Articles | Volume 19, issue 22
https://doi.org/10.5194/bg-19-5151-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5151-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Metabolic alkalinity release from large port facilities (Hamburg, Germany) and impact on coastal carbon storage
Mona Norbisrath
CORRESPONDING AUTHOR
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
Institute for Chemistry and Biology of the Marine Environment, Carl
von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
Johannes Pätsch
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
Institute of Oceanography, University Hamburg, 20146 Hamburg, Germany
Kirstin Dähnke
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
Tina Sanders
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
Gesa Schulz
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
Institute of Geology, Center for Earth System Research and
Sustainability (CEN), University Hamburg, 20146 Hamburg, Germany
Justus E. E. van Beusekom
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
Helmuth Thomas
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
Institute for Chemistry and Biology of the Marine Environment, Carl
von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
Related authors
Mona Norbisrath, Justus E. E. van Beusekom, and Helmuth Thomas
Ocean Sci., 20, 1423–1440, https://doi.org/10.5194/os-20-1423-2024, https://doi.org/10.5194/os-20-1423-2024, 2024
Short summary
Short summary
We present an observational study investigating total alkalinity (TA) in the Dutch Wadden Sea. Discrete water samples were used to identify the TA spatial distribution patterns and locate and shed light on TA sources. By observing a tidal cycle, the sediments and pore water exchange were identified as local TA sources. We assumed metabolically driven CaCO3 dissolution as the TA source in the upper, oxic sediments and anaerobic metabolic processes as TA sources in the deeper, anoxic ones.
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023, https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Short summary
Total alkalinity (TA) is the oceanic capacity to store CO2. Estuaries can be a TA source. Anaerobic metabolic pathways like denitrification (reduction of NO3− to N2) generate TA and are a major nitrogen (N) sink. Another important N sink is anammox that transforms NH4+ with NO2− into N2 without TA generation. By combining TA and N2 production, we identified a TA source, denitrification, occurring in the water column and suggest anammox as the dominant N2 producer in the bottom layer of the Ems.
Feifei Liu, Ute Daewel, Jan Kossack, Kubilay Timur Demir, Helmuth Thomas, and Corinna Schrum
Biogeosciences, 22, 3699–3719, https://doi.org/10.5194/bg-22-3699-2025, https://doi.org/10.5194/bg-22-3699-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) boosts oceanic CO₂ absorption, offering a climate solution. Using a regional model, we examined OAE in the North Sea, revealing that shallow coastal areas achieve higher CO₂ uptake than offshore where alkalinity is more susceptible to deep-ocean loss. Long-term carbon storage is limited, and pH shifts vary by location. Our findings guide OAE deployment to optimize carbon removal while minimizing ecological effects, supporting global climate mitigation efforts.
Gaziza Konyssova, Vera Sidorenko, Alexey Androsov, Sabine Horn, Sara Rubinetti, Ivan Kuznetsov, Karen Helen Wiltshire, and Justus van Beusekom
EGUsphere, https://doi.org/10.5194/egusphere-2025-2135, https://doi.org/10.5194/egusphere-2025-2135, 2025
Short summary
Short summary
This study explores how winds, tides, and biological activity influence suspended particle concentrations in a tidal basin of the Wadden Sea. Combining long-term measurements, ocean modelling, and machine learning, we found that wind dominates in winter, while biological processes like algae growth gain importance in spring and summer. The results also reveal contrasting short-term dynamics at shallow and deep stations, identifying the drivers of variability in coastal waters.
Kubilay Timur Demir, Moritz Mathis, Jan Kossack, Feifei Liu, Ute Daewel, Christoph Stegert, Helmuth Thomas, and Corinna Schrum
Biogeosciences, 22, 2569–2599, https://doi.org/10.5194/bg-22-2569-2025, https://doi.org/10.5194/bg-22-2569-2025, 2025
Short summary
Short summary
This study examines how variations in the ratios of carbon, nitrogen, and phosphorus in organic matter affect carbon cycling in the northwest European shelf seas. Traditional models with fixed ratios tend to underestimate biological carbon uptake. By integrating variable ratios into a regional model, we find that carbon dioxide uptake increases by 9 %–31 %. These results highlight the need to include variable ratios for accurate assessments of regional and global carbon cycles.
Andreas Neumann, Justus E. E. van Beusekom, Alexander Bratek, Jana Friedrich, Jürgen Möbius, Tina Sanders, Hendrik Wolschke, and Kirstin Dähnke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1803, https://doi.org/10.5194/egusphere-2025-1803, 2025
Short summary
Short summary
The North-Western shelf of the Black Sea is substantially influenced by the discharge of nutrients from River Danube. We have sampled the sediment there and measured particulate carbon and nitrogen to reconstruct the variability of nitrogen sources to the NW shelf. Our results demonstrate that the balance of riverine nitrogen input and marine nitrogen fixation is sensitive to climate changes. Nitrogen from human activities is detectable in NW shelf sediment since the 12th century.
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1660, https://doi.org/10.5194/egusphere-2025-1660, 2025
Short summary
Short summary
Oxygen minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Claudia Elena Schmidt, Tristan Zimmermann, Katarzyna Koziorowska, Daniel Pröfrock, and Helmuth Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2025-291, https://doi.org/10.5194/egusphere-2025-291, 2025
Short summary
Short summary
This study explores how ocean currents, melting sea ice, and freshwater runoff alter biogeochemical cycles on the west Greenland shelf. By analyzing water samples on a high-resolution, large-scale grid, we found that these factors create distinct regional and spatial distribution patterns and significantly impact biological productivity during late summer. The study highlights the need for ongoing monitoring to understand the effects of climate change in this sensitive area.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Mona Norbisrath, Justus E. E. van Beusekom, and Helmuth Thomas
Ocean Sci., 20, 1423–1440, https://doi.org/10.5194/os-20-1423-2024, https://doi.org/10.5194/os-20-1423-2024, 2024
Short summary
Short summary
We present an observational study investigating total alkalinity (TA) in the Dutch Wadden Sea. Discrete water samples were used to identify the TA spatial distribution patterns and locate and shed light on TA sources. By observing a tidal cycle, the sediments and pore water exchange were identified as local TA sources. We assumed metabolically driven CaCO3 dissolution as the TA source in the upper, oxic sediments and anaerobic metabolic processes as TA sources in the deeper, anoxic ones.
Julia Meyer, Yoana G. Voynova, Bryce Van Dam, Lara Luitjens, Dagmar Daehne, and Helmuth Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3048, https://doi.org/10.5194/egusphere-2024-3048, 2024
Short summary
Short summary
The study highlights the inter-seasonal variability of the carbonate dynamics of the East Frisian Wadden Sea, the world's largest intertidal area. During spring, increased biological activity leads to lower CO2 and nitrate levels, while total alkalinity (TA) rises slightly. In summer, TA increases, enhancing the ocean's ability to absorb CO2. Our research emphasizes the vital role of these intertidal regions in regulating carbon, contributing to a better understanding of carbon storage.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Louise C. V. Rewrie, Burkard Baschek, Justus E. E. van Beusekom, Arne Körtzinger, Gregor Ollesch, and Yoana G. Voynova
Biogeosciences, 20, 4931–4947, https://doi.org/10.5194/bg-20-4931-2023, https://doi.org/10.5194/bg-20-4931-2023, 2023
Short summary
Short summary
After heavy pollution in the 1980s, a long-term inorganic carbon increase in the Elbe Estuary (1997–2020) was fueled by phytoplankton and organic carbon production in the upper estuary, associated with improved water quality. A recent drought (2014–2020) modulated the trend, extending the water residence time and the dry summer season into May. The drought enhanced production of inorganic carbon in the estuary but significantly decreased the annual inorganic carbon export to coastal waters.
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023, https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Short summary
Total alkalinity (TA) is the oceanic capacity to store CO2. Estuaries can be a TA source. Anaerobic metabolic pathways like denitrification (reduction of NO3− to N2) generate TA and are a major nitrogen (N) sink. Another important N sink is anammox that transforms NH4+ with NO2− into N2 without TA generation. By combining TA and N2 production, we identified a TA source, denitrification, occurring in the water column and suggest anammox as the dominant N2 producer in the bottom layer of the Ems.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Johannes J. Rick, Mirco Scharfe, Tatyana Romanova, Justus E. E. van Beusekom, Ragnhild Asmus, Harald Asmus, Finn Mielck, Anja Kamp, Rainer Sieger, and Karen H. Wiltshire
Earth Syst. Sci. Data, 15, 1037–1057, https://doi.org/10.5194/essd-15-1037-2023, https://doi.org/10.5194/essd-15-1037-2023, 2023
Short summary
Short summary
The Sylt Roads (Wadden Sea) time series is illustrated. Since 1984, the water temperature has risen by 1.1 °C, while pH and salinity decreased by 0.2 and 0.3 units. Nutrients (P, N) displayed a period of high eutrophication until 1998 and have decreased since 1999, while Si showed a parallel increase. Chlorophyll did not mirror these changes, probably due to a switch in nutrient limitation. Until 1998, algae were primarily limited by Si, and since 1999, P limitation has become more important.
Kirstin Dähnke, Tina Sanders, Yoana Voynova, and Scott D. Wankel
Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-19-5879-2022, https://doi.org/10.5194/bg-19-5879-2022, 2022
Short summary
Short summary
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal regions. We investigated the production and removal of nitrogen-bearing compounds in the freshwater section of the tidal Elbe Estuary and found that particles in the water column are key for the production and removal of water column nitrate. Using a stable isotope approach, we pinpointed regions where additional removal of nitrate or input from sediments plays an important role in estuarine biogeochemistry.
Bryce Van Dam, Nele Lehmann, Mary A. Zeller, Andreas Neumann, Daniel Pröfrock, Marko Lipka, Helmuth Thomas, and Michael Ernst Böttcher
Biogeosciences, 19, 3775–3789, https://doi.org/10.5194/bg-19-3775-2022, https://doi.org/10.5194/bg-19-3775-2022, 2022
Short summary
Short summary
We quantified sediment–water exchange at shallow sites in the North and Baltic seas. We found that porewater irrigation rates in the former were approximately twice as high as previously estimated, likely driven by relatively high bioirrigative activity. In contrast, we found small net fluxes of alkalinity, ranging from −35 µmol m−2 h−1 (uptake) to 53 µmol m−2 h−1 (release). We attribute this to low net denitrification, carbonate mineral (re-)precipitation, and sulfide (re-)oxidation.
Matthias Fuchs, Juri Palmtag, Bennet Juhls, Pier Paul Overduin, Guido Grosse, Ahmed Abdelwahab, Michael Bedington, Tina Sanders, Olga Ogneva, Irina V. Fedorova, Nikita S. Zimov, Paul J. Mann, and Jens Strauss
Earth Syst. Sci. Data, 14, 2279–2301, https://doi.org/10.5194/essd-14-2279-2022, https://doi.org/10.5194/essd-14-2279-2022, 2022
Short summary
Short summary
We created digital, high-resolution bathymetry data sets for the Lena Delta and Kolyma Gulf regions in northeastern Siberia. Based on nautical charts, we digitized depth points and isobath lines, which serve as an input for a 50 m bathymetry model. The benefit of this data set is the accurate mapping of near-shore areas as well as the offshore continuation of the main deep river channels. This will improve the estimation of river outflow and the nutrient flux output into the coastal zone.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Gesa Schulz, Tina Sanders, Justus E. E. van Beusekom, Yoana G. Voynova, Andreas Schöl, and Kirstin Dähnke
Biogeosciences, 19, 2007–2024, https://doi.org/10.5194/bg-19-2007-2022, https://doi.org/10.5194/bg-19-2007-2022, 2022
Short summary
Short summary
Estuaries can significantly alter nutrient loads before reaching coastal waters. Our study of the heavily managed Ems estuary (Northern Germany) reveals three zones of nitrogen turnover along the estuary with water-column denitrification in the most upstream hyper-turbid part, nitrate production in the middle reaches and mixing/nitrate uptake in the North Sea. Suspended particulate matter was the overarching control on nitrogen cycling in the hyper-turbid estuary.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Onur Kerimoglu, Yoana G. Voynova, Fatemeh Chegini, Holger Brix, Ulrich Callies, Richard Hofmeister, Knut Klingbeil, Corinna Schrum, and Justus E. E. van Beusekom
Biogeosciences, 17, 5097–5127, https://doi.org/10.5194/bg-17-5097-2020, https://doi.org/10.5194/bg-17-5097-2020, 2020
Short summary
Short summary
In this study, using extensive field observations and a numerical model, we analyzed the physical and biogeochemical structure of a coastal system following an extreme flood event. Our results suggest that a number of anomalous observations were driven by a co-occurrence of peculiar meteorological conditions and increased riverine discharges. Our results call for attention to the combined effects of hydrological and meteorological extremes that are anticipated to increase in frequency.
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020, https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary
Short summary
Major research initiatives have been undertaken within the Arctic Ocean, highlighting this area's global importance and vulnerability to climate change. In 2015, the international GEOTRACES program addressed this importance by devoting intense research activities to the Arctic Ocean. Among various tracers, we used radium and carbonate system data to elucidate the functioning and vulnerability of the hydrographic regime of the Canadian Arctic Archipelago, bridging the Pacific and Atlantic oceans.
Cited articles
Abril, G., Nogueira, M., Etcheber, H., Cabeçadas, G., Lemaire, E., and
Brogueira, M.: Behaviour of organic carbon in nine contrasting European
estuaries, Estuar. Coast. Shelf Sci., 54, 241–262, 2002.
Amann, T., Weiss, A., and Hartmann, J.: Carbon dynamics in the freshwater
part of the Elbe estuary, Germany: Implications of improving water quality,
Estuar. Coast. Shelf Sci., 107, 112–121, 2012.
Backhaus, J. O.: A three-dimensional model for the simulation of shelf sea
dynamics, Deutsche Hydrografische Zeitschrift, 38, 165–187, 1985.
Backhaus, J. O. and Hainbucher, D.: A finite difference general circulation
model for shelf seas and its application to low frequency variability on the
North European Shelf, in: Elsevier oceanography series, Elsevier, 221–244, https://doi.org/10.1016/S0422-9894(08)70450-1,
1987.
Borges, A., Schiettecatte, L.-S., Abril, G., Delille, B., and Gazeau, F.:
Carbon dioxide in European coastal waters, Estuar. Coast. Shelf
Sci., 70, 375–387, 2006.
Borges, A. V. and Gypens, N.: Carbonate chemistry in the coastal zone
responds more strongly to eutrophication than ocean acidification, Limnol. Oceanogr., 55, 346–353, 2010.
Breitburg, D.: Effects of hypoxia, and the balance between hypoxia and
enrichment, on coastal fishes and fisheries, Estuaries, 25, 767–781, 2002.
Breitburg, D. L., Craig, J. K., Fulford, R. S., Rose, K. A., Boynton, W. R.,
Brady, D. C., Ciotti, B. J., Diaz, R., Friedland, K., and Hagy, J.: Nutrient
enrichment and fisheries exploitation: interactive effects on estuarine
living resources and their management, Hydrobiologia, 629, 31–47, 2009.
Brewer, P. G. and Goldman, J. C.: Alkalinity changes generated by
phytoplankton growth 1, Limnol. Oceanogr., 21, 108–117, 1976.
Burt, W., Thomas, H., Pätsch, J., Omar, A., Schrum, C., Daewel, U.,
Brenner, H., and de Baar, H.: Radium isotopes as a tracer of sediment-water
column exchange in the North Sea, Global Biogeochem. Cy., 28, 786–804,
2014.
Burt, W., Thomas, H., Hagens, M., Pätsch, J., Clargo, N., Salt, L.,
Winde, V., and Böttcher, M.: Carbon sources in the North Sea evaluated
by means of radium and stable carbon isotope tracers, Limnol.
Oceanogr., 61, 666–683, 2016.
Cai, W. J. and Wang, Y.: The chemistry, fluxes, and sources of carbon
dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia,
Limnol. Oceanogr., 43, 657–668, 1998.
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J., and
Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in
seawater and freshwater using the denitrifier method, Anal. Chem.,
74, 4905–4912, 2002.
Chen, C. T. A. and Wang, S. L.: Carbon, alkalinity and nutrient budgets on
the East China Sea continental shelf, J. Geophys. Res.-Ocean., 104, 20675–20686, 1999.
Cysewski, M., Seemann, J., and Horstmann, J.: Artifacts or Nature? Data
Processing and Interpretation of 3D Current Fields Recorded with Vessel
Mounted Acoustic Doppler Current Profiler in Different Regions and
Conditions, 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), IEEE, 1–5, https://doi.org/10.1109/OCEANSKOBE.2018.8559215, 2018.
Dähnke, K., Bahlmann, E., and Emeis, K.: A nitrate sink in estuaries? An
assessment by means of stable nitrate isotopes in the Elbe estuary,
Limnol. Oceanogr., 53, 1504–1511, 2008.
De Jonge, V. N., Boynton, W., D'Elia, C. F., Elmgren, R., and Welsh, R.:
Responses to developments in eutrophication in four different North Atlantic
estuarine systems, in: ECSA22/ERF Symposium, edited by: Dyer, K. R. and Orth, R. J., Changes in fluxes in estuaries: implications from science to management, Olsen & Olsen, Fredensborg, Denmark, 179–196, 1994.
Dlugokencky, E. and Tans, P.: Trends in atmospheric carbon dioxide, National Oceanic and Atmospheric Administration,
Global Monitoring Laboratory (NOAA/GLM), available at: https://gml.noaa.gov/ccgg/trends/gl_data.html, last access: 3 March 2021.
DWD (Deutscher Wetter Dienst): Climate Data Center (CDC), https://www.dwd.de/DE/klimaumwelt/cdc/cdc_node.html, last access: 19 November 2020.
FGG (Flussgebietsgemeinschaft): Elbe, https://www.elbe-datenportal.de/FisFggElbe/content/auswertung/UntersuchungsbereichHydro_start_x.action, last access: 4 November 2021.
Francescangeli, F., Milker, Y., Bunzel, D., Thomas, H., Norbisrath, M.,
Schönfeld, J., and Schmiedl, G.: Recent benthic foraminiferal
distribution in the Elbe Estuary (North Sea, Germany): A response to
environmental stressors, Estuar. Coast. Shelf Sci., 251, 107198, https://doi.org/10.1016/j.ecss.2021.107198,
2021.
Frankignoulle, M., Bourge, I., and Wollast, R.: Atmospheric CO2 fluxes in a
highly polluted estuary (the Scheldt), Limnol. Oceanogr., 41,
365–369, 1996.
Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille,
B., Libert, E., and Théate, J.-M.: Carbon dioxide emission from European
estuaries, Science, 282, 434–436, 1998.
Gaye, B., Lahajnar, N., Harms, N., Paul, S. A. L., Rixen, T., and Emeis, K.-C.: What can we learn from amino acids about oceanic organic matter cycling and degradation?, Biogeosciences, 19, 807–830, https://doi.org/10.5194/bg-19-807-2022, 2022.
Gilbert, D., Sundby, B., Gobeil, C., Mucci, A., and Tremblay, G. H.: A
seventy-two-year record of diminishing deep-water oxygen in the St. Lawrence
estuary: The northwest Atlantic connection, Limnol. Oceanogr., 50,
1654–1666, 2005.
Granger, J. and Sigman, D. M.: Removal of nitrite with sulfamic acid for
nitrate N and O isotope analysis with the denitrifier method, Rapid
Communications in Mass Spectrometry: An International Journal Devoted to the
Rapid Dissemination of Up-to-the-Minute Research in Mass Spectrometry, Rapid Commun. Mass Sp., 23,
3753–3762, https://doi.org/10.1002/rcm.4307, 2009.
Große, F., Greenwood, N., Kreus, M., Lenhart, H.-J., Machoczek, D., Pätsch, J., Salt, L., and Thomas, H.: Looking beyond stratification: a model-based analysis of the biological drivers of oxygen deficiency in the North Sea, Biogeosciences, 13, 2511–2535, https://doi.org/10.5194/bg-13-2511-2016, 2016.
Große, F., Kreus, M., Lenhart, H.-J., Pätsch, J., and Pohlmann, T.:
A novel modeling approach to quantify the influence of nitrogen inputs on
the oxygen dynamics of the North Sea, Front. Mar. Sci., 4, 383, https://doi.org/10.3389/fmars.2017.00383,
2017.
Hansen, H. and Koroleff, F.: Determination of nutrients. Methods of
Seawater Analysis: Third, Completely Revised and Extended Edition, Weinheim,
Germany, Wiley-VCH Verlag,
ISBN 3-527-29589-5, 2007.
Hardenbicker, P., Weitere, M., Ritz, S., Schöll, F., and Fischer, H.:
Longitudinal plankton dynamics in the rivers Rhine and Elbe, River Res. Appl., 32, 1264–1278, 2016.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.:
The ERA5 global reanalysis, Q. J. Roy. Meteorol.
Soc., 146, 1999–2049, 2020.
Howarth, R., Chan, F., Conley, D. J., Garnier, J., Doney, S. C., Marino, R.,
and Billen, G.: Coupled biogeochemical cycles: eutrophication and hypoxia in
temperate estuaries and coastal marine ecosystems, Front. Ecol.
Environ., 9, 18–26, 2011.
Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha,
K., Downing, J. A., Elmgren, R., Caraco, N., and Jordan, T.: Regional
nitrogen budgets and riverine N & P fluxes for the drainages to the North
Atlantic Ocean: Natural and human influences, in: Nitrogen cycling in the
North Atlantic Ocean and its watersheds, Springer, 75–139, https://doi.org/10.1007/978-94-009-1776-7_3, 1996.
Hu, X. and Cai, W. J.: An assessment of ocean margin anaerobic processes on
oceanic alkalinity budget, Global Biogeochem. Cy., 25, https://doi.org/10.1029/2010GB003859, 2011.
Janas, U. and Szaniawska, A.: The influence of hydrogen sulphide on
macrofaunal biodiversity in the Gulf of Gdansk, Oceanologia, 38, 127–142,
1996.
Kempe, S. T. E. P. H. A. N.: Valdivia cruise, October 1981: carbonate equilibria in the estuaries of Elbe, Weser, Ems and in the Southern German Bight, Transport of Carbon and Minerals in Major World Rivers, 1, 719–742, 1982.
Kendall, C., Elliott, E. M., and Wankel, S. D.: Tracing anthropogenic inputs
of nitrogen to ecosystems, Stable isotopes in ecology and environmental
science, Wiley, 2, 375–449, https://doi.org/10.1002/9780470691854.ch12, 2007.
Kerner, M.: Effects of deepening the Elbe Estuary on sediment regime and
water quality, Estuar. Coast. Shelf Sci., 75, 492–500, 2007.
Kérouel, R. and Aminot, A.: Fluorometric determination of ammonia in
sea and estuarine waters by direct segmented flow analysis, Mar.
Chem., 57, 265–275, 1997.
Léonard, J., Mietton, M., Najib, H., and Gourbesville, P.: Rating curve
modelling with Manning's equation to manage instability and improve
extrapolation, Hydrol. Sci. J., 45, 739–750, 2000.
Lewis, E. and Wallace, D.: Program Developed for CO2 System Calculations, CDIAC, ESS-DIVE repository, https://doi.org/10.15485/1464255 accessed via https://data.ess-dive.lbl.gov/datasets/doi:10.15485/1464255,
1998.
Lorkowski, I., Pätsch, J., Moll, A., and Kühn, W.: Interannual
variability of carbon fluxes in the North Sea from 1970 to 2006 – Competing
effects of abiotic and biotic drivers on the gas-exchange of CO2, Estuar.
Coast. Shelf Sci., 100, 38–57, 2012.
Middelburg, J. and Nieuwenhuize, J.: Nitrogen isotope tracing of dissolved
inorganic nitrogen behaviour in tidal estuaries, Estuar. Coast.
Shelf Sci., 53, 385–391, 2001.
Millero, F. J.: The thermodynamics of the carbonate system in seawater,
Geochim. Cosmochim. Ac., 43, 1651–1661, 1979.
Mucci, A., Starr, M., Gilbert, D., and Sundby, B.: Acidification of lower
St. Lawrence Estuary bottom waters, Atmos.-Ocean, 49, 206–218, 2011.
Nixon, S. W.: Coastal marine eutrophication: a definition, social causes,
and future concerns, Ophelia, 41, 199–219, 1995.
Pätsch, J. and Kühn, W.: Nitrogen and carbon cycling in the North
Sea and exchange with the North Atlantic – a model study – Part I: Nitrogen
budget and fluxes, Cont. Shelf Res., 28, 767–787, 2008.
Pätsch, J. and Lenhart, H.: Daily Loads of Nutrients, Total Alkalinity,
Dissolved Inorganic Carbon and Dissolved Organic Carbon of the European
Continental Rivers for the Years 1977–2017, DATA RIVER, Universität
Hamburg, Institut für Meereskunde, Universität Hamburg,
https://wiki.cen.uni-hamburg.de/ifm/ECOHAM/DATA_RIVER (last access: 4 November 2021),
2019.
Pein, J., Eisele, A., Sanders, T., Daewel, U., Stanev, E. V., Van Beusekom,
J. E., Staneva, J., and Schrum, C.: Seasonal Stratification and
Biogeochemical Turnover in the Freshwater Reach of a Partially Mixed Dredged
Estuary, Front. Mar. Sci., 8, 623714, https://doi.org/10.3389/fmars.2021.623714, 2021.
Petersen, W., Schroeder, F., and Bockelmann, F.-D.: FerryBox-Application of
continuous water quality observations along transects in the North Sea,
Ocean Dynam., 61, 1541–1554, 2011.
Pohlmann, T.: Predicting the thermocline in a circulation model of the North
Sea – Part I: model description, calibration and verification, Cont.
Shelf Res., 16, 131–146, 1996.
Rabalais, N. N., Turner, R. E., and Wiseman Jr, W. J.: Hypoxia in the Gulf
of Mexico, J. Environ. Qual., 30, 320–329, 2001.
Rabalais, N. N., Turner, R. E., and Wiseman Jr, W. J.: Gulf of Mexico
hypoxia, aka “The dead zone”, Annu. Rev. Ecol. Syst., 33,
235–263, https://doi.org/10.1146/annurev.ecolsys.33.010802.150513, 2002.
Sanders, T., Schöl, A., and Dähnke, K.: Hot spots of nitrification
in the Elbe estuary and their impact on nitrate regeneration, Estuar.
Coast., 41, 128–138, 2018.
Schöl, A., Hein, B., Wyrwa, J., and Kirchesch, V.: Modelling water quality in the Elbe and its estuary–Large Scale and Long Term Applications with Focus on the Oxygen Budget of the Estuary, Die Küste, 81 Modelling, 203–232, 2014.
Schwichtenberg, F., Pätsch, J., Böttcher, M. E., Thomas, H., Winde, V., and Emeis, K.-C.: The impact of intertidal areas on the carbonate system of the southern North Sea, Biogeosciences, 17, 4223–4245, https://doi.org/10.5194/bg-17-4223-2020, 2020.
Seitzinger, S. P.: Denitrification in freshwater and coastal marine
ecosystems: ecological and geochemical significance, Limnol.
Oceanogr., 33, 702–724, 1988.
Shadwick, E., Thomas, H., Gratton, Y., Leong, D., Moore, S., Papakyriakou,
T., and Prowe, A.: Export of Pacific carbon through the Arctic Archipelago
to the North Atlantic, Cont. Shelf Res., 31, 806–816, 2011.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M.,
and Böhlke, J.: A bacterial method for the nitrogen isotopic analysis of
nitrate in seawater and freshwater, Anal. Chem., 73, 4145–4153,
2001.
Smith, S. and Hollibaugh, J.: Coastal metabolism and the oceanic organic
carbon balance, Rev. Geophys., 31, 75–89, 1993.
Spieckermann, M., Gröngröft, A., Karrasch, M., Neumann, A., and
Eschenbach, A.: Oxygen Consumption of Resuspended Sediments of the Upper
Elbe Estuary: Process Identification and Prognosis, Aquat. Geochem., 28,
1–25, https://doi.org/10.1007/s10498-021-09401-6, 2021.
Thomas, H.: Remineralization ratios of carbon, nutrients, and oxygen in the
North Atlantic Ocean: A field databased assessment, Global Biogeochem.
Cy., 16, 24-21–24-12, 2002.
Thomas, H., Bozec, Y., Elkalay, K., and De Baar, H. J.: Enhanced open ocean
storage of CO2 from shelf sea pumping, Science, 304, 1005–1008, 2004.
Thomas, H., Schiettecatte, L.-S., Suykens, K., Koné, Y. J. M., Shadwick, E. H., Prowe, A. E. F., Bozec, Y., de Baar, H. J. W., and Borges, A. V.: Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments, Biogeosciences, 6, 267–274, https://doi.org/10.5194/bg-6-267-2009, 2009.
Van Beusekom, J. E., Carstensen, J., Dolch, T., Grage, A., Hofmeister, R.,
Lenhart, H., Kerimoglu, O., Kolbe, K., Pätsch, J., and Rick, J.: Wadden
Sea Eutrophication: long-term trends and regional differences, Front.
Mar. Sci., 370, https://doi.org/10.3389/fmars.2019.00370, 2019.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Method., 12, 351–362, 2014.
Watson, A. J., Schuster, U., Bakker, D. C., Bates, N. R., Corbière, A.,
González-Dávila, M., Friedrich, T., Hauck, J., Heinze, C., and
Johannessen, T.: Tracking the variable North Atlantic sink for atmospheric
CO2, Science, 326, 1391–1393, 2009.
Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and
Dickson, A. G.: Total alkalinity: The explicit conservative expression and
its application to biogeochemical processes, Mar. Chem., 106, 287–300,
2007.
Wu, R. S.: Effects of hypoxia on fish reproduction and development, in: Fish
physiology, Elsevier, Academic Press,
Vol. 27,
https://doi.org/10.1016/S1546-5098(08)00003-4, 2009.
Short summary
Total alkalinity (TA) regulates the oceanic storage capacity of atmospheric CO2. TA is also metabolically generated in estuaries and influences coastal carbon storage through its inflows. We used water samples and identified the Hamburg port area as the one with highest TA generation. Of the overall riverine TA load, 14 % is generated within the estuary. Using a biogeochemical model, we estimated potential effects on the coastal carbon storage under possible anthropogenic and climate changes.
Total alkalinity (TA) regulates the oceanic storage capacity of atmospheric CO2. TA is also...
Altmetrics
Final-revised paper
Preprint