Articles | Volume 19, issue 24
https://doi.org/10.5194/bg-19-5645-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5645-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On physical mechanisms enhancing air–sea CO2 exchange
Lucía Gutiérrez-Loza
CORRESPONDING AUTHOR
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Erik Nilsson
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Marcus B. Wallin
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
Erik Sahlée
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Anna Rutgersson
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Related authors
Cecilia Äijälä, Yafei Nie, Lucía Gutiérrez-Loza, Chiara De Falco, Siv Kari Lauvset, Bin Cheng, David Anthony Bailey, and Petteri Uotila
Geosci. Model Dev., 18, 4823–4853, https://doi.org/10.5194/gmd-18-4823-2025, https://doi.org/10.5194/gmd-18-4823-2025, 2025
Short summary
Short summary
The sea ice around Antarctica has experienced record lows in recent years. To understand these changes, models are needed. MetROMS-UHel is a new version of an ocean–sea ice model with updated sea ice code and the atmospheric data. We investigate the effect of our updates on different variables with a focus on sea ice and show an improved sea ice representation as compared with observations.
Francesco Ulloa-Cedamanos, Adam T. Rexroade, Yihan Li, Lindsay B. Hutley, Wei Wen Wong, Marcus B. Wallin, Josep G. Canadell, Anna Lintern, and Clement Duvert
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-233, https://doi.org/10.5194/essd-2025-233, 2025
Preprint under review for ESSD
Short summary
Short summary
Rivers and streams play a key role in how carbon moves through the environment, but we know little about this in Australia. To help close this gap, we compile the first national database of carbon data from rivers and streams, combining past studies, government records, and new data. The data show where and when carbon was measured and reveal major gaps in long-term monitoring. This new resource will help scientists understand carbon and water systems across Australia.
Cecilia Äijälä, Yafei Nie, Lucía Gutiérrez-Loza, Chiara De Falco, Siv Kari Lauvset, Bin Cheng, David Anthony Bailey, and Petteri Uotila
Geosci. Model Dev., 18, 4823–4853, https://doi.org/10.5194/gmd-18-4823-2025, https://doi.org/10.5194/gmd-18-4823-2025, 2025
Short summary
Short summary
The sea ice around Antarctica has experienced record lows in recent years. To understand these changes, models are needed. MetROMS-UHel is a new version of an ocean–sea ice model with updated sea ice code and the atmospheric data. We investigate the effect of our updates on different variables with a focus on sea ice and show an improved sea ice representation as compared with observations.
Ferran Lopez-Marti, Mireia Ginesta, Davide Faranda, Anna Rutgersson, Pascal Yiou, Lichuan Wu, and Gabriele Messori
Earth Syst. Dynam., 16, 169–187, https://doi.org/10.5194/esd-16-169-2025, https://doi.org/10.5194/esd-16-169-2025, 2025
Short summary
Short summary
Explosive cyclones and atmospheric rivers are two main drivers of extreme weather in Europe. In this study, we investigate their joint changes in future climates over the North Atlantic. Our results show that both the concurrence of these events and the intensity of atmospheric rivers increase by the end of the century across different future scenarios. Furthermore, explosive cyclones associated with atmospheric rivers last longer and are deeper than those without atmospheric rivers.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Nat. Hazards Earth Syst. Sci., 24, 3245–3265, https://doi.org/10.5194/nhess-24-3245-2024, https://doi.org/10.5194/nhess-24-3245-2024, 2024
Short summary
Short summary
Both extreme river discharge and storm surges can interact at the coast and lead to flooding. However, it is difficult to predict flood levels during such compound events because they are rare and complex. Here, we focus on the quantification of uncertainties and investigate the sources of limitations while carrying out such analyses at Halmstad, Sweden. Based on a sensitivity analysis, we emphasize that both the choice of data source and statistical methodology influence the results.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024, https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
Short summary
Knowing the wind speed across the rotor of a wind turbine is key in making good predictions of the power production. However, models struggle to capture both the speed and the shape of the wind profile. Using machine learning methods based on the model data, we show that the predictions can be improved drastically. The work focuses on three coastal sites, spread over the Northern Hemisphere (the Baltic Sea, the North Sea, and the US Atlantic coast) with similar results for all sites.
Julika Zinke, Ernst Douglas Nilsson, Piotr Markuszewski, Paul Zieger, Eva Monica Mårtensson, Anna Rutgersson, Erik Nilsson, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 1895–1918, https://doi.org/10.5194/acp-24-1895-2024, https://doi.org/10.5194/acp-24-1895-2024, 2024
Short summary
Short summary
We conducted two research campaigns in the Baltic Sea, during which we combined laboratory sea spray simulation experiments with flux measurements on a nearby island. To combine these two methods, we scaled the laboratory measurements to the flux measurements using three different approaches. As a result, we derived a parameterization that is dependent on wind speed and wave state for particles with diameters 0.015–10 μm. This parameterization is applicable to low-salinity waters.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Ocean Sci., 20, 21–30, https://doi.org/10.5194/os-20-21-2024, https://doi.org/10.5194/os-20-21-2024, 2024
Short summary
Short summary
Coastal floods occur due to extreme sea levels (ESLs) which are difficult to predict because of their rarity. Long records of accurate sea levels at the local scale increase ESL predictability. Here, we apply a machine learning technique to extend sea level observation data in the past based on a neighbouring tide gauge. We compared the results with a linear model. We conclude that both models give reasonable results with a better accuracy towards the extremes for the machine learning model.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023, https://doi.org/10.5194/wes-8-1651-2023, 2023
Short summary
Short summary
Low-level jets (LLJs) are special types of non-ideal wind profiles affecting both wind energy production and loads on a wind turbine. However, among LLJ researchers, there is no consensus regarding which definition to use to identify these profiles. In this work, we compare two different ways of identifying the LLJ – the falloff definition and the shear definition – and argue why the shear definition is better suited to wind energy applications.
Christoffer Hallgren, Heiner Körnich, Stefan Ivanell, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-129, https://doi.org/10.5194/wes-2023-129, 2023
Preprint withdrawn
Short summary
Short summary
Sometimes, the wind changes direction between the bottom and top part of a wind turbine. This affects both the power production and the loads on the turbine. In this study, a climatology of pronounced changes in wind direction across the rotor is created, focusing on Scandinavia. The weather conditions responsible for these changes in wind direction are investigated and the climatology is compared to measurements from two coastal sites, indicating an underestimation by the climatology.
Emily H. Stanley, Luke C. Loken, Nora J. Casson, Samantha K. Oliver, Ryan A. Sponseller, Marcus B. Wallin, Liwei Zhang, and Gerard Rocher-Ros
Earth Syst. Sci. Data, 15, 2879–2926, https://doi.org/10.5194/essd-15-2879-2023, https://doi.org/10.5194/essd-15-2879-2023, 2023
Short summary
Short summary
The Global River Methane Database (GRiMeDB) presents CH4 concentrations and fluxes for flowing waters and concurrent measures of CO2, N2O, and several physicochemical variables, plus information about sample locations and methods used to measure gas fluxes. GRiMeDB is intended to increase opportunities to understand variation in fluvial CH4, test hypotheses related to greenhouse gas dynamics, and reduce uncertainty in future estimates of gas emissions from world streams and rivers.
Christoffer Hallgren, Johan Arnqvist, Erik Nilsson, Stefan Ivanell, Metodija Shapkalijevski, August Thomasson, Heidi Pettersson, and Erik Sahlée
Wind Energ. Sci., 7, 1183–1207, https://doi.org/10.5194/wes-7-1183-2022, https://doi.org/10.5194/wes-7-1183-2022, 2022
Short summary
Short summary
Non-idealized wind profiles with negative shear in part of the profile (e.g., low-level jets) frequently occur in coastal environments and are important to take into consideration for offshore wind power. Using observations from a coastal site in the Baltic Sea, we analyze in which meteorological and sea state conditions these profiles occur and study how they alter the turbulence structure of the boundary layer compared to idealized profiles.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Christoffer Hallgren, Stefan Ivanell, Heiner Körnich, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci., 6, 1205–1226, https://doi.org/10.5194/wes-6-1205-2021, https://doi.org/10.5194/wes-6-1205-2021, 2021
Short summary
Short summary
As wind power becomes more popular, there is a growing demand for accurate power production forecasts. In this paper we investigated different methods to improve wind power forecasts for an offshore location in the Baltic Sea, using both simple and more advanced techniques. The performance of the methods is evaluated for different weather conditions. Smoothing the forecast was found to be the best method in general, but we recommend selecting which method to use based on the forecasted weather.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Cited articles
Andersson, A., Rutgersson, A., and Sahlée, E.: Using eddy covariance to
estimate air–sea gas transfer velocity for oxygen, J. Mar.
Syst., 159, 67–75, 2016. a
Andreas, E., Vlahos, P., and Monahan, E.: The potential role of sea spray
droplets in facilitating air-sea gas transfer, in: IOP conference series:
earth and environmental science, Vol. 35, p. 012003, IOP Publishing, https://doi.org/10.1088/1755-1315/35/1/012003, 2016. a, b
Andreas, E. L., Vlahos, P., and Monahan, E. C.: Spray-mediated air-sea gas
exchange: the governing time scales, Journal of Marine Science and
Engineering, 5, 60, 2017. a
Ashton, I. G., Shutler, J. D., Land, P. E., Woolf, D. K., and Quartly, G. D.: A
sensitivity analysis of the impact of rain on regional and global sea–air
fluxes of CO2, PloS one, 11, e0161105,
https://doi.org/10.1371/journal.pone.0161105, 2016. a, b
Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance: a practical guide to
measurement and data analysis, Springer Science & Business Media, https://doi.org/10.1007/978-94-007-2351-1, 2012. a, b
Baldocchi, D. D., Hincks, B. B., and Meyers, T. P.: Measuring
biosphere–atmosphere exchanges of biologically related gases with
micrometeorological methods, Ecology, 69, 1331–1340, 1988. a
Barua, D. K.: Beaufort wind scale, Encyclopedia of Coastal Science, Dordrecht,
Springer Netherlands, 2005. a
Bell, T. G., Landwehr, S., Miller, S. D., de Bruyn, W. J., Callaghan, A. H., Scanlon, B., Ward, B., Yang, M., and Saltzman, E. S.: Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate–high wind speeds, Atmos. Chem. Phys., 17, 9019–9033, https://doi.org/10.5194/acp-17-9019-2017, 2017. a, b
Blomquist, B. W,, Brumer, S. E., Fairall, C. W., Huebert, B. J., Zappa, C. J., Brooks, I. M.,
Yang, M., Bariteau, L., Prytherch, J., Hare, J. E., Czerski, H., Matei, A., and
Pascal, R. W.: Wind speed and sea
state dependencies of air–sea gas transfer: Results from the High Wind speed
Gas exchange Study (HiWinGS), J. Geophys. Res.-Ocean., 122,
8034–8062, 2017. a, b
Borges, A. V., Delille, B., and Frankignoulle, M.: Budgeting sinks and sources
of CO2 in the coastal ocean: Diversity of ecosystems count,
Geophys. Res. Lett., 32, L14601, https://doi.org/10.1029/2005GL023053, 2005. a
Brumer, S. E., Zappa, C. J., Blomquist, B. W., Fairall, C. W.,
Cifuentes-Lorenzen, A., Edson, J. B., Brooks, I. M., and Huebert, B. J.:
Wave-related Reynolds number parameterizations of CO2 and DMS
transfer velocities, Geophys. Res. Lett., 44, 9865–9875, 2017. a
Chen, C.-T. A., Huang, T.-H., Chen, Y.-C., Bai, Y., He, X., and Kang, Y.: Air–sea exchanges of CO2 in the world's coastal seas, Biogeosciences, 10, 6509–6544, https://doi.org/10.5194/bg-10-6509-2013, 2013. a
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra,
A., DeFries, R., Galloway, J., Heimann, M., et al.: Carbon and other
biogeochemical cycles, in: Climate change 2013: the physical science basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D.,
Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y.,
Bex, V., and Midgley, P., 465–570, Cambridge University Press, 2013. a
Dong, Y., Yang, M., Bakker, D. C. E., Kitidis, V., and Bell, T. G.: Uncertainties in eddy covariance air–sea CO2 flux measurements and implications for gas transfer velocity parameterisations, Atmos. Chem. Phys., 21, 8089–8110, https://doi.org/10.5194/acp-21-8089-2021, 2021. a, b, c, d
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., Le Quéré, C., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bellouin, N., Bopp, L., Chau, T. T. T., Chevallier, F., Chini, L. P., Cronin, M., Currie, K. I., Decharme, B., Djeutchouang, L. M., Dou, X., Evans, W., Feely, R. A., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Luijkx, I. T., Jain, A., Jones, S. D., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lienert, S., Liu, J., Marland, G., McGuire, P. C., Melton, J. R., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Schwingshackl, C., Séférian, R., Sutton, A. J., Sweeney, C., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F., van der Werf, G. R., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, C., Yue, X., Zaehle, S., and Zeng, J.: Global Carbon Budget 2021, Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, 2022. a, b
Gutiérrez-Loza, L., Ocampo-Torres, F. J., and García-Nava, H.: The
Effect of Breaking Waves on CO2 Air–Sea Fluxes in the Coastal Zone,
Bound.-Lay. Meteorol., 168, 343–360, 2018. a
Gutiérrez-Loza, L., Wallin, M. B., Sahlée, E., Nilsson, E., Bange,
H. W., Kock, A., and Rutgersson, A.: Measurement of air-sea methane fluxes in
the Baltic Sea using the eddy covariance method, Front. Earth
Sci., 7, 93, https://doi.org/10.3389/feart.2019.00093, 2019. a
Gutiérrez-Loza, L., Wallin, M. B., Sahlée, E., Holding, T., Shutler,
J. D., Rehder, G., and Rutgersson, A.: Air–sea CO2 exchange in the Baltic
Sea – A sensitivity analysis of the gas transfer velocity, J. Mar.
Syst., 222, 103603, https://doi.org/10.1016/j.jmarsys.2021.103603, 2021. a, b
Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., and Hill, P.:
Measurements of air–sea gas exchange at high wind speeds in the Southern
Ocean: Implications for global parameterizations, Geophys. Res.
Lett., 33, https://doi.org/10.1029/2006GL026817, 2006. a
Honkanen, M., Müller, J. D., Seppälä, J., Rehder, G., Kielosto, S., Ylöstalo, P., Mäkelä, T., Hatakka, J., and Laakso, L.: The diurnal cycle of pCO2 in the coastal region of the Baltic Sea, Ocean Sci., 17, 1657–1675, https://doi.org/10.5194/os-17-1657-2021, 2021. a
Jacobs, E., Bittig, H. C., Gräwe, U., Graves, C. A., Glockzin, M., Müller, J. D., Schneider, B., and Rehder, G.: Upwelling-induced trace gas dynamics in the Baltic Sea inferred from 8 years of autonomous measurements on a ship of opportunity, Biogeosciences, 18, 2679–2709, https://doi.org/10.5194/bg-18-2679-2021, 2021. a
Jeffery, C., Woolf, D., Robinson, I., and Donlon, C.: One-dimensional modelling
of convective CO2 exchange in the Tropical Atlantic, Ocean Modell.,
19, 161–182, 2007. a
Jessup, A., Zappa, C. J., and Yeh, H.: Defining and quantifying microscale wave
breaking with infrared imagery, J. Geophys. Res.-Ocean., 102,
23145–23153, 1997. a
Kaimal, J. C. and Finnigan, J. J.: Atmospheric boundary layer flows: their
structure and measurement, Oxford University Press, ISBN: 0-19-506239-6, 1994. a
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015. a, b
Kormann, R. and Meixner, F. X.: An analytical footprint model for non-neutral
stratification, Bound.-Lay. Meteorol., 99, 207–224, 2001. a
Kuliński, K. and Pempkowiak, J.: The carbon budget of the Baltic Sea, Biogeosciences, 8, 3219–3230, https://doi.org/10.5194/bg-8-3219-2011, 2011. a, b
Kuliński, K., Rehder, G., Asmala, E., Bartosova, A., Carstensen, J., Gustafsson, B., Hall, P. O. J., Humborg, C., Jilbert, T., Jürgens, K., Meier, H. E. M., Müller-Karulis, B., Naumann, M., Olesen, J. E., Savchuk, O., Schramm, A., Slomp, C. P., Sofiev, M., Sobek, A., Szymczycha, B., and Undeman, E.: Biogeochemical functioning of the Baltic Sea, Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, 2022. a
Laruelle, G. G., Dürr, H. H., Slomp, C. P., and Borges, A. V.: Evaluation
of sinks and sources of CO2 in the global coastal ocean using a
spatially-explicit typology of estuaries and continental shelves, Geophys.
Res. Lett., 37, L15607,
https://doi.org/10.1029/2010GL043691, 2010. a
Laruelle, G. G., Lauerwald, R., Pfeil, B., and Regnier, P.: Regionalized global
budget of the CO2 exchange at the air-water interface in continental
shelf seas, Global Biogeochem. Cy., 28, 1199–1214, 2014. a
Lehmann, A., Myrberg, K., and Höflich, K.: A statistical approach to
coastal upwelling in the Baltic Sea based on the analysis of satellite data
for 1990–2009, Oceanologia, 54, 369–393, 2012. a
Leighton, T. G., Coles, D. G., Srokosz, M., White, P. R., and Woolf, D. K.:
Asymmetric transfer of CO2 across a broken sea surface, Sci.
Rep., 8, 1–9, 2018. a
Löffler, A., Schneider, B., Perttilä, M., and Rehder, G.: Air–sea
CO2 exchange in the Gulf of Bothnia, Baltic Sea, Cont. Shelf
Res., 37, 46–56, 2012. a
Miller, S. D., Marandino, C., and Saltzman, E. S.: Ship-based measurement of
air-sea CO2 exchange by eddy covariance, J. Geophys. Res.-Atmos., 115, D02304,
https://doi.org/10.1029/2009JD012193, 2010. a
Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S.,
Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ evaluation
of air–sea gas exchange parameterizations using novel conservative and
volatile tracers, Global Biogeochem. Cy., 14, 373–387, 2000. a
Nilsson, E., Bergström, H., Rutgersson, A., Podgrajsek, E., Wallin, M. B.,
Bergström, G., Dellwik, E., Landwehr, S., and Ward, B.: Evaluating
humidity and sea salt disturbances on CO2 flux measurements, J.
Atmos. Ocean. Technol., 35, 859–875, 2018. a
Norman, M., Parampil, S. R., Rutgersson, A., and Sahlée, E.: Influence of
coastal upwelling on the air–sea gas exchange of CO2 in a Baltic Sea
Basin, Tellus B, 65, 21831, https://doi.org/10.3402/tellusb.v65i0.21831,
2013a. a, b
IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Core Writing Team, edited by: Pachauri, R. K. and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., 2014. a
Parard, G., Rutgersson, A., Raj Parampil, S., and Charantonis, A. A.: The potential of using remote sensing data to estimate air–sea CO2 exchange in the Baltic Sea, Earth Syst. Dynam., 8, 1093–1106, https://doi.org/10.5194/esd-8-1093-2017, 2017. a
Reusch, T. B. H., Dierking, J., Andersson, H. C., et al.: The Baltic Sea as a time machine for the future coastal ocean,
Sci. Adv., 4, eaar819,
https://doi.org/10.1126/sciadv.aar8195, 2018. a
Ribas-Ribas, M., Helleis, F., Rahlff, J., and Wurl, O.: Air–Sea CO2
exchange in a large annular wind-wave tank and the effects of surfactants,
Front. Mar. Sci., 457, https://doi.org/10.3389/fmars.2018.00457, 2018. a, b
Roobaert, A., Laruelle, G. G., Landschützer, P., Gruber, N., Chou, L., and
Regnier, P.: The Spatiotemporal Dynamics of the Sources and Sinks of CO2
in the Global Coastal Ocean, Global Biogeochem. Cy., 33, 1693–1714,
https://doi.org/10.1029/2019GB006239, 2019. a
Rutgersson, A., Smedman, A.-S., and Omstedt, A.: Measured and simulated latent
and sensible heat fluxes at two marine sites in the Baltic Sea,
Bound.-Lay. Meteorol., 99, 53–84, 2001. a
Rutgersson, A., Norman, M., and Åström, G.: Atmospheric CO2
variation over the Baltic Sea and the impact on air–sea exchange, Boreal
Environ. Res., 14, 238–249, 2009. a
Rutgersson, A., Smedman, A., and Sahlée, E.: Oceanic convective mixing and
the impact on air–sea gas transfer velocity, Geophys. Res. Lett.,
38, L02602,
https://doi.org/10.1029/2010GL045581, 2011. a
Schneider, B. and Müller, J. D.: Biogeochemical transformations in the
Baltic Sea, Springer, ISBN: 978-3-319-61699-5, 2018. a
Schneider, B., Gülzow, W., Sadkowiak, B., and Rehder, G.: Detecting sinks
and sources of CO2 and CH4 by ferrybox-based measurements in the
Baltic Sea: Three case studies, J. Mar. Syst., 140, 13–25,
2014. a
Smedman, A.-S., Högström, U., Bergström, H., Rutgersson, A., Kahma,
K. K., and Pettersson, H.: A case study of air–sea interaction during swell
conditions, J. Geophys. Res.-Ocean., 104, 25833–25851,
1999. a
Soloviev, A. and Lukas, R.: The near-surface layer of the ocean: structure,
dynamics and applications, Vol. 48, Springer Science & Business Media, Springer,
https://doi.org/10.1007/978-94-007-7621-0, 2013. a
Soomere, T.: Numerical simulations of wave climate in the Baltic Sea: a review,
Oceanologia, 2022. a
Stokes, G. G.: Supplement to a paper on the theory of oscillatory waves,
Mathemat. Phys. Papers, 1, 18, Cambridge University Press, 1880. a
Thomas, H. and Schneider, B.: The seasonal cycle of carbon dioxide in Baltic
Sea surface waters, J. Mar. Syst., 22, 53–67,
1999a. a
Thomas, H. and Schneider, B.: The seasonal cycle of carbon dioxide in Baltic
Sea surface waters, J. Mar. Syst., 22, 53–67,
1999b. a
Thomas, H., Pempkowiak, J., Wulff, F., and Nagel, K.: The Baltic Sea, in:
Carbon and nutrient fluxes in continental margins, 334–346, edited by: Liu, K.-K., Atkinson, L., Quiñones, R., and. Talaue-McManus, L., Springer Science and Business Media, ISBN: 978-3-540-92734-1,
2010. a
Thorpe, S., Osborn, T., Farmer, D., and Vagle, S.: Bubble clouds and Langmuir
circulation: Observations and models, J. Phys. Oceanogr., 33,
2013–2031, 2003. a
Upstill-Goddard, R. C.: Air–sea gas exchange in the coastal zone, Estuarine,
Coast. Shelf Sci., 70, 388–404, 2006. a
Van Dam, B. R., Lopes, C. C., Polsenaere, P., Price, R. M., Rutgersson, A., and
Fourqurean, J. W.: Water temperature control on CO2 flux and evaporation
over a subtropical seagrass meadow revealed by atmospheric eddy covariance,
Limnol. Oceanogr., 66, 510–527, 2021. a
Von Schuckmann, K., Le Traon, P.-Y., Alvarez-Fanjul, E., Axell, L., Balmaseda,
M., Breivik, L.-A., Brewin, R. J. W., Bricaud, C., Drevillon, M., Drillet,
Y., et al.: The copernicus marine environment monitoring service ocean state
report, J. Operat. Oceanogr., 9, s235–s320, https://doi.org/10.1080/1755876X.2016.1273446, 2016. a
Wanninkhof, R. and McGillis, W. R.: A cubic relationship between air–sea
CO2 exchange and wind speed, Geophys. Res. Lett., 26,
1889–1892, 1999. a
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements
for density effects due to heat and water vapour transfer, Quarterly J. Roy. Meteorol. Soc., 106, 85–100, 1980. a
Weiss, R.: Carbon dioxide in water and seawater: the solubility of a non-ideal
gas, Mar. Chem., 2, 203–215, 1974. a
Woolf, D. K.: Bubbles and the air-sea transfer velocity of gases,
Atmos.-Ocean, 31, 517–540, 1993. a
Woolf, D. K., Shutler, J. D., Goddijn-Murphy, L., Watson, A. J., Chapron, B.,
Nightingale, P. D., Donlon, C. J., Piskozub, J., Yelland, M. J., Ashton, I., Holding, T., Schuster, U., Girard‐Ardhuin, F., Grouazel, A., Piolle, J.‐F., Warren, M., Wrobel‐Niedzwiecka, I., Land, P. E., Torres, R., Prytherch, J., Moat, B., Hanafin, J., Ardhuin, F., and Paul, F.: Key uncertainties in the recent air–sea flux of CO2, Global
Biogeochem. Cy., 33, 1548–1563,
https://doi.org/10.1029/2018GB006041, 2019.
a
Zhao, D., Toba, Y., Suzuki, Y., and Komori, S.: Effect of wind waves on
air–sea gas exchange: Proposal of an overall CO2 transfer velocity
formula as a function of breaking-wave parameter, Tellus B, 55, 478–487, 2003. a
Short summary
The exchange of CO2 between the ocean and the atmosphere is an essential aspect of the global carbon cycle and is highly relevant for the Earth's climate. In this study, we used 9 years of in situ measurements to evaluate the temporal variability in the air–sea CO2 fluxes in the Baltic Sea. Furthermore, using this long record, we assessed the effect of atmospheric and water-side mechanisms controlling the efficiency of the air–sea CO2 exchange under different wind-speed conditions.
The exchange of CO2 between the ocean and the atmosphere is an essential aspect of the global...
Altmetrics
Final-revised paper
Preprint