Articles | Volume 19, issue 23
https://doi.org/10.5194/bg-19-5591-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5591-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Environmental and hydrologic controls on sediment and organic carbon export from a subalpine catchment: insights from a time series
Melissa Sophia Schwab
CORRESPONDING AUTHOR
Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland
now at: Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109, USA
Hannah Gies
Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland
Chantal Valérie Freymond
Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland
now at: Gruner, 4020 Basel, Switzerland
Maarten Lupker
Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland
independent researcher: 3014 Bern, Switzerland
Negar Haghipour
Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland
Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich, Switzerland
Timothy Ian Eglinton
Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland
Related authors
No articles found.
Laura Summerauer, Fernando Bamba, Bendicto Akoraebirungi, Ahurra Wobusobozi, Marijn Bauters, Travis William Drake, Negar Haghipour, Clovis Kabaseke, Daniel Muhindo Iragi, Landry Cizungu Ntaboba, Leonardo Ramirez-Lopez, Johan Six, Daniel Wasner, and Sebastian Doetterl
EGUsphere, https://doi.org/10.5194/egusphere-2025-4625, https://doi.org/10.5194/egusphere-2025-4625, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Deforestation for croplands on tropical hillslopes causes severe soil degradation and loss of fertile topsoil. We found that this leads to a steep decline in soil fertility, including organic carbon, nitrogen, and phosphorus. This makes the land unproductive, often leading farmers to abandon it. Replanting with Eucalyptus trees doesn't restore fertility. This degradation leads to cropland lifespans of only 100–170 years and poses a serious threat to future food production.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
Clim. Past, 21, 679–704, https://doi.org/10.5194/cp-21-679-2025, https://doi.org/10.5194/cp-21-679-2025, 2025
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2 history during the last glacial-to-interglacial transition. Using various geochemical tracers on archives from both subsurface and surface waters reveals enhanced storage of carbon at depth during the Last Glacial Maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Giulia Zazzeri, Lukas Wacker, Negar Haghipour, Philip Gautschi, Thomas Laemmel, Sönke Szidat, and Heather Graven
Atmos. Meas. Tech., 18, 319–325, https://doi.org/10.5194/amt-18-319-2025, https://doi.org/10.5194/amt-18-319-2025, 2025
Short summary
Short summary
Radiocarbon (14C) is an optimal tracer of methane (CH4) emissions, as 14C measurements enable distinguishing between fossil methane and biogenic methane. However, these measurements are particularly challenging, mainly due to technical difficulties in the sampling procedure. We made the sample extraction much simpler and time efficient, providing a new technology that can be used by any research group, with the goal of expanding 14C measurements for an improved understanding of methane sources.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Oliver Kost, Saúl González-Lemos, Laura Rodríguez-Rodríguez, Jakub Sliwinski, Laura Endres, Negar Haghipour, and Heather Stoll
Hydrol. Earth Syst. Sci., 27, 2227–2255, https://doi.org/10.5194/hess-27-2227-2023, https://doi.org/10.5194/hess-27-2227-2023, 2023
Short summary
Short summary
Cave monitoring studies including cave drip water are unique opportunities to sample water which has percolated through the soil and rock. The change in drip water chemistry is resolved over the course of 16 months, inferring seasonal and hydrological variations in soil and karst processes at the water–air and water–rock interface. Such data sets improve the understanding of hydrological and hydrochemical processes and ultimately advance the interpretation of geochemical stalagmite records.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Gabriella M. Weiss, Julie Lattaud, Marcel T. J. van der Meer, and Timothy I. Eglinton
Clim. Past, 18, 233–248, https://doi.org/10.5194/cp-18-233-2022, https://doi.org/10.5194/cp-18-233-2022, 2022
Short summary
Short summary
Here we study the elemental signatures of plant wax compounds as well as molecules from algae and bacteria to understand how water sources changed over the last 11 000 years in the northeastern part of Europe surrounding the Baltic Sea. Our results show diversity in plant and aquatic microorganisms following the melting of the large ice sheet that covered northern Europe as the regional climate continued to warm. A shift in water source from ice melt to rain also occurred around the same time.
Blanca Ausín, Negar Haghipour, Elena Bruni, and Timothy Eglinton
Biogeosciences, 19, 613–627, https://doi.org/10.5194/bg-19-613-2022, https://doi.org/10.5194/bg-19-613-2022, 2022
Short summary
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Cited articles
Addor, N., Jaun, S., Fundel, F., and Zappa, M.: An operational hydrological
ensemble prediction system for the city of Zurich (Switzerland): skill, case
studies and scenarios, Hydrol. Earth Syst. Sci., 15, 2327–2347,
https://doi.org/10.5194/hess-15-2327-2011, 2011.
Asselman, N. E. M.: Fitting and interpretation of sediment rating curves, J.
Hydrol., 234, 228–248, https://doi.org/10.1016/S0022-1694(00)00253-5,
2000.
Attermeyer, K., Catalán, N., Einarsdottir, K., Freixa, A., Groeneveld,
M., Hawkes, J. A., Bergquist, J., and Tranvik, L. J.: Organic Carbon
Processing During Transport Through Boreal Inland Waters: Particles as
Important Sites, J. Geophys. Res.-Biogeo., 123, 2412–2428,
https://doi.org/10.1029/2018JG004500, 2018.
Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S.
C., Alin, S. R., Aalto, R. E., and Yoo, K.: Riverine coupling of
biogeochemical cycles between land, oceans, and atmosphere, Front. Ecol.
Environ., 9, 53–60, https://doi.org/10.1890/100014, 2011.
Batibeniz, F., Ashfaq, M., Önol, B., Turuncoglu, U. U., Mehmood, S., and
Evans, K. J.: Identification of major moisture sources across the
Mediterranean Basin, Clim. Dynam., 54, 4109–4127,
https://doi.org/10.1007/s00382-020-05224-3, 2020.
Battin, T. J.: Hydrologic flow paths control dissolved organic carbon fluxes
and metabolism in an alpine stream hyporheic zone, Water Resour. Res., 35,
3159–3169, https://doi.org/10.1029/1999WR900144, 1999.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter,
A., and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600,
https://doi.org/10.1038/ngeo618, 2009.
Bauer, J. E. and Bianchi, T. S.: Dissolved Organic Carbon Cycling and
Transformation, in: Treatise on Estuarine and Coastal Science, Vol. 5,
Elsevier Inc., 7–67, https://doi.org/10.1016/B978-0-12-374711-2.00502-7,
2012.
Bezzola, G. R. and Hegg, C. (Eds.): Ereignisanalyse Hochwasser 2005, Teil 1 –
Prozessse, Schäden und erste Einordnung, Bundesamt für Umwelt BAFU, Eidgenössische Forschungsanstalt WSL. Umwelt-Wissen, 0707, 215,
2007.
Bianchi, T. S. and Bauer, J. E.: Particulate Organic Carbon Cycling and
Transformation, in: Treatise on Estuarine and Coastal Science, Vol. 5,
Elsevier Inc., 69–117, https://doi.org/10.1016/B978-0-12-374711-2.00503-9,
2012.
Blair, N. E. and Aller, R. C.: The Fate of Terrestrial Organic Carbon in the
Marine Environment, Ann. Rev. Mar. Sci., 4, 401–423,
https://doi.org/10.1146/annurev-marine-120709-142717, 2012.
Blair, N. E., Leithold, E. L., Ford, S. T., Peeler, K. A., Holmes, J. C.,
and Perkey, D. W.: The persistence of memory: The fate of ancient
sedimentary organic carbon in a modern sedimentary system, Geochim. Cosmochim.
Ac., 67, 63–73, https://doi.org/10.1016/S0016-7037(02)01043-8, 2003.
Blattmann, T. M., Wang, S. L., Lupker, M., Märki, L., Haghipour, N.,
Wacker, L., Chung, L. H., Bernasconi, S. M., Plötze, M., and Eglinton,
T. I.: Sulphuric acid-mediated weathering on Taiwan buffers geological
atmospheric carbon sinks, Sci. Rep., 9, 1–8,
https://doi.org/10.1038/s41598-019-39272-5, 2019.
Boston, H. L. and Hill, W. R.: Photosynthesis-light relations of stream
periphyton communities, Limnol. Oceanogr, 36, 644–656, 1991.
Bouchez, J., Beyssac, O., Galy, V. v., Gaillardet, J. J., France-Lanord, C.,
Maurice, L., Moreira, and Moreira-Turcq, P.: Oxidation of petrogenic organic
carbon in the Amazon floodplain as a source of atmospheric CO2,
Geology, 38, 255–258, https://doi.org/10.1130/G30608.1, 2010.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1007/978-3-030-62008-0_5, 2001.
Broecker, W. S. and Walton, A.: The Geochemistry of 14C in Freshwater
Systems, Geochim. Cosmochim. Ac., 16, 15–38, 1959.
Butman, D. E., Wilson, H. F., Barnes, R. T., Xenopoulos, M. A., and Raymond,
P. A.: Increased mobilization of aged carbon to rivers by human disturbance,
Nat. Geosci., 8, 112–116, https://doi.org/10.1038/ngeo2322, 2015.
Carey, A. E., Gardner, C. B., Goldsmith, S. T., Lyons, W. B., and Hicks, D.
M.: Organic carbon yields from small, mountainous rivers, New Zealand,
Geophys. Res. Lett., 32, 1–5, https://doi.org/10.1029/2005GL023159, 2005.
Chikaraishi, Y.: 13C 12C Signatures in Plants and Algae, in:
Treatise on Geochemistry: Second Edition, Vol. 12, Elsevier Ltd., 95–123,
https://doi.org/10.1016/B978-0-08-095975-7.01008-1, 2013.
Choubin, B., Darabi, H., Rahmati, O., Sajedi-Hosseini, F., and Kløve, B.:
River suspended sediment modelling using the CART model: A comparative study
of machine learning techniques, Sci. Total Environ., 615,
272–281, https://doi.org/10.1016/j.scitotenv.2017.09.293, 2018.
Cohn, T. A.: Recent advances in statistical methods for the estimation of
sediment and nutrient transport in rivers, Rev. Geophys., 33,
1117–1123, https://doi.org/10.1029/95RG00292, 1995.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 171–184,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Coynel, A., Etcheber, H., Abril, G., Maneux, E., Dumas, J., and Hurtrez, J.
E.: Contribution of small mountainous rivers to particulate organic carbon
input in the Bay of Biscay, Biogeochemistry, 74, 151–171,
https://doi.org/10.1007/s10533-004-3362-1, 2005.
Csiki, S. and Rhoads, B. L.: Hydraulic and geomorphological effects of
run-of-river dams, Prog. Phys. Geogr., 34, 755–780,
https://doi.org/10.1177/0309133310369435, 2010.
Doppler, T., Franssen, H. J. H., Kaiser, H. P., Kuhlman, U., and Stauffer,
F.: Field evidence of a dynamic leakage coefficient for modelling
river-aquifer interactions, J. Hydrol., 347, 177–187,
https://doi.org/10.1016/j.jhydrol.2007.09.017, 2007.
Douglas, P. M. J., Stratigopoulos, E., Park, S., and Keenan, B.: Spatial
differentiation of sediment organic matter isotopic composition and inferred
sources in a temperate forest lake catchment, Chem. Geol., 603, 120887,
https://doi.org/10.1016/j.chemgeo.2022.120887, 2022.
Drake, T. W., van Oost, K., Barthel, M., Bauters, M., Hoyt, A. M.,
Podgorski, D. C., Six, J., Boeckx, P., Trumbore, S. E., Cizungu Ntaboba, L.,
and Spencer, R. G. M.: Mobilization of aged and biolabile soil carbon by
tropical deforestation, Nat. Geosci., 12, 541–546,
https://doi.org/10.1038/s41561-019-0384-9, 2019.
Drucker, H., Surges, C. J. C., Kaufman, L., Smola, A., and Vapnik, V.:
Support vector regression machines, in: Advances in Neural Information Processing Systems: Proceedings of the 1996 Conference, Vol. 9, 155—161, Mit Press, ISBN: 9780262100656, 1997.
Duan, N.: Smearing estimate: A nonparametric retransformation method, J. Am.
Stat. Assoc., 78, 605–610, https://doi.org/10.1080/01621459.1983.10478017,
1983.
Feng, X., Feakins, S. J., Liu, Z., Ponton, C., Wang, R. Z., Karkabi, E.,
Galy, V., Berelson, W. M., Nottingham, A. T., Meir, P., and West, A. J.:
Source to sink: Evolution of lignin composition in the Madre de Dios River
system with connection to the Amazon basin and offshore, J.
Geophys. Res.-Biogeosci., 121, 1316–1338,
https://doi.org/10.1002/2016JG003323, 2016.
Ferguson, R. I.: River Loads Underestimated by Rating Curves, Water Resour.
Res., 22, 74–76, https://doi.org/10.1029/WR022i001p00074, 1986.
Fernandez, I., Mahieu, N., and Cadisch, G.: Carbon isotopic fractionation
during decomposition of plant materials of different quality, Global
Biogeochem. Cy., 17, 1–9, https://doi.org/10.1029/2001gb001834, 2003.
Fox, P. M., Bill, M., Heckman, K., Conrad, M., Anderson, C., Keiluweit, M.,
and Nico, P. S.: Shale as a Source of Organic Carbon in Floodplain Sediments
of a Mountainous Watershed, J. Geophys. Res.-Biogeo., 125, 1–21,
https://doi.org/10.1029/2019JG005419, 2020.
von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., and Kirchner, J. W.:
Sensitivity of young water fractions to hydro-climatic forcing and landscape
properties across 22 Swiss catchments, Hydrol. Earth Syst Sci., 22,
3841–3861, https://doi.org/10.5194/hess-22-3841-2018, 2018.
Freymond, C. v., Lupker, M., Peterse, F., Haghipour, N., Wacker, L., Filip,
F., Giosan, L., and Eglinton, T. I.: Constraining Instantaneous Fluxes and
Integrated Compositions of Fluvially Discharged Organic Matter,
Geochem. Geophy. Geosy., 19, 2453–2462,
https://doi.org/10.1029/2018GC007539, 2018.
Galy, V. and Eglinton, T.: Protracted storage of biospheric carbon in the
Ganges-Brahmaputra basin, Nat. Geosci., 4, 843–847,
https://doi.org/10.1038/ngeo1293, 2011.
Galy, V., France-Lanord, C., and Lartiges, B.: Loading and fate of
particulate organic carbon from the Himalaya to the Ganga-Brahmaputra delta,
Geochim. Cosmochim. Ac., 72, 1767–1787,
https://doi.org/10.1016/j.gca.2008.01.027, 2008.
Gelman, A. and Rubin, D. B.: Inference form Iterative Simulation Using
Multiple Sequences, Stat. Sci., 7, 457–472, 1992.
Geweke, J.: Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, Staff Report, 148, Federal Reserve Bank of Minneapolis, 30 pp., 1991.
Gies, H., Lupker, M., Wick, S., Haghipour, N., Buggle, B., and Eglinton, T.:
Discharge-Modulated Soil Organic Carbon Export From Temperate Mountainous
Headwater Streams, J. Geophys. Res.-Biogeo., 127, 1–15,
https://doi.org/10.1029/2021JG006624, 2022.
Golly, A., Turowski, J. M., Badoux, A., and Hovius, N.: Controls and
feedbacks in the coupling of mountain channels and hillslopes, Geology, 45,
307–310, https://doi.org/10.1130/G38831.1, 2017.
Gomez, B., Baisden, W. T., and Rogers, K. M.: Variable composition of
particle-bound organic carbon in steepland river systems, J. Geophys. Res.-Earth, 115, 1–9, https://doi.org/10.1029/2010JF001713, 2010.
Goñi, M. A., Hatten, J. A., Wheatcroft, R. A., and Borgeld, J. C.:
Particulate organic matter export by two contrasting small mountainous
rivers from the Pacific Northwest, USA, J. Geophys. Res.-Biogeo., 118,
112–134, https://doi.org/10.1002/jgrg.20024, 2013.
Goñi, M. A., Moore, E., Kurtz, A., Portier, E., Alleau, Y., and Merrell,
D.: Organic matter compositions and loadings in soils and sediments along
the Fly River, Papua New Guinea, Geochim. Cosmochim. Ac., 140, 275–296,
https://doi.org/10.1016/j.gca.2014.05.034, 2014.
Griffith, D. R., Barnes, R. T., and Raymond, P. A.: Inputs of fossil carbon
from wastewater treatment plants to U.S. Rivers and oceans, Environ. Sci.
Technol., 43, 5647–5651, https://doi.org/10.1021/es9004043, 2009.
Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F.,
Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H.,
Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M.
E., Meng, J., Mulligan, M., Nilsson, C., Olden, J. D., Opperman, J. J.,
Petry, P., Reidy Liermann, C., Sáenz, L., Salinas-Rodríguez, S.,
Schelle, P., Schmitt, R. J. P., Snider, J., Tan, F., Tockner, K., Valdujo,
P. H., van Soesbergen, A., and Zarfl, C.: Mapping the world's free-flowing
rivers, Nature, 569, 215–221, https://doi.org/10.1038/s41586-019-1111-9,
2019.
Hagedorn, F., Bucher, J. B., and Schleppi, P.: Contrasting dynamics of
dissolved inorganic and organic nitrogen in soil and surface waters of
forested catchments with Gleysols, Geoderma, 100, 173–192,
https://doi.org/10.1016/S0016-7061(00)00085-9, 2001.
Haghipour, N., Ausin, B., Usman, M. O., Ishikawa, N., Wacker, L., Welte, C.,
Ueda, K., and Eglinton, T. I.: Compound-Specific Radiocarbon Analysis by
Elemental Analyzer-Accelerator Mass Spectrometry: Precision and Limitations,
Anal. Chem., 91, 2042–2049, https://doi.org/10.1021/acs.analchem.8b04491,
2019.
Hari, V., Rakovec, O., Markonis, Y., Hanel, M., and Kumar, R.: Increased
future occurrences of the exceptional 2018–2019 Central European drought
under global warming, Sci. Rep., 10, 1–10,
https://doi.org/10.1038/s41598-020-68872-9, 2020.
Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. v.,
Lattin, J. D., Anderson, N. H., Cline, S. P., Aumen, N. G., Sedell, J. R.,
Lienkaemper, G. W., Cromack, K., and Cummins, K. W.: Ecology of Coarse Woody
Debris in Temperate Ecosystems, Adv. Ecol. Res., 15, 133–302,
https://doi.org/10.1016/S0065-2504(03)34002-4, 1986.
Harvey, H. R., Tuttle, J. H., and Bell, J. T.: Kinetics of phytoplankton
decay during simulated sedimentation: Changes in biochemical composition and
microbial activity under oxic and anoxic conditions, Geochim. Cosmochim. Ac.,
59, 3367–3377, https://doi.org/10.1016/0016-7037(95)00217-N, 1995.
Hatten, J. A., Goñi, M. A., and Wheatcroft, R. A.: Chemical
characteristics of particulate organic matter from a small, mountainous
river system in the Oregon Coast Range, USA, Biogeochemistry, 107, 43–66,
https://doi.org/10.1007/s10533-010-9529-z, 2012.
Hedges, J. I., Clark, W. A., Quay, P. D., Richey, J. E., Devol, A. H., and
Santos, U. D. M.: Compositions and fluxes of particulate organic material in
the Amazon River, Limnol. Oceanogr., 31, 717–738,
https://doi.org/10.4319/lo.1986.31.4.0717, 1986.
Hedges, J. I., Mayorga, E., Tsamakis, E., McClain, M. E., Aufdenkampe, A.,
Quay, P., Richey, J. E., Benner, R., Opsahl, S., Black, B., Pimentel, T.,
Quintanilla, J., and Maurice, L.: Organic matter in Bolivian tributaries of
the Amazon River: A comparison to the lower mainstream, Limnol. Oceanogr., 45,
1449–1466, https://doi.org/10.4319/lo.2000.45.7.1449, 2000.
Hemingway, J. D., Schefuß, E., Spencer, R. G. M., Dinga, B. J.,
Eglinton, T. I., McIntyre, C., and Galy, V. v.: Hydrologic controls on
seasonal and inter-annual variability of Congo River particulate organic
matter source and reservoir age, Chem. Geol., 466, 454–465,
https://doi.org/10.1016/j.chemgeo.2017.06.034, 2017.
Herrmann, N., Boom, A., Carr, A. S., Chase, B. M., Granger, R., Hahn, A.,
Zabel, M., and Schefuß, E.: Sources, transport and deposition of
terrestrial organic material: A case study from southwestern Africa, Quaternary
Sci. Rev., 149, 215–229, https://doi.org/10.1016/j.quascirev.2016.07.028,
2016.
Hilton, R. G., Galy, A., and Hovius, N.: Riverine particulate organic carbon
from an active mountain belt: Importance of landslides, Global Biogeochem.
Cy., 22, 1–12, https://doi.org/10.1029/2006GB002905, 2008a.
Hilton, R. G., Galy, A., Hovius, N., Chen, M.-C., Horng, M.-J., and Chen,
H.: Tropical-cyclone-driven erosion of the terrestrial biosphere from
mountains, Nat. Geosci., 1, 759–762, https://doi.org/10.1038/ngeo333, 2008b.
Hilton, R. G., Galy, A., Hovius, N., Horng, M. J., and Chen, H.: The
isotopic composition of particulate organic carbon in mountain rivers of
Taiwan, Geochim. Cosmochim. Ac., 74, 3164–3181,
https://doi.org/10.1016/j.gca.2010.03.004, 2010.
Hilton, R. G., Galy, A., Hovius, N., Horng, M. J., and Chen, H.: Efficient
transport of fossil organic carbon to the ocean by steep mountain rivers: An
orogenic carbon sequestration mechanism, Geology, 39, 71–74,
https://doi.org/10.1130/G31352.1, 2011a.
Hilton, R. G., Meunier, P., Hovius, N., Bellingham, P. J., and Galy, A.:
Landslide impact on organic carbon cycling in a temperate montane forest,
Earth Surf. Process. Landf., 36, 1670–1679, https://doi.org/10.1002/esp.2191,
2011b.
Hilton, R. G., Galy, A., Hovius, N., Kao, S. J., Horng, M. J., and Chen, H.:
Climatic and geomorphic controls on the erosion of terrestrial biomass from
subtropical mountain forest, Global Biogeochem. Cy., 26, 1–12,
https://doi.org/10.1029/2012GB004314, 2012.
Hilton, R. G., Turowski, J. M., Winnick, M., Dellinger, M., Schleppi, P.,
Williams, K. H., Lawrence, C. R., Maher, K., West, M., and Hayton, A.:
Concentration-Discharge Relationships of Dissolved Rhenium in Alpine
Catchments Reveal Its Use as a Tracer of Oxidative Weathering, Water Resour.
Res., 57, 1–18, https://doi.org/10.1029/2021WR029844, 2021.
Hovius, N., Stark, C. P., Hao-Tsu, C., and Jiun-Chuan, L.: Supply and
removal of sediment in a landslide-dominated mountain belt: Central Range,
Taiwan, J. Geol., 108, 73–89, https://doi.org/10.1086/314387,
2000.
Hua, Q., Turnbull, J. C., Santos, G. M., Rakowski, A. Z., Ancapichún,
S., de Pol-Holz, R., Hammer, S., Lehman, S. J., Levin, I., Miller, J. B.,
Palmer, J. G., and Turney, C. S. M.: Atmospheric radiocarbon for the period
1950–2019, Radiocarbon, 64, 723–745, https://doi.org/10.1017/RDC.2021.95,
2022.
Inamdar, S., Singh, S., Dutta, S., Levia, D., Mitchell, M., Scott, D., Bais,
H., and McHale, P.: Fluorescence characteristics and sources of dissolved
organic matter for stream water during storm events in a forested
mid-Atlantic watershed, J. Geophys. Res.-Biogeo., 116, 1–23,
https://doi.org/10.1029/2011JG001735, 2011.
Inamdar, S., Finger, N., Singh, S., Mitchell, M., Levia, D., Bais, H.,
Scott, D., and McHale, P.: Dissolved organic matter (DOM) concentration and
quality in a forested mid-Atlantic watershed, USA, Biogeochemistry, 108,
55–76, https://doi.org/10.1007/s10533-011-9572-4, 2012.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K.,
Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O.,
Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 2391 pp., 2021.
Jaun, S. and Ahrens, B.: Evaluation of a probabilistic hydrometeorological forecast system, Hydrol. Earth Syst. Sci., 13, 1031–1043, https://doi.org/10.5194/hess-13-1031-2009, 2009.
Jochner, M., Turowski, J. M., Badoux, A., Stoffel, M., and Rickli, C.: The
role of log jams and exceptional flood events in mobilizing coarse
particulate organic matter in a steep headwater stream, Earth Surf.
Dynam., 3, 311–320, https://doi.org/10.5194/esurf-3-311-2015, 2015.
Kahraman, A., Kendon, E. J., Chan, S. C., and Fowler, H. J.:
Quasi-Stationary Intense Rainstorms Spread Across Europe Under Climate
Change, Geophys. Res. Lett., 48, 1–11, https://doi.org/10.1029/2020GL092361, 2021.
Känel, B., Götz, C., Niederhauser, P., Sinniger, J., and Steinmann,
P.: Zustand der Fliessgewässer von Limmat, Sihl und Zürichsee –
Messkampagne 2020, 12 pp., Kanton Zürich Baudirektion, Amt für Abfall, Wasser, Energie und Luft, 2021.
Kao, S. J. and Liu, K. K.: Stable carbon and nitrogen isotope systematics in
a human disturbed watershed (Lanyang-Hsi) in Taiwan and the estimation of
biogenic particulate organic carbon and nitrogen fluxes, Global Biogeochem.
Cy., 14, 189–198, https://doi.org/10.1029/1999GB900079, 2000.
Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H. A., and Kumar, V.:
Machine Learning for the Geosciences: Challenges and Opportunities, IEEE
Trans. Knowl. Data Eng., 31, 1544–1554,
https://doi.org/10.1109/TKDE.2018.2861006, 2019.
Keaveney, E. M. and Reimer, P. J.: Understanding the variability in
freshwater radiocarbon reservoir offsets: A cautionary tale, J. Archaeol. Sci.,
39, 1306–1316, https://doi.org/10.1016/j.jas.2011.12.025, 2012.
Keller, H. M. and Weibel, P.: Suspended Sediments in Streamwater –
Indicators of Erosion and Bed Load Transport in Mountainous Basins. IAHS
Publication No. 203, in: Sediment and Stream Water Quality in a Changing
Environment: Trends and Explanation, 53–61, IAHS Press, Institue of Hydrology, Wallingford, Oxfordshire, ISBN: 0-947571-08-6, 1991.
Kohn, M. J.: Carbon isotope compositions of terrestrial C3 plants as
indicators of (paleo)ecology and (paleo)climate, P. Natl. Acad. Sci. USA,
107, 19691–5, https://doi.org/10.1073/pnas.1004933107, 2010.
Komada, T., Druffel, E. R. M., and Trumbore, S. E.: Oceanic export of relict
carbon by small mountainous rivers, Geophys. Res. Lett., 31, 1–4,
https://doi.org/10.1029/2004GL019512, 2004.
Korup, O. and Schlunegger, F.: Rock-type control on erosion-induced uplift,
eastern Swiss Alps, Earth Planet Sc. Lett., 278, 278–285,
https://doi.org/10.1016/j.epsl.2008.12.012, 2009.
Lang, S. Q., Bernasconi, S. M., and Früh-Green, G. L.: Stable isotope
analysis of organic carbon in small (µg C) samples and dissolved
organic matter using a GasBench preparation device, Rapid Commun.
Mass Sp., 26, 9–16, https://doi.org/10.1002/rcm.5287, 2012.
Lang, S. Q., Mcintyre, C. P., Bernasconi, S. M., Früh-Green, G. L.,
Voss, B. M., Eglinton, T. I., and Wacker, L.: Rapid 14C Analysis of
Dissolved Organic Carbon in Non-Saline Waters, Radiocarbon, 58, 1–11,
https://doi.org/10.1017/RDC.2016.17, 2016.
Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P., and Regnier, P. A.
G.: Spatial patterns in CO2 evasion from the global river network,
Global Biogeochem. Cy., 29, 534–554,
https://doi.org/10.1002/2014GB004941, 2015.
Lauerwald, R., Regnier, P., Guenet, B., Friedlingstein, P., and Ciais, P.:
How Simulations of the Land Carbon Sink Are Biased by Ignoring Fluvial
Carbon Transfers: A Case Study for the Amazon Basin, One Earth, 3, 226–236,
https://doi.org/10.1016/j.oneear.2020.07.009, 2020.
LeGrande, A. N. and Schmidt, G. A.: Global gridded data set of the oxygen
isotopic composition in seawater, Geophys. Res. Lett., 33, 1–5,
https://doi.org/10.1029/2006GL026011, 2006.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Lehmann, M. F., Bernasconi, S. M., Barbieri, A., and Mckenzie, J. A.:
Preservation of organic matter and alteration of its carbon and nitrogen
isotope composition during simulated and in situ early sedimentary
diagenesis, Geochim. Cosmochim. Ac., 66, 3573–3584,
https://doi.org/10.1016/S0016-7037(02)00968-7, 2002.
Lehmann, M. F., Bernasconi, S. M., Barbieri, A., Simona, M., and McKenzie,
J. A.: Interannual variation of the isotopic composition of sedimenting
organic carbon and nitrogen in Lake Lugano: A long-term sediment trap study,
Limnol. Oceanogr., 49, 839–849, https://doi.org/10.4319/lo.2004.49.3.0839,
2004.
Leithold, E. L., Blair, N. E., and Perkey, D. W.: Geomorphologic controls on
the age of particulate organic carbon from small mountainous and upland
rivers, Global Biogeochem. Cy., 20, 1–11,
https://doi.org/10.1029/2005GB002677, 2006.
Leithold, E. L., Blair, N. E., and Wegmann, K. W.: Source-to-sink
sedimentary systems and global carbon burial: A river runs through it, Earth
Sci. Rev., 153, 30–42, https://doi.org/10.1016/j.earscirev.2015.10.011, 2016.
Li, M., Peng, C., Zhou, X., Yang, Y., Guo, Y., Shi, G., and Zhu, Q.:
Modeling Global Riverine DOC Flux Dynamics From 1951 to 2015, J. Adv. Model
Earth Syst., 11, 514–530, https://doi.org/10.1029/2018MS001363, 2019.
Longworth, B. E., Petsch, S. T., Raymond, P. A., and Bauer, J. E.: Linking
lithology and land use to sources of dissolved and particulate organic
matter in headwaters of a temperate, passive-margin river system, Geochim.
Cosmochim. Ac., 71, 4233–4250, https://doi.org/10.1016/j.gca.2007.06.056,
2007.
Lyons, W. B., Nezat, C. A., Carey, A. E., and Hicks, D. M.: Organic carbon
fluxes to the ocean from high-standing islands, Geology, 30, 443–446,
https://doi.org/10.1130/0091-7613(2002)030<0443:OCFTTO>2.0.CO;2, 2002.
Marwick, T. R., Borges, A. V., van Acker, K., Darchambeau, F., and Bouillon,
S.: Disproportionate Contribution of Riparian Inputs to Organic Carbon Pools
in Freshwater Systems, Ecosystems, 17, 974–989,
https://doi.org/10.1007/s10021-014-9772-6, 2014.
Marwick, T. R., Tammoh, F., Teodoru, C. R., v. Borges, A., Darchambeau, F.,
and Bouillon, S.: The age of river-transported carbon: A global perspective,
Global Biogeochem. Cy., 29, 122–137,
https://doi.org/10.1002/2014GB004911, 2015.
Masiello, A. and Druffel, E. R. M.: Carbon isotope geochemistry of the Santa
Clara River, Global Biogeochem. Cy., 15, 407–416, 2001.
Mayorga, E., Aufdenkampe, A. K., Masiello, C. A., Krusche, A. v., Hedges, J.
I., Quay, P. D., Richey, J. E., and Brown, T. A.: Young organic matter as a
source of carbon dioxide outgassing from Amazonian rivers, Nature, 436,
538–541, https://doi.org/10.1038/nature03880, 2005.
McCallister, S. L., Bauer, J. E., Cherrier, J. E., and Ducklow, H. W.:
Assessing sources and ages of organic matter supporting river and estuarine
bacterial production: A multiple-isotope (Δ14C, δ13C, and δ15N) approach, Limnol. Oceanogr., 49, 1687–1702,
https://doi.org/10.4319/lo.2004.49.5.1687, 2004.
McCulloch, W. S. and Pitts, W.: A logical calculus of the ideas immanent in
nervous activity, Bull. Mathemat. Biophys., 5, 115–133,
https://doi.org/10.1007/978-3-030-01370-7_61, 1943.
McIntyre, C. P., Lechleitner, F., Lang, S. Q., Haghiour, N., Fahrni, S.,
Wacker, L., and Synal, H. A.: 14C Contamination Testing in Natural
Abundance Laboratories: A New Preparation Method Using Wet Chemical
Oxidation and Some Experiences, Radiocarbon, 58, 935–941,
https://doi.org/10.1017/RDC.2016.78, 2016.
Medeiros, P. M., Sikes, E. L., Thomas, B., and Freeman, K. H.: Flow
discharge influences on input and transport of particulate and sedimentary
organic carbon along a small temperate river, Geochim. Cosmochim. Ac., 77,
317–334, https://doi.org/10.1016/j.gca.2011.11.020, 2012.
Milliman, J. D. and Farnsworth, K. L.: River Discharge to the Coastal Ocean.
A global synthesis, 2nd Edn.,Cambridge, New
York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Dehli, Tokyo,
Mexico City, 384 pp., Cambridge University Press, ISBN: 978-0-521-87987-3, 2013.
Milliman, J. D. and Syvitski, J. P. M.: Geomorphic/Tectonic Control of
Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers,
J. Geol., 100, 525–544, https://doi.org/10.1086/629606, 1992.
Milzow, C., Molnar, P., McArdell, B. W., and Burlando, P.: Spatial
organization in the step-pool structure of a steep mountain stream
(Vogelbach, Switzerland), Water Resour. Res., 42, 1–11,
https://doi.org/10.1029/2004WR003870, 2006.
Moore, S., Evans, C. D., Page, S. E., Garnett, M. H., Jones, T. G., Freeman,
C., Hooijer, A., Wiltshire, A. J., Limin, S. H., and Gauci, V.: Deep
instability of deforested tropical peatlands revealed by fluvial organic
carbon fluxes, Nature, 493, 660–663, https://doi.org/10.1038/nature11818,
2013.
Myhre, G., Alterskjær, K., Stjern, C. W., Hodnebrog, Marelle, L.,
Samset, B. H., Sillmann, J., Schaller, N., Fischer, E., Schulz, M., and
Stohl, A.: Frequency of extreme precipitation increases extensively with
event rareness under global warming, Sci. Rep., 9, 1–10,
https://doi.org/10.1038/s41598-019-52277-4, 2019.
Nussbaum, M., Papritz, A., Baltensweiler, A., and Walthert, L.: Estimating
soil organic carbon stocks of Swiss forest soils by robust external-drift
kriging, Geosci. Model Dev., 7, 1197–1210,
https://doi.org/10.5194/gmd-7-1197-2014, 2014.
O'Leary, M. H.: Carbon Isotopes in Photosynthesis, Bioscience, 38, 328–336,
https://doi.org/10.2307/1310735, 1988.
Olyaie, E., Banejad, H., Chau, K. W., and Melesse, A. M.: A comparison of
various artificial intelligence approaches performance for estimating
suspended sediment load of river systems: a case study in United States,
Environ. Monit. Assess., 187, 1–22, https://doi.org/10.1007/s10661-015-4381-1, 2015.
Peters, W., Bastos, A., Ciais, P., and Vermeulen, A.: A historical,
geographical and ecological perspective on the 2018 European summer drought, Philos. Trans. R. Soc. B, 375, 1–8,
https://doi.org/10.1098/rstb.2019.0505, 2020.
Petsch, S. T., Eglinton, T. I., and Edwards, K. J.: 14C-dead living
biomass: Evidence for microbial assimilation of ancient organic carbon
during shale weathering, Science, 292, 1127–1131,
https://doi.org/10.1126/science.1058332, 2001.
Qiao, J., Bao, H., Huang, D., Li, D. W., Lee, T. Y., Huang, J. C., and Kao,
S. J.: Runoff-driven export of terrigenous particulate organic matter from a
small mountainous river: sources, fluxes and comparisons among different
rivers, Biogeochemistry, 147, 71–86,
https://doi.org/10.1007/s10533-019-00629-7, 2020.
Raymond, P. A. and Bauer, J. E.: Use of 14C and 13C natural
abundances for evaluating riverine, estuarine, and coastal DOC and POC
sources and cycling: A review and synthesis, Org. Geochem., 32, 469–485,
https://doi.org/10.1016/S0146-6380(00)00190-X, 2001.
Raymond, P. A., Bauer, J. E., Caraco, N. F., Cole, J. J., Longworth, B., and
Petsch, S. T.: Controls on the variability of organic matter and dissolved
inorganic carbon ages in northeast US rivers, Mar. Chem., 92, 353–366,
https://doi.org/10.1016/j.marchem.2004.06.036, 2004.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C.,
Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen,
P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon
dioxide emissions from inland waters, Nature, 503, 355–359,
https://doi.org/10.1038/nature12760, 2013.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N.,
Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson,
A. J., Arndt, S., Arnosti, C., Borges, A. v., Dale, A. W., Gallego-Sala, A.,
Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos,
F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P.
A., Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic
perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6,
597–607, https://doi.org/10.1038/ngeo1830, 2013.
Regnier, P., Resplandy, L., Najjar, R. G., and Ciais, P.: The land-to-ocean
loops of the global carbon cycle, Nature, 603, 401—410,
https://doi.org/10.1038/s41586-021-04339-9, 2022.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., and Prabhat: Deep learning and process understanding for
data-driven Earth system science, Nature, 566, 195–204,
https://doi.org/10.1038/s41586-019-0912-1, 2019.
Reimer, P. J., Brown, T. A., and Reimer, R. W.: Discussion: Reporting and
Calibration of Post-Bomb 14C Data, Radiocarbon, 46, 1290–1304,
2004.
Repasch, M., Scheingross, J. S., Hovius, N., Lupker, M., Wittmann, H.,
Haghipour, N., Gröcke, D. R., Orfeo, O., Eglinton, T. I., and Sachse,
D.: Fluvial organic carbon cycling regulated by sediment transit time and
mineral protection, Nat. Geosci., 14, 842–848,
https://doi.org/10.1038/s41561-021-00845-7, 2021.
Rickenmann, D., Turowski, J. M., Fritschi, B., Klaiber, A., and Ludwig, A.:
Bedload transport measurements at the Erlenbach stream with geophones and
automated basket samplers, Earth Surf. Process. Landf., 37, 1000–1011,
https://doi.org/10.1002/esp.3225, 2012.
Romaní, A. M., Guasch, H., Muñoz, I., Ruana, J., Vilalta, E.,
Schwartz, T., Emtiazi, F., and Sabater, S.: Biofilm structure and function
and possible implications for riverine DOC dynamics, Microb. Ecol., 47,
316–328, https://doi.org/10.1007/s00248-003-2019-2, 2004.
Rowland, R., Inamdar, S., and Parr, T.: Evolution of particulate organic
matter (POM) along a headwater drainage: role of sources, particle size
class, and storm magnitude, Biogeochemistry, 133, 181–200,
https://doi.org/10.1007/s10533-017-0325-x, 2017.
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L.,
Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D.,
Sanz-Ramos, M., Stoffel, M., and Wohl, E.: Characterization of wood-laden
flows in rivers, Earth Surf. Process. Landf., 44, 1694–1709,
https://doi.org/10.1002/esp.4603, 2019.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning
representations by back-propagating errors, Nature, 323, 533–536, 1986.
Scheingross, J. S., Hovius, N., Dellinger, M., Hilton, R. G., Repasch, M.,
Sachse, D., Gröcke, D. R., Vieth-Hillebrand, A., and Turowski, J. M.:
Preservation of organic carbon during active fluvial transport and particle
abrasion, Geology, 47, 958–962, https://doi.org/10.1130/G46442.1, 2019.
Scheingross, J. S., Repasch, M. N., Hovius, N., Sachse, D., Lupker, M.,
Fuchs, M., Halevy, I., Gröcke, D. R., Golombek, N. Y., Haghipour, N.,
Eglinton, T. I., Orfeo, O., and Schleicher, A. M.: The fate of
fluvially-deposited organic carbon during transient floodplain storage,
Earth Planet Sc. Lett., 561, 116822, https://doi.org/10.1016/j.epsl.2021.116822,
2021.
Schleppi, P., Muller, N., Feyen, H., Papritz, A., Bucher, J. B. J. B.,
Fliihler, H., and Flühler, H.: Nitrogen budgets of two small
experimental forested catchments at Alptal, Switzerland, Forest Ecol. Manag.,
101, 177–185, https://doi.org/10.1016/S0378-1127(97)00134-5, 1998.
Schleppi, P., Waldner, P. A., and Fritschi, B.: Accuracy and precision of
different sampling strategies and flux integration methods for runoff water:
Comparisons based on measurements of the electrical conductivity, Hydrol.
Process., 20, 395–410, https://doi.org/10.1002/hyp.6057, 2006.
Schmidt, S., Alewell, C., Panagos, P., and Meusburger, K.: Regionalization
of monthly rainfall erosivity patternsin Switzerland, Hydrol. Earth Syst. Sci.,
20, 4359–4373, https://doi.org/10.5194/hess-20-4359-2016, 2016.
Schmidt, S., Alewell, C., and Meusburger, K.: Monthly RUSLE soil erosion
risk of Swiss grasslands, J. Maps, 15, 247–256,
https://doi.org/10.1080/17445647.2019.1585980, 2019.
Schuerch, P., Densmore, A. L., McArdell, B. W., and Molnar, P.: The
influence of landsliding on sediment supply and channel change in a steep
mountain catchment, Geomorphology, 78, 222–235,
https://doi.org/10.1016/j.geomorph.2006.01.025, 2006.
Schuwirth, N., Kühni, M., Schweizer, S., Uehlinger, U., and Reichert,
P.: A mechanistic model of benthos community dynamics in the River Sihl,
Switzerland, Freshw. Biol., 53, 1372–1392,
https://doi.org/10.1111/j.1365-2427.2008.01970.x, 2008.
Schwab, M. S. S. and Gies, H.: Subalpine Sihl River Time-Series: Particulate and Dissolved Organic Carbon contents and Isotopic Compositions, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.26022/IEDA/112503, 2022.
Schwab, M. S., Hilton, R. G., Haghipour, N., Baronas, J. J., and Eglinton,
T. I.: Vegetal Undercurrents – Obscured Riverine Dynamics of Plant Debris, J.
Geophys. Res.-Biogeo., 127, 1–21, https://doi.org/10.1029/2021jg006726, 2022.
Sharafati, A., Haji Seyed Asadollah, S. B., Motta, D., and Yaseen, Z. M.:
Application of newly developed ensemble machine learning models for daily
suspended sediment load prediction and related uncertainty analysis,
Hydrol. Sci. J., 65, 2022–2042,
https://doi.org/10.1080/02626667.2020.1786571, 2020.
Smith, J. C., Galy, A., Hovius, N., Tye, A. M., Turowski, J. M., and
Schleppi, P.: Runoff-driven export of particulate organic carbon from soil
in temperate forested uplands, Earth Planet Sc. Lett., 365, 198–208,
https://doi.org/10.1016/j.epsl.2013.01.027, 2013.
Spencer, R. G. M., Guo, W., Raymond, P. A., Dittmar, T., Hood, E., Fellman,
J., and Stubbins, A.: Source and biolability of ancient dissolved organic
matter in glacier and lake ecosystems on the Tibetan plateau, Geochim.
Cosmochim. Ac., 142, 64–74, https://doi.org/10.1016/j.gca.2014.08.006,
2014.
Spreafico, M.: Environmental impact caused by reservoir sedimentation management – Experiences in the Rhine River Basin, Workshop on Reservoir Sedimentation Management Beijing, China, 2007.
Spreafico, M., Lehmann, Ch., Jakob, A., and Grasso, A.: Feststoffbeobachtung in der Schweiz – Ein Tätigkeitsgebiet der Landeshydrologie, Bereichte des Bundesamt für Wasser und Geologie, Serie Wasser, 9, Bern, 101 pp., ISSN 1660-0746, 2005.
Srivastava, N., Hinton, G., Krizhevsky, A., and Salakhutdinov, R.: Dropout:
A Simple Way to Prevent Neural Networks from Overfitting, J. Mach.
Learn. Res., 15, 1929–1958, 2014.
Stock, B. C. and Semmens, B. X.: MixSIAR GUI User Manual, Version 3.1., Zenodo,
https://doi.org/10.5281/zenodo.1209993, 2016.
Stock, B. C., Jackson, A. L., Ward, E. J., Parnell, A. C., Phillips, D. L.,
and Semmens, B. X.: Analyzing mixing systems using a new generation of
Bayesian tracer mixing models, PeerJ, 6:e5096,
https://doi.org/10.7717/peerj.5096, 2018.
Stubbins, A., Hood, E., Raymond, P. A., Aiken, G. R., Sleighter, R. L.,
Hernes, P. J., Butman, D., Hatcher, P. G., Striegl, R. G., Schuster, P.,
Abdulla, H. A. N., Vermilyea, A. W., Scott, D. T., and Spencer, R. G. M.:
Anthropogenic aerosols as a source of ancient dissolved organic matter in
glaciers, Nat. Geosci., 5, 198–201, https://doi.org/10.1038/ngeo1403, 2012.
Sutfin, N. A., Wohl, E. E., and Dwire, K. A.: Banking carbon: A review of
organic carbon storage and physical factors influencing retention in
floodplains and riparian ecosystems, Earth Surf. Process. Landf., 41, 38–60,
https://doi.org/10.1002/esp.3857, 2016.
Syvitski, J. P., Morehead, M. D., Bahr, D. B., and Mulder, T.: Estimating
fluvial sediment transport: The rating parameters, Water Resour. Res., 36,
2747–2760, https://doi.org/10.1029/2000WR900133, 2000.
Talbot, C. J., Bennett, E. M., Cassell, K., Hanes, D. M., Minor, E. C.,
Paerl, H., Raymond, P. A., Vargas, R., Vidon, P. G., Wollheim, W., and
Xenopoulos, M. A.: The impact of flooding on aquatic ecosystem services,
Biogeochemistry, 141, 439–461, https://doi.org/10.1007/s10533-018-0449-7,
2018.
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R.
G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B.,
Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., Leigh
McCallister, S., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J.
A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D.
W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., von
Wachenfeldt, E., and Weyhenmeyer, G. A.: Lakes and reservoirs as regulators
of carbon cycling and climate, Limnol. Oceanogr., 54, 2298–2314,
https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.
Turowski, J. M., Yager, E. M., Badoux, A., Rickenmann, D., and Molnar, P.:
The impact of exceptional events on erosion, bedload transport and channel
stability in a step-pool channel, Earth Surf. Process. Landf., 34, 613–628,
https://doi.org/10.1002/esp, 2009.
Turowski, J. M., Badoux, A., and Rickenmann, D.: Start and end of bedload
transport in gravel-bed streams, Geophys. Res. Lett., 38, 1–5,
https://doi.org/10.1029/2010GL046558, 2011.
Turowski, J. M., Badoux, A., Bunte, K., Rickli, C., Federspiel, N., and
Jochner, M.: The mass distribution of coarse particulate organic matter
exported from an Alpine headwater stream, Earth Surf. Dynam., 1, 1–11,
https://doi.org/10.5194/esurf-1-1-2013, 2013.
Turowski, J. M., Hilton, R. G., and Sparkes, R.: Decadal carbon discharge by
a mountain stream is dominated by coarse organic matter, Geology, 44,
27–30, https://doi.org/10.1130/G37192.1, 2016.
Upadhayay, H. R., Bodé, S., Griepentrog, M., Huygens, D., Bajracharya,
R. M., Blake, W. H., Dercon, G., Mabit, L., Gibbs, M., Semmens, B. X.,
Stock, B. C., Cornelis, W., and Boeckx, P.: Methodological perspectives on
the application of compound-specific stable isotope fingerprinting for
sediment source apportionment, J. Soils Sediment., 17, 1537–1553, https://doi.org/10.1007/s11368-017-1706-4, 1
June 2017.
van der Voort, T. S., Hagedorn, F., McIntyre, C., Zell, C., Walthert, L.,
Schleppi, P., Feng, X., and Eglinton, T. I.: Variability in 14C
contents of soil organic matter at the plot and regional scale across
climatic and geologic gradients, Biogeosciences, 13, 3427–3439,
https://doi.org/10.5194/bg-13-3427-2016, 2016.
van Dongen, B. E., Schouten, S., and Sinninghe Damsté, J. S.: Carbon
isotope variability in monosaccharides and lipids of aquatic algae and
terrestrial plants, Mar. Ecol. Prog. Ser., 232, 83–92,
https://doi.org/10.3354/meps232083, 2002.
van der Voort, T. S. van der, Mannu, U., Hagedorn, F., McIntyre, C. P.,
Walthert, L., Schleppi, P., Haghipour, N., and Eglinton, T. I.: Dynamics of
deep soil carbon – insights from 14C time series across a climatic
gradient, Biogeosciences, 16, 3233–3246,
https://doi.org/10.5194/bg-16-3233-2019, 2019.
von Wachenfeldt, E. and Tranvik, L. J.: Sedimentation in boreal lakes – The
role of flocculation of allochthonous dissolved organic matter in the water
column, Ecosystems, 11, 803–814, https://doi.org/10.1007/s10021-008-9162-z,
2008.
Wacker, L., Bonani, G., Friedrich, M., Hajdas, I., Kromer, B., Nemec, M.,
Ruff, M., Suter, M., Synal, H., and Vockenhuber, C.: MICADAS: Routine and
High-Precision Radiocarbon Dating, Radiocarbon, 52, 252–262,
2010.
Walling, D. E.: Assessing the accuracy of suspended sediment rating curves
for a small basin, Water Resour. Res., 13, 531–538,
https://doi.org/10.1029/WR013i003p00531, 1977.
Wang, G., Jia, Y., and Li, W.: Effects of environmental and biotic factors
on carbon isotopic fractionation during decomposition of soil organic
matter, Sci. Rep., 5, 1–11, https://doi.org/10.1038/srep11043, 2015.
Wang, J., Jin, Z., Hilton, R. G., Zhang, F., Li, G., Densmore, A. L.,
Gröcke, D. R., Xu, X., and Joshua West, A.: Earthquake-triggered
increase in biospheric carbon export from a mountain belt, Geology, 44,
471–474, https://doi.org/10.1130/G37533.1, 2016.
Waser, L. T., Ginzler, C., and Rehush, N.: Wall-to-Wall tree type mapping
from countrywide airborne remote sensing surveys, Remote Sens., 9, 1–24,
https://doi.org/10.3390/rs9080766, 2017.
Werth, M. and Kuzyakov, Y.: 13C fractionation at the
root-microorganisms-soil interface: A review and outlook for partitioning
studies, Soil Biol. Biochem, 42, 1372–1384, https://doi.org/10.1016/j.soilbio.2010.04.009, 2010.
West, A. J., Lin, C. W., Lin, T. C., Hilton, R. G., Liu, S. H., Chang, C.
T., Lin, K. C., Galy, A., Sparkes, R. B., and Hovius, N.: Mobilization and
transport of coarse woody debris to the oceans triggered by an extreme
tropical storm, Limnol. Oceanogr., 56, 77–85,
https://doi.org/10.4319/lo.2011.56.1.0077, 2011.
Wheatcroft, R. A., Goñi, M. A., Hatten, J. A., Pasternack, G. B., and
Warrick, J. A.: The role of effective discharge in the ocean delivery of
particulate organic carbon by small, mountainous river systems, Limnol.
Oceanogr., 55, 161–171, https://doi.org/10.4319/lo.2010.55.1.0161, 2010.
Winkler, W., Wildi, W., van Stuijvenberg, J., and Caron, C.:
Wägital-Flysch et autres flyschs jenniques en Suisse Centrale.
Stratigraphie, sédimentologie et comparaisons, Eclogae Geol.
Helv., 7, 1–22, 1985.
Wohl, E.: Bridging the gaps: An overview of wood across time and space in
diverse rivers, Geomorphology, 279, 3–26,
https://doi.org/10.1016/j.geomorph.2016.04.014, 2017.
Wohl, E. and Ogden, F. L.: Organic carbon export in the form of wood during
an extreme tropical storm, Upper Rio Chagres, Panama, Earth Surf. Process.
Landf., 38, 1407–1416, https://doi.org/10.1002/esp.3389, 2013.
Wohl, E., Dwire, K., Sutfin, N., Polvi, L., and Bazan, R.: Mechanisms of
carbon storage in mountainous headwater rivers, Nat. Commun., 3, 1–8,
https://doi.org/10.1038/ncomms2274, 2012.
Wymore, A. S., Leon, M. C., Shanley, J. B., and McDowell, W. H.: Hysteretic
response of solutes and turbidity at the event scale across forested
tropical montane watersheds, Front. Earth Sci., 7, 1–13,
https://doi.org/10.3389/feart.2019.00126, 2019.
Zou, H. and Hastie, T.: Regularization and variable selection via the
elastic net, J. R. Stat. Soc. Ser. B, 67, 301–320,
https://doi.org/10.1111/j.1467-9868.2005.00503.x, 2005.
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
The majority of river studies focus on headwater or floodplain systems, while often neglecting...
Altmetrics
Final-revised paper
Preprint