Articles | Volume 19, issue 19
https://doi.org/10.5194/bg-19-4655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Trace gas fluxes from tidal salt marsh soils: implications for carbon–sulfur biogeochemistry
Margaret Capooci
Department of Plant and Soil Science,
University of Delaware, 152 Townsend Hall,
531 South College Ave., Newark, DE, USA
Department of Plant and Soil Science,
University of Delaware, 152 Townsend Hall,
531 South College Ave., Newark, DE, USA
Related authors
No articles found.
Pilar Durante, Juan Miguel Requena-Mullor, Rodrigo Vargas, Mario Guevara, Domingo Alcaraz-Segura, and Cecilio Oyonarte
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-431, https://doi.org/10.5194/essd-2024-431, 2024
Manuscript not accepted for further review
Short summary
Short summary
Human activities have disrupted the global carbon cycle, increasing CO2 levels. Soils are the largest carbon stores on land, making it essential to understand how much carbon they hold to fight climate change. Our study improved estimates of soil carbon in peninsular Spain by integrating historical soil data and using machine-learning methods to create detailed maps of carbon content. These maps will help manage soil carbon better and support efforts to track carbon emissions globally.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
Daphne Armas, Mario Guevara, Fernando Bezares, Rodrigo Vargas, Pilar Durante, Víctor Osorio, Wilmer Jiménez, and Cecilio Oyonarte
Earth Syst. Sci. Data, 15, 431–445, https://doi.org/10.5194/essd-15-431-2023, https://doi.org/10.5194/essd-15-431-2023, 2023
Short summary
Short summary
The global need for updated soil datasets has increased. Our main objective was to synthesize and harmonize soil profile information collected by two different projects in Ecuador between 2009 and 2015.The main result was the development of the Harmonized Soil Database of Ecuador (HESD) that includes information from 13 542 soil profiles with over 51 713 measured soil horizons, including 92 different edaphic variables, and follows international standards for archiving and sharing soil data.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Mario Guevara, Michela Taufer, and Rodrigo Vargas
Earth Syst. Sci. Data, 13, 1711–1735, https://doi.org/10.5194/essd-13-1711-2021, https://doi.org/10.5194/essd-13-1711-2021, 2021
Short summary
Short summary
Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a machine learning approach to increase the spatial resolution of satellite-derived soil moisture information. The outcome is a dataset of gap-free global mean annual soil moisture predictions and associated uncertainty for 28 years (1991–2018) across 15 km grids. This dataset has higher agreement with in situ soil moisture and precipitation measurements. Results show a decline of global annual soil moisture.
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci., 21, 879–892, https://doi.org/10.5194/nhess-21-879-2021, https://doi.org/10.5194/nhess-21-879-2021, 2021
Short summary
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that we used satellite data from the European Space Agency from 2009 to 2015. We found an overall soil moisture decline of −0.5 % yr−1 at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system and develop strategies for drought risk reduction and soil moisture conservation.
Jinshi Jian, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, Jason Manzon, Rebecca Marchesi, Darlin Paredes, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, https://doi.org/10.5194/essd-13-255-2021, 2021
Short summary
Short summary
Field soil-to-atmosphere CO2 flux (soil respiration, Rs) observations were compiled into a global database (SRDB) a decade ago. Here, we restructured and updated the database to the fifth version, SRDB-V5, with data published through 2017 included. SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field Rs measurements, and it provides opportunities for the scientific community to better understand the spatial and temporal variability of Rs.
Cited articles
Al-Haj, A. N. and Fulweiler, R. W.: A synthesis of methane emissions from
shallow vegetated coastal ecosystems, Glob. Change Biol., 26, 2988–3005,
https://doi.org/10.1111/gcb.15046, 2020.
Andreae, M. O. and Jaeschke, W. A.: Exchange of sulfur between biosphere and
atmosphere over temperate and tropical regions, in: Sulfur Cycling on the
Continents, edited by: Howarth, R. W., Stewart, J. W. B., and Ivanov, M. V.,
Wiley, New York, John Wiley & Sons,
ISBN: 0-471-93153-5, 1992.
Bahlmann, E., Weinberg, I., Lavrič, J. V., Eckhardt, T., Michaelis, W., Santos, R., and Seifert, R.: Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal), Biogeosciences, 12, 1683–1696, https://doi.org/10.5194/bg-12-1683-2015, 2015.
Barba, J., Cueva, A., Bahn, M., Barron-Gafford, G. A., Bond-Lamberty, B.,
Hanson, P. J., Jaimes, A., Kulmala, L., Pumpanen, J., Scott, R. L.,
Wohlfahrt, G., and Vargas, R.: Comparing ecosystem and soil respiration:
Review and key challenges of tower-based and soil measurements, Agr. Forest
Meteorol., 249, 434–443, https://doi.org/10.1016/j.agrformet.2017.10.028,
2018.
Barbier, E., Hacker, S., Kennedy, C., Stier, A., and Silliman, B.: The value
of estuarine and coastal ecosystem services, Ecol. Monogr., 81, 169–193,
2011.
Bartlett, K. B., Harriss, R. C., and Sebacher, D. I.: Methane Flux from
Coastal Salt Marshes, J. Geophys. Res., 90, 5710–5720, 1985.
Bauza, J. F., Morell, J. M., and Corredor, J. E.: Biogeochemistry of nitrous
oxide production in the red mangrove (Rhizophora mangle) forest sediments,
Estuar. Coast. Shelf Sci., 55, 697–704,
https://doi.org/10.1006/ecss.2001.0913, 2002.
Bridgham, S. D. and Richardson, C. J.: Mechanisms controlling soil
respiration (CO2 and CH4) in southern peatlands, Soil Biol. Biochem., 24,
1089–1099, https://doi.org/10.1016/0038-0717(92)90058-6, 1992.
Brimblecombe, P.: The Global Sulfur Cycle, in: Treatise on Geochemistry, vol. 10, edited by: Holland, H. D. and Turekian, K. K., Elsevier Science, 559–591, https://doi.org/10.1016/B978-0-08-095975-7.00814-7, 2014.
Brühl, C., Lelieveld, J., Crutzen, P. J., and Tost, H.: The role of
carbonyl sulphide as a source of stratospheric sulphate aerosol and its
impact on climate, Atmos. Chem. Phys., 12, 1239–1253,
https://doi.org/10.5194/acp-12-1239-2012, 2012.
Capone, D. G. and Kiene, R. P.: Comparison of microbial dynamics in marine
and freshwater sediment, Limnol. Ocean., 33, 725–749, 1988.
Capooci, M. and Vargas, R.: Diel and seasonal patterns of soil CO2 efflux in
a temperate tidal marsh, Sci. Total Environ., 802, 149715,
https://doi.org/10.1016/j.scitotenv.2021.149715, 2022a.
Capooci, M. and Vargas, R.: Data of Trace gas fluxes from tidal salt marsh soils (CO2, CH4, N2O, CS2 and DMS), figshare, [data set], https://doi.org/10.6084/m9.figshare.20449131, 2022b.
Capooci, M., Barba, J., Seyfferth, A. L., and Vargas, R.: Experimental
influence of storm-surge salinity on soil greenhouse gas emissions from a
tidal salt marsh, Sci. Total Environ., 686, 1164–1172,
https://doi.org/10.1016/j.scitotenv.2019.06.032, 2019.
Carroll, M. A., Heidt, L. E., Cicerone, R. J., and Prinn, R. G.: OCS, H2S,
and CS2 fluxes from a salt water marsh, J. Atmos. Chem., 4, 375–395,
https://doi.org/10.1007/BF00053811, 1986.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326,
655–661, https://doi.org/10.1038/326655a0, 1987.
Cheng, X., Peng, R., Chen, J., Luo, Y., Zhang, Q., An, S., Chen, J., and Li,
B.: CH4 and N2O emissions from Spartina alterniflora and Phragmites
australis in experimental mesocosms, Chemosphere, 68, 420–427,
https://doi.org/10.1016/J.CHEMOSPHERE.2007.01.004, 2007.
Cooper, D. J., De Mello, W. Z., Cooper, W. J., Zika, R. G., Saltzman, E. S.,
Prospero, J. M., and Savoie, D. L.: Short-term variability in biogenic
sulphur emissions from a Florida Spartina alterniflora marsh, Atmos.
Environ., 21, 7–12, 1987a.
Cooper, W. J., Cooper, D. J., Saltzman, E. S., Mello, W. Z. d., Savoie, D.
L., Zika, R. G., and Prospero, J. M.: Emissions of biogenic sulphur
compounds from several wetland soils in Florida, Atmos. Environ., 21,
1491–1495, https://doi.org/10.1016/0004-6981(87)90311-8, 1987b.
Dacey, J. W. H., King, G. M., and Wakeham, S. G.: Factors controlling
emission of dimethylsulphide from salt marshes, Nature, 330, 643–645,
https://doi.org/10.1038/330643a0, 1987.
DeLaune, R. D., Devai, I., and Lindau, C. W.: Flux of reduced sulfur gases
along a salinity gradient in Louisiana coastal marshes, Estuar. Coast. Shelf
Sci., 54, 1003–1011, https://doi.org/10.1006/ecss.2001.0871, 2002.
De Mello, W. Z., Cooper, D. J., Cooper, W. J., Saltzman, E. S., Zika, R. G.,
Savoie, D. L., and Prospero, J. M.: Spatial and diel variability in the
emissions of some biogenic sulfur compounds from a Florida Spartina alterniflora coastal zone, Atmos. Environ., 21, 987–990,
https://doi.org/10.1016/0004-6981(87)90095-3, 1987.
Diefenderfer, H. L., Cullinan, V. I., Borde, A. B., Gunn, C. M., and Thom,
R. M.: High-frequency greenhouse gas flux measurement system detects winter
storm surge effects on salt marsh, Glob. Change Biol., 24, 5961–5971,
https://doi.org/10.1111/gcb.14430, 2018.
DNREC: Delaware National Esturaine Research Reserve Estuarine Profile, 158 pp., 1999.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Emery, H. E. and Fulweiler, R. W.: Spartina alterniflora and invasive
Phragmites australis stands have similar greenhouse gas emissions in a New
England marsh, Aquat. Bot., 116, 83–92,
https://doi.org/10.1016/j.aquabot.2014.01.010, 2014.
Emmer, I., Needelman, B., Emmett-Mattox, S., Crooks, S., Beers, L.,
Megonigal, P., Myers, D., Oreska, M., McGlathery, K., and Shoch, D.:
Methodology for Tidal Wetland and Seagrass Restoration, 1–115, 2021.
Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Folker, M.,
Richardson, A. D., and Tomelleri, E.: phenopix: Process Digital Images of a
Vegetation Cover, R Packag, version 2.4.2, 2020.
Finster, K., King, G. M., Bak, F., and Finster, K.: Formation of
methylmercaptan and dimethylsulfide from methoxylated aromatic compounds in
anoxic marine and fresh water sediments, FEMS Microbiol. Ecol., 74,
295–302, https://doi.org/10.1111/j.1574-6968.1990.tb04076.x, 1990.
Goldan, P. D., Kuster, W. C., Albritton, D. L., and Fehsenfeld, F. C.: The
measurement of natural sulfur emissions from soils and vegetation: Three
sites in the Eastern United States revisited, J. Atmos. Chem., 5, 439–467,
https://doi.org/10.1007/BF00113905, 1987.
Granville, K. E., Ooi, S. K., Koenig, L. E., Lawrence, B. A., Elphick, C.
S., and Helton, A. M.: Seasonal Patterns of Denitrification and N2O
Production in a Southern New England Salt Marsh, Wetlands, 41, 1–13,
https://doi.org/10.1007/s13157-021-01393-x, 2021.
Hill, A. C. and Vargas, R.: Methane and Carbon Dioxide Fluxes in a Temperate
Tidal Salt Marsh: Comparisons Between Plot and Ecosystem Measurements, J.
Geophys. Res.-Biogeo., 127, e2022JG006943,
https://doi.org/10.1029/2022JG006943, 2022.
Hill, A. C., Vázquez-Lule, A., and Vargas, R.: Linking vegetation
spectral reflectance with ecosystem carbon phenology in a temperate salt
marsh, Agr. Forest Meteorol., 307, 108481,
https://doi.org/10.1016/j.agrformet.2021.108481, 2021.
Hines, M. E.: Emissions of sulfur gases from wetlands, Internationale Vereinigung für Theoretische und Angewandte Limnologie, 25, 153–161,
https://doi.org/10.1080/05384680.1996.11904076, 1996.
Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M., and
Peichl, M.: Partitioning of the net CO2 exchange using an automated chamber
system reveals plant phenology as key control of production and respiration
fluxes in a boreal peatland, Glob. Change Biol., 24, 3436–3451,
https://doi.org/10.1111/gcb.14292, 2018.
Jha, C. S., Rodda, S. R., Thumaty, K. C., Raha, A. K., and Dadhwal, V. K.:
Eddy covariance based methane flux in Sundarbans mangroves, India, J. Earth
Syst. Sci., 123, 1089–1096, https://doi.org/10.1007/s12040-014-0451-y,
2014.
Jørgensen, B. B. and Okholm-Hansen, B.: Emissions of biogenic sulfur
gases from a danish estuary, Atmos. Environ., 19, 1737–1749,
https://doi.org/10.1016/0004-6981(85)90001-0, 1985.
Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L., and Martell, E.
A.: The Sulfur Cycle, Science, 175, 587–596,
https://doi.org/10.1016/S0074-6142(08)62696-0, 1972.
Kiene, R. P.: Dimethyl sulfide metabolism in salt marsh sediments, FEMS
Microbiol. Lett., 53, 71–78, https://doi.org/10.1016/0378-1097(88)90014-6,
1988.
Kiene, R. P. and Visscher, P. T.: Production and fate of methylated sulfur
mompounds from methionine and dimethylsulfoniopropionate in anoxic salt
marsh sediments, Appl. Environ. Microbiol., 53, 2426–2434, 1987.
Kim, J., Verma, S. B., Billesbach, D. P., and Clement, R. J.: Diel variation
in methane emission from a midlatitude prairie wetland: Significance of
convective throughflow in Phragmites australis, J. Geophys. Res.-Atmos.,
103, 28029–28039, https://doi.org/10.1029/98JD02441, 1998.
Koskinen, M., Minkkinen, K., Ojanen, P., Kämäräinen, M., Laurila, T., and Lohila, A.: Measurements of CO2 exchange with an automated chamber system throughout the year: challenges in measuring night-time respiration on porous peat soil, Biogeosciences, 11, 347–363, https://doi.org/10.5194/bg-11-347-2014, 2014.
Laursen, A. E. and Seitzinger, S. P.: Measurement of denitrification in
rivers: an integrated, whole reach approach, Hydrobiologia, 485, 67–81,
2002.
Lin, Y. S., Heuer, V. B., Ferdelman, T. G., and Hinrichs, K.-U.: Microbial conversion of inorganic carbon to dimethyl sulfide in anoxic lake sediment (Plußsee, Germany), Biogeosciences, 7, 2433–2444, https://doi.org/10.5194/bg-7-2433-2010, 2010.
Livesley, S. J. and Andrusiak, S. M.: Temperate mangrove and salt marsh
sediments are a small methane and nitrous oxide source but important carbon
store, Estuar. Coast. Shelf Sci., 97, 19–27,
https://doi.org/10.1016/j.ecss.2011.11.002, 2012.
Lomans, B. P., Van der Drift, C., Pol, A., and Op den Camp, H. J. M.:
Microbial cycling of volatile organic sulfur compounds, Water Sci. Technol.,
45, 55–60, https://doi.org/10.1007/s00018-002-8450-6, 2002.
Macreadie, P. I., Costa, M. D. P., Atwood, T. B., Friess, D. A., Kelleway,
J. J., Kennedy, H., Lovelock, C. E., Serrano, O., and Duarte, C. M.: Blue
carbon as a natural climate solution, Nat. Rev. Earth Environ., 2, 826–839,
https://doi.org/10.1038/s43017-021-00224-1, 2021.
McTigue, N. D., Walker, Q. A., and Currin, C. A.: Refining Estimates of
Greenhouse Gas Emissions From Salt Marsh “Blue Carbon” Erosion and
Decomposition, Front. Mar. Sci., 8, 1–13,
https://doi.org/10.3389/fmars.2021.661442, 2021.
Middelburg, J. J., Klaver, G., Nieuwenhuize, J., Wielemaker, A., de Hass,
W., Vlug, T., and van der Nat, J. F. W. A.: Organic matter mineral sediments
along an estuarine gradient, Mar. Ecol. Prog. Ser., 132, 157–168, 1996.
Moffett, K. B., Wolf, A., Berry, J. A., and Gorelick, S. M.: Salt
marsh-atmosphere exchange of energy, water vapor, and carbon dioxide:
Effects of tidal flooding and biophysical controls, Water Resour. Res.,
46,
https://doi.org/10.1029/2009WR009041, 2010.
Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., Van
Wesenbeeck, B. K., Wolters, G., Jensen, K., Bouma, T. J., Miranda-Lange, M.,
and Schimmels, S.: Wave attenuation over coastal salt marshes under storm
surge conditions, Nat. Geosci., 7, 727–731,
https://doi.org/10.1038/NGEO2251, 2014.
Moran, J. J., House, C. H., Vrentas, J. M., and Freeman, K. H.: Methyl
sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans, Appl. Environ. Microbiol., 74, 540–542,
https://doi.org/10.1128/AEM.01750-07, 2008.
Morrison, M. C. and Hines, M. E.: The variability of biogenic sulfur flux
from a temperate salt marsh on short time and space scales, Atmos. Environ.
Part A, 24, 1771–1779,
https://doi.org/10.1016/0960-1686(90)90509-L, 1990.
Moseman-Valtierra, S., Gonzalez, R., Kroeger, K. D., Tang, J., Chao, W. C.,
Crusius, J., Bratton, J., Green, A., and Shelton, J.: Short-term nitrogen
additions can shift a coastal wetland from a sink to a source of N2O, Atmos.
Environ., 45, 4390–4397, https://doi.org/10.1016/j.atmosenv.2011.05.046,
2011.
Moseman-Valtierra, S., Abdul-Aziz, O. I., Tang, J., Ishtiaq, K. S.,
Morkeski, K., Mora, J., Quinn, R. K., Martin, R. M., Egan, K., Brannon, E.
Q., Carey, J., and Kroeger, K. D.: Carbon dioxide fluxes reflect plant
zonation and belowground biomass in a coastal marsh, Ecosphere,
7, https://doi.org/10.1002/ecs2.1560, e01560, 2016.
Murray, R. H., Erler, D. V., and Eyre, B. D.: Nitrous oxide fluxes in
estuarine environments: response to global change, Glob. Change Biol., 21,
3219–3245, https://doi.org/10.1111/gcb.12923, 2015.
Neubauer, S. C. and Megonigal, J. P.: Correction to: Moving Beyond Global
Warming Potentials to Quantify the Climatic Role of Ecosystems, Ecosyst., 22, 1931–1932, https://doi.org/10.1007/S10021-019-00422-5, 2019.
NOAA National Estuarine Research Reserve System (NERRS): System-Wide Monitoring Progra, [data set], https://cdmo.baruch.sc.edu/, last access: 26 July 2021.
Oremland, R. S., Marsh, L. M., and Polcin, S.: Methane production and
simultaneous sulphate reduction in anoxic, salt marsh sediments, Nature,
296, 143–145, 1982.
Peterson, P. M., Romaschenko, K., Arrieta, Y. H., and Saarela, J. M.: A
molecular phylogeny and new subgeneric classification of Sporobolus
(Poaceae: Chloridoideae: Sporobolinae), Taxon, 63, 1212–1243,
https://doi.org/10.12705/636.19, 2014.
Petrakis, S., Seyfferth, A., Kan, J., Inamdar, S., and Vargas, R.: Influence
of experimental extreme water pulses on greenhouse gas emissions from soils,
Biogeochemistry, 133, 147–164, https://doi.org/10.1007/s10533-017-0320-2,
2017.
Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S., Tuovinen, J.
P., Tuittila, E. S., and Vesala, T.: Annual cycle of methane emission from a
boreal fen measured by the eddy covariance technique, Tellus B, 59, 449–457,
https://doi.org/10.1111/j.1600-0889.2007.00261.x, 2007.
Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H., and Eyre, B.
D.: Methane emissions partially offset “blue carbon” burial in mangroves,
Sci. Adv., 4, eaao4985, https://doi.org/10.1126/SCIADV.AAO4985, 2018.
Rosentreter, J. A., Al-Haj, A. N., Fulweiler, R. W., and Williamson, P.:
Methane and Nitrous Oxide Emissions Complicate Coastal Blue Carbon
Assessments, Global Biogeochem. Cy., 35, e2020GB006858,
https://doi.org/10.1029/2020GB006858, 2021.
Savage, K., Phillips, R., and Davidson, E.: High temporal frequency measurements of greenhouse gas emissions from soils, Biogeosciences, 11, 2709–2720, https://doi.org/10.5194/bg-11-2709-2014, 2014.
Sela-Adler, M., Said-Ahmad, W., Sivan, O., Eckert, W., Kiene, R. P., and
Amrani, A.: Isotopic evidence for the origin of dimethylsulfide and
dimethylsulfoniopropionate-like compounds in a warm, monomictic freshwater
lake, Environ. Chem., 13, 340–351,
https://doi.org/10.1071/EN15042, 2015.
Seyednasrollah, B., Young, A. M., Hufkens, K., Milliman, T., Friedl, M. A.,
Frolking, S., Richardson, A. D., Abraha, M., Allen, D. W., Apple, M., Arain,
M. A., Baker, J., Baker, J. M., Baldocchi, D., Bernacchi, C. J.,
Bhattacharjee, J., Blanken, P., Bosch, D. D., Boughton, R., Boughton, E. H.,
and Zona, D.: PhenoCam dataset v2.0: Vegetation phenology from digital
camera imagery, Oak Ridge, Tennessee, ORNL DAAC [data set],
https://doi.org/10.3334/ORNLDAAC/1674, 2019.
Seyfferth, A. L., Bothfeld, F., Vargas, R., Stuckey, J. W., Wang, J.,
Kearns, K., Michael, H. A., Guimond, J., Yu, X., and Sparks, D. L.: Spatial
and temporal heterogeneity of geochemical controls on carbon cycling in a
tidal salt marsh, Geochim. Cosmochim. Ac., 282, 1–18,
https://doi.org/10.1016/j.gca.2020.05.013, 2020.
Simpson, L. T., Osborne, T. Z., and Feller, I. C.: Wetland Soil CO2 Efflux
Along a Latitudinal Gradient of Spatial and Temporal Complexity, Estuar. Coast., 42, 45–54,
https://doi.org/10.1007/s12237-018-0442-3, 2019.
Steudler, P. A. and Peterson, B. J.: Contribution of gaseous sulphur from
salt marshes to the global sulphur cycle, Nature, 311, 455–457,
https://doi.org/10.1038/311455a0, 1984.
Steudler, P. A. and Peterson, B. J.: Annual cycle of gaseous sulfur
emissions from a New England Spartina alterniflora marsh, Atmos. Environ.,
19, 1411–1416, https://doi.org/10.1016/0004-6981(85)90278-1, 1985.
Taubman, S. J. and Kasting, J. F.: Carbonyl sulfide: No remedy for global
warming, Geophys. Res. Lett., 22, 803–805,
https://doi.org/10.1029/95GL00636, 1995.
Thomas, M. A., Suntharalingam, P., Pozzoli, L., Rast, S., Devasthale, A., Kloster, S., Feichter, J., and Lenton, T. M.: Quantification of DMS aerosol-cloud-climate interactions using the ECHAM5-HAMMOZ model in a current climate scenario, Atmos. Chem. Phys., 10, 7425–7438, https://doi.org/10.5194/acp-10-7425-2010, 2010.
Tong, C., Huang, J. F., Hu, Z. Q., and Jin, Y. F.: Diurnal Variations of
Carbon Dioxide, Methane, and Nitrous Oxide Vertical Fluxes in a Subtropical
Estuarine Marsh on Neap and Spring Tide Days, Estuar. Coast., 36, 633–642,
https://doi.org/10.1007/s12237-013-9596-1, 2013.
Tong, C., Morris, J. T., Huang, J., Xu, H., and Wan, S.: Changes in
pore-water chemistry and methane emission following the invasion of Spartina alterniflora into an oliogohaline marsh, Limnol. Oceanogr., 63, 384–396,
https://doi.org/10.1002/lno.10637, 2018.
Trifunovic, B., Vázquez-Lule, A., Capooci, M., Seyfferth, A. L., Moffat,
C., and Vargas, R.: Carbon Dioxide and Methane Emissions From Temperate Salt
Marsh Tidal Creek, J. Geophys. Res.-Biogeo., 125,
https://doi.org/10.1029/2019JG005558, 2020.
Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P.,
Hornibrook, E. R. C., Minkkinen, K., Moore, T. R., Myers-Smith, I. H.,
Nykanen, H., Olefeldt, D., Rinne, J., Saarnio, S., Shurpali, N., Tuittila,
E. S., Waddington, J. M., White, J. R., Wickland, K. P., and Wilmking, M.: A
synthesis of methane emissions from 71 northern, temperate, and subtropical
wetlands, Glob. Change Biol., 20, 2183–2197,
https://doi.org/10.1111/gcb.12580, 2014.
UNFCCC: Paris Agreement to the United Nations Framework Convention on Climate Change, Dec. 12, 2015, T.I.A.S. No. 16-1104, 2015.
Van Der Nat, F. and Middelburg, J. J.: Methane emission from tidal
freshwater marshes, Biogeochemistry, 49, 103–121, 2000.
Vargas, R., Carbone, M. S., Reichstein, M., and Baldocchi, D. D.: Frontiers
and challenges in soil respiration research: from measurements to model-data
integration, Biogeochemistry, 102, 1–13,
https://doi.org/10.1007/s10533-010-9462-1, 2011.
Vázquez-Lule, A. and Vargas, R.: Biophysical drivers of net ecosystem
and methane exchange across phenological phases in a tidal salt marsh,
Agr. Forest Meteorol., 300, 1–12, https://doi.org/10.1016/j.agrformet.2020.108309,
2021.
Wang, J. and Wang, J.: Spartina alterniflora alters ecosystem DMS and CH4
emissions and their relationship along interacting tidal and vegetation
gradients within a coastal salt marsh in Eastern China, Atmos. Environ.,
167, 346–359, https://doi.org/10.1016/J.ATMOSENV.2017.08.041, 2017.
Ward, N., Megonigal, P. J., Bond-Lamberty, B., Bailey, V., Butman, D.,
Canuel, E., Diefenderfer, H., Ganju, N. K., Goñi, M. A., Graham, E. B.,
Hopkinson, C. S., Khangaonkar, T., Langley, J. A., McDowell, N. G.,
Myers-Pigg, A. N., Neumann, R. B., Osburn, C. L., Price, R. M., Rowland, J.,
Sengupta, A., Simard, M., Thornton, P. E., Tzortziou, M., Vargas, R.,
Weisenhorn, P. B., and Windham-Myers, L.: Representing the Function and
Sensitivity of Coastal Interfaces in Earth System Models, Nat. Commun., 11, 2458,
https://doi.org/10.1038/s41467-020-16236-2, 2020.
Watts, S. F.: The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon
disulfide and hydrogen sulfide, Atmos. Environ., 34, 761–779,
https://doi.org/10.1016/S1352-2310(99)00342-8, 2000.
Whelan, M. E., Min, D. H., and Rhew, R. C.: Salt marsh vegetation as a
carbonyl sulfide (COS) source to the atmosphere, Atmos. Environ., 73,
131–137, https://doi.org/10.1016/J.ATMOSENV.2013.02.048, 2013.
Wilson, B. J., Mortazavi, B., and Kiene, R. P.: Spatial and temporal
variability in carbon dioxide and methane exchange at three coastal marshes
along a salinity gradient in a northern Gulf of Mexico estuary,
Biogeochemistry, 123, 329–347, https://doi.org/10.1007/s10533-015-0085-4,
2015.
Xie, H. and Moore, R. M.: Carbon disulfide in the North Atlantic and Pacific
Oceans, J. Geophys. Res.-Ocean., 104, 5393–5402,
https://doi.org/10.1029/1998jc900074, 1999.
Xie, X., Zhang, M.-Q., Zhao, B., and Guo, H.-Q.: Dependence of coastal wetland ecosystem respiration on temperature and tides: a temporal perspective, Biogeosciences, 11, 539–545, https://doi.org/10.5194/bg-11-539-2014, 2014.
Xu, X., Fu, G., Zou, X., Ge, C., and Zhao, Y.: Diurnal variations of carbon
dioxide, methane, and nitrous oxide fluxes from invasive Spartina alterniflora dominated coastal wetland in northern Jiangsu Province, Acta
Oceanol. Sin., 36, 105–113, https://doi.org/10.1007/s13131-017-1015-1,
2017.
Yang, W.-B. Bin, Yuan, C.-S. S., Tong, C., Yang, P., Yang, L., and Huang,
B.-Q. Q.: Diurnal variation of CO2, CH4, and N2O emission fluxes
continuously monitored in-situ in three environmental habitats in a
subtropical estuarine wetland, Mar. Pollut. Bull., 119, 289–298,
https://doi.org/10.1016/j.marpolbul.2017.04.005, 2017.
Yang, W.-B., Yuan, C.-S., Huang, B.-Q., Tong, C., and Yang, L.: Emission
Characteristics of Greenhouse Gases and Their Correlation with Water Quality
at an Estuarine Mangrove Ecosystem – the Application of an In-situ On-site
NDIR Monitoring Technique, Wetlands, 38, 723–738,
https://doi.org/10.1007/S13157-018-1015-8, 2018.
Yu, X., Ye, S., Olsson, L., Wei, M., Krauss, K. W., and Brix, H.: A 3-Year
In-Situ Measurement of CO2 Efflux in Coastal Wetlands: Understanding Carbon
Loss through Ecosystem Respiration and its Partitioning, Wetlands, 40, 551–563,
https://doi.org/10.1007/s13157-019-01197-0, 2019.
Yu, Z., Li, Y., Deng, H., Wang, D., Chen, Z., and Xu, S.: Effect of Scirpus mariqueter on nitrous oxide emissions from a subtropical monsoon estuarine
wetland, J. Geophys. Res.-Biogeo., 117, 2017,
https://doi.org/10.1029/2011JG001850, 2012.
Zhang, Y. and Ding, W.: Diel methane emissions in stands of Spartina alterniflora and Suaeda salsa from a coastal salt marsh, Aquat. Bot., 95,
262–267, https://doi.org/10.1016/j.aquabot.2011.08.005, 2011.
Zhang, Y., Wang, L., Xie, X., Huang, L., and Wu, Y.: Effects of invasion of
Spartina alterniflora and exogenous N deposition on N2O emissions in a
coastal salt marsh, Ecol. Eng., 58, 77–83,
https://doi.org/10.1016/j.ecoleng.2013.06.011, 2013.
Short summary
Tidal salt marsh soil emits greenhouse gases, as well as sulfur-based gases, which play roles in global climate but are not well studied as they are difficult to measure. Traditional methods of measuring these gases worked relatively well for carbon dioxide, but less so for methane, nitrous oxide, carbon disulfide, and dimethylsulfide. High variability of trace gases complicates the ability to accurately calculate gas budgets and new approaches are needed for monitoring protocols.
Tidal salt marsh soil emits greenhouse gases, as well as sulfur-based gases, which play roles in...
Altmetrics
Final-revised paper
Preprint