim. Cosmochim. Ac., 282, 1–18,
https://doi.org/10.1016/j.gca.2020.05.013, 2020.
Simpson, L. T., Osborne, T. Z., and Feller, I. C.: Wetland Soil CO2 Efflux
Along a Latitudinal Gradient of Spatial and Temporal Complexity, Estuar. Coast., 42, 45–54,
https://doi.org/10.1007/s12237-018-0442-3, 2019.
Steudler, P. A. and Peterson, B. J.: Contribution of gaseous sulphur from
salt marshes to the global sulphur cycle, Nature, 311, 455–457,
https://doi.org/10.1038/311455a0, 1984.
Steudler, P. A. and Peterson, B. J.: Annual cycle of gaseous sulfur
emissions from a New England Spartina alterniflora marsh, Atmos. Environ.,
19, 1411–1416, https://doi.org/10.1016/0004-6981(85)90278-1, 1985.
Taubman, S. J. and Kasting, J. F.: Carbonyl sulfide: No remedy for global
warming, Geophys. Res. Lett., 22, 803–805,
https://doi.org/10.1029/95GL00636, 1995.
Thomas, M. A., Suntharalingam, P., Pozzoli, L., Rast, S., Devasthale, A., Kloster, S., Feichter, J., and Lenton, T. M.: Quantification of DMS aerosol-cloud-climate interactions using the ECHAM5-HAMMOZ model in a current climate scenario, Atmos. Chem. Phys., 10, 7425–7438, https://doi.org/10.5194/acp-10-7425-2010, 2010.
Tong, C., Huang, J. F., Hu, Z. Q., and Jin, Y. F.: Diurnal Variations of
Carbon Dioxide, Methane, and Nitrous Oxide Vertical Fluxes in a Subtropical
Estuarine Marsh on Neap and Spring Tide Days, Estuar. Coast., 36, 633–642,
https://doi.org/10.1007/s12237-013-9596-1, 2013.
Tong, C., Morris, J. T., Huang, J., Xu, H., and Wan, S.: Changes in
pore-water chemistry and methane emission following the invasion of Spartina alterniflora into an oliogohaline marsh, Limnol. Oceanogr., 63, 384–396,
https://doi.org/10.1002/lno.10637, 2018.
Trifunovic, B., Vázquez-Lule, A., Capooci, M., Seyfferth, A. L., Moffat,
C., and Vargas, R.: Carbon Dioxide and Methane Emissions From Temperate Salt
Marsh Tidal Creek, J. Geophys. Res.-Biogeo., 125,
https://doi.org/10.1029/2019JG005558, 2020.
Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P.,
Hornibrook, E. R. C., Minkkinen, K., Moore, T. R., Myers-Smith, I. H.,
Nykanen, H., Olefeldt, D., Rinne, J., Saarnio, S., Shurpali, N., Tuittila,
E. S., Waddington, J. M., White, J. R., Wickland, K. P., and Wilmking, M.: A
synthesis of methane emissions from 71 northern, temperate, and subtropical
wetlands, Glob. Change Biol., 20, 2183–2197,
https://doi.org/10.1111/gcb.12580, 2014.
UNFCCC: Paris Agreement to the United Nations Framework Convention on Climate Change, Dec. 12, 2015, T.I.A.S. No. 16-1104, 2015.
Van Der Nat, F. and Middelburg, J. J.: Methane emission from tidal
freshwater marshes, Biogeochemistry, 49, 103–121, 2000.
Vargas, R., Carbone, M. S., Reichstein, M., and Baldocchi, D. D.: Frontiers
and challenges in soil respiration research: from measurements to model-data
integration, Biogeochemistry, 102, 1–13,
https://doi.org/10.1007/s10533-010-9462-1, 2011.
Vázquez-Lule, A. and Vargas, R.: Biophysical drivers of net ecosystem
and methane exchange across phenological phases in a tidal salt marsh,
Agr. Forest Meteorol., 300, 1–12, https://doi.org/10.1016/j.agrformet.2020.108309,
2021.
Wang, J. and Wang, J.: Spartina alterniflora alters ecosystem DMS and CH4
emissions and their relationship along interacting tidal and vegetation
gradients within a coastal salt marsh in Eastern China, Atmos. Environ.,
167, 346–359, https://doi.org/10.1016/J.ATMOSENV.2017.08.041, 2017.
Ward, N., Megonigal, P. J., Bond-Lamberty, B., Bailey, V., Butman, D.,
Canuel, E., Diefenderfer, H., Ganju, N. K., Goñi, M. A., Graham, E. B.,
Hopkinson, C. S., Khangaonkar, T., Langley, J. A., McDowell, N. G.,
Myers-Pigg, A. N., Neumann, R. B., Osburn, C. L., Price, R. M., Rowland, J.,
Sengupta, A., Simard, M., Thornton, P. E., Tzortziou, M., Vargas, R.,
Weisenhorn, P. B., and Windham-Myers, L.: Representing the Function and
Sensitivity of Coastal Interfaces in Earth System Models, Nat. Commun., 11, 2458,
https://doi.org/10.1038/s41467-020-16236-2, 2020.
Watts, S. F.: The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon
disulfide and hydrogen sulfide, Atmos. Environ., 34, 761–779,
https://doi.org/10.1016/S1352-2310(99)00342-8, 2000.
Whelan, M. E., Min, D. H., and Rhew, R. C.: Salt marsh vegetation as a
carbonyl sulfide (COS) source to the atmosphere, Atmos. Environ., 73,
131–137, https://doi.org/10.1016/J.ATMOSENV.2013.02.048, 2013.
Wilson, B. J., Mortazavi, B., and Kiene, R. P.: Spatial and temporal
variability in carbon dioxide and methane exchange at three coastal marshes
along a salinity gradient in a northern Gulf of Mexico estuary,
Biogeochemistry, 123, 329–347, https://doi.org/10.1007/s10533-015-0085-4,
2015.
Xie, H. and Moore, R. M.: Carbon disulfide in the North Atlantic and Pacific
Oceans, J. Geophys. Res.-Ocean., 104, 5393–5402,
https://doi.org/10.1029/1998jc900074, 1999.
Xie, X., Zhang, M.-Q., Zhao, B., and Guo, H.-Q.: Dependence of coastal wetland ecosystem respiration on temperature and tides: a temporal perspective, Biogeosciences, 11, 539–545, https://doi.org/10.5194/bg-11-539-2014, 2014.
Xu, X., Fu, G., Zou, X., Ge, C., and Zhao, Y.: Diurnal variations of carbon
dioxide, methane, and nitrous oxide fluxes from invasive Spartina alterniflora dominated coastal wetland in northern Jiangsu Province, Acta
Oceanol. Sin., 36, 105–113, https://doi.org/10.1007/s13131-017-1015-1,
2017.
Yang, W.-B. Bin, Yuan, C.-S. S., Tong, C., Yang, P., Yang, L., and Huang,
B.-Q. Q.: Diurnal variation of CO2, CH4, and N2O emission fluxes
continuously monitored in-situ in three environmental habitats in a
subtropical estuarine wetland, Mar. Pollut. Bull., 119, 289–298,
https://doi.org/10.1016/j.marpolbul.2017.04.005, 2017.
Yang, W.-B., Yuan, C.-S., Huang, B.-Q., Tong, C., and Yang, L.: Emission
Characteristics of Greenhouse Gases and Their Correlation with Water Quality
at an Estuarine Mangrove Ecosystem – the Application of an In-situ On-site
NDIR Monitoring Technique, Wetlands, 38, 723–738,
https://doi.org/10.1007/S13157-018-1015-8, 2018.
Yu, X., Ye, S., Olsson, L., Wei, M., Krauss, K. W., and Brix, H.: A 3-Year
In-Situ Measurement of CO2 Efflux in Coastal Wetlands: Understanding Carbon
Loss through Ecosystem Respiration and its Partitioning, Wetlands, 40, 551–563,
https://doi.org/10.1007/s13157-019-01197-0, 2019.
Yu, Z., Li, Y., Deng, H., Wang, D., Chen, Z., and Xu, S.: Effect of Scirpus mariqueter on nitrous oxide emissions from a subtropical monsoon estuarine
wetland, J. Geophys. Res.-Biogeo., 117, 2017,
https://doi.org/10.1029/2011JG001850, 2012.
Zhang, Y. and Ding, W.: Diel methane emissions in stands of Spartina alterniflora and Suaeda salsa from a coastal salt marsh, Aquat. Bot., 95,
262–267, https://doi.org/10.1016/j.aquabot.2011.08.005, 2011.
Zhang, Y., Wang, L., Xie, X., Huang, L., and Wu, Y.: Effects of invasion of
Spartina alterniflora and exogenous N deposition on N2O emissions in a
coastal salt marsh, Ecol. Eng., 58, 77–83,
https://doi.org/10.1016/j.ecoleng.2013.06.011, 2013.
Short summary
Tidal salt marsh soil emits greenhouse gases, as well as sulfur-based gases, which play roles in global climate but are not well studied as they are difficult to measure. Traditional methods of measuring these gases worked relatively well for carbon dioxide, but less so for methane, nitrous oxide, carbon disulfide, and dimethylsulfide. High variability of trace gases complicates the ability to accurately calculate gas budgets and new approaches are needed for monitoring protocols.
Tidal salt marsh soil emits greenhouse gases, as well as sulfur-based gases, which play roles in...
Altmetrics
Final-revised paper
Preprint