Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-807-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-807-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
What can we learn from amino acids about oceanic organic matter cycling and degradation?
Birgit Gaye
CORRESPONDING AUTHOR
Institute for Geology, Universität Hamburg, 20146 Hamburg, Germany
Niko Lahajnar
Institute for Geology, Universität Hamburg, 20146 Hamburg, Germany
Natalie Harms
Institute for Geology, Universität Hamburg, 20146 Hamburg, Germany
Sophie Anna Luise Paul
Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
GEOMAR, Helmholtz-Zentrum für Ozeanforschung, 24148 Kiel, Germany
Tim Rixen
Institute for Geology, Universität Hamburg, 20146 Hamburg, Germany
Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
Kay-Christian Emeis
Institute for Geology, Universität Hamburg, 20146 Hamburg, Germany
Related authors
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1660, https://doi.org/10.5194/egusphere-2025-1660, 2025
Short summary
Short summary
Oxygen minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Jan Maier, Nicole Burdanowitz, Gerhard Schmiedl, and Birgit Gaye
Clim. Past, 21, 279–297, https://doi.org/10.5194/cp-21-279-2025, https://doi.org/10.5194/cp-21-279-2025, 2025
Short summary
Short summary
We reconstruct sea surface temperatures (SSTs) of the past 43 kyr in the Gulf of Oman. We find SST variations of up to 7 °C with lower SSTs during Heinrich events (HEs), especially HE4, and higher SSTs during Dansgaard–Oeschger events. Our record shows no profound cooling during the Last Glacial Maximum but abrupt variations during the Holocene. We surmise that SST variations are influenced by the southwest (northeast) monsoon during warmer (colder) periods.
Medhavi Pandey, Haimanti Biswas, Daniel Birgel, Nicole Burdanowitz, and Birgit Gaye
Biogeosciences, 21, 4681–4698, https://doi.org/10.5194/bg-21-4681-2024, https://doi.org/10.5194/bg-21-4681-2024, 2024
Short summary
Short summary
We analysed sea surface temperature (SST) proxy and plankton biomarkers in sediments that accumulate sinking material signatures from surface waters in the central Arabian Sea (21°–11° N, 64° E), a tropical basin impacted by monsoons. We saw a north–south SST gradient, and the biological proxies showed more organic matter from larger algae in the north. Smaller algae and zooplankton were more numerous in the south. These trends were related to ocean–atmospheric processes and oxygen availability.
Nicole Burdanowitz, Gerhard Schmiedl, Birgit Gaye, Philipp M. Munz, and Hartmut Schulz
Biogeosciences, 21, 1477–1499, https://doi.org/10.5194/bg-21-1477-2024, https://doi.org/10.5194/bg-21-1477-2024, 2024
Short summary
Short summary
We analyse benthic foraminifera, nitrogen isotopes and lipids in a sediment core from the Gulf of Oman to investigate how the oxygen minimum zone (OMZ) and bottom water (BW) oxygenation have reacted to climatic changes since 43 ka. The OMZ and BW deoxygenation was strong during the Holocene, but the OMZ was well ventilated during the LGM period. We found an unstable mode of oscillating oxygenation states, from moderately oxygenated in cold stadials to deoxygenated in warm interstadials in MIS 3.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Nicole Burdanowitz, Tim Rixen, Birgit Gaye, and Kay-Christian Emeis
Clim. Past, 17, 1735–1749, https://doi.org/10.5194/cp-17-1735-2021, https://doi.org/10.5194/cp-17-1735-2021, 2021
Short summary
Short summary
To study the interaction of the westerlies and Indian summer monsoon (ISM) during the Holocene, we used paleoenvironmental reconstructions using a sediment core from the northeast Arabian Sea. We found a climatic transition period between 4.6 and 3 ka BP during which the ISM shifted southwards and the influence of Westerlies became prominent. Our data indicate a stronger influence of agriculture activities and enhanced soil erosion, adding to Bond event impact after this transition period.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1660, https://doi.org/10.5194/egusphere-2025-1660, 2025
Short summary
Short summary
Oxygen minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Anjaly Govindankutty Menon, Aaron L. Bieler, Hanna Firrincieli, Rachel Alcorn, Niko Lahajnar, Catherine V. Davis, Ralf Schiebel, Dirk Nürnberg, Gerhard Schmiedl, and Nicolaas Glock
EGUsphere, https://doi.org/10.5194/egusphere-2025-1182, https://doi.org/10.5194/egusphere-2025-1182, 2025
Short summary
Short summary
The pore density (number of pores per unit area) of unicellular eukaryotes is used to reconstruct past bottom-water nitrate at the Sea of Okhotsk, the Gulf of California, the Mexican Margin and the Gulf of Guayaquil. The reconstructed bottom-water nitrate at the Sea of Okhotsk, the Gulf of California and the Gulf of Guayaquil are influenced by the intermediate water masses, while the nitrate at the Mexican Margin is related to the deglacial NO3− variability in the Pacific Deep Water.
Jan Maier, Nicole Burdanowitz, Gerhard Schmiedl, and Birgit Gaye
Clim. Past, 21, 279–297, https://doi.org/10.5194/cp-21-279-2025, https://doi.org/10.5194/cp-21-279-2025, 2025
Short summary
Short summary
We reconstruct sea surface temperatures (SSTs) of the past 43 kyr in the Gulf of Oman. We find SST variations of up to 7 °C with lower SSTs during Heinrich events (HEs), especially HE4, and higher SSTs during Dansgaard–Oeschger events. Our record shows no profound cooling during the Last Glacial Maximum but abrupt variations during the Holocene. We surmise that SST variations are influenced by the southwest (northeast) monsoon during warmer (colder) periods.
Luisa Chiara Meiritz, Tim Rixen, Anja Karin van der Plas, Tarron Lamont, and Niko Lahajnar
Biogeosciences, 21, 5261–5276, https://doi.org/10.5194/bg-21-5261-2024, https://doi.org/10.5194/bg-21-5261-2024, 2024
Short summary
Short summary
Moored and drifting sediment trap experiments in the northern (nBUS) and southern (sBUS) Benguela Upwelling System showed that active carbon fluxes by vertically migrating zooplankton were about 3 times higher in the sBUS than in the nBUS. Despite these large variabilities, the mean passive particulate organic carbon (POC) fluxes were almost equal in the two subsystems. The more intense near-bottom oxygen minimum layer seems to lead to higher POC fluxes and accumulation rates in the nBUS.
Medhavi Pandey, Haimanti Biswas, Daniel Birgel, Nicole Burdanowitz, and Birgit Gaye
Biogeosciences, 21, 4681–4698, https://doi.org/10.5194/bg-21-4681-2024, https://doi.org/10.5194/bg-21-4681-2024, 2024
Short summary
Short summary
We analysed sea surface temperature (SST) proxy and plankton biomarkers in sediments that accumulate sinking material signatures from surface waters in the central Arabian Sea (21°–11° N, 64° E), a tropical basin impacted by monsoons. We saw a north–south SST gradient, and the biological proxies showed more organic matter from larger algae in the north. Smaller algae and zooplankton were more numerous in the south. These trends were related to ocean–atmospheric processes and oxygen availability.
Alexandra Klemme, Thorsten Warneke, Heinrich Bovensmann, Matthias Weigelt, Jürgen Müller, Tim Rixen, Justus Notholt, and Claus Lämmerzahl
Hydrol. Earth Syst. Sci., 28, 1527–1538, https://doi.org/10.5194/hess-28-1527-2024, https://doi.org/10.5194/hess-28-1527-2024, 2024
Short summary
Short summary
Satellite data help estimate groundwater depletion, but earlier assessments missed mass loss from river sediment. In the Ganges–Brahmaputra–Meghna (GBM) river system, sediment accounts for 4 % of the depletion. Correcting for sediment in the GBM mountains reduces estimated depletion by 14 %. It's important to note that the Himalayas' uplift may offset some sediment-induced mass loss. This understanding is vital for accurate water storage trend assessments and sustainable groundwater management.
Nicole Burdanowitz, Gerhard Schmiedl, Birgit Gaye, Philipp M. Munz, and Hartmut Schulz
Biogeosciences, 21, 1477–1499, https://doi.org/10.5194/bg-21-1477-2024, https://doi.org/10.5194/bg-21-1477-2024, 2024
Short summary
Short summary
We analyse benthic foraminifera, nitrogen isotopes and lipids in a sediment core from the Gulf of Oman to investigate how the oxygen minimum zone (OMZ) and bottom water (BW) oxygenation have reacted to climatic changes since 43 ka. The OMZ and BW deoxygenation was strong during the Holocene, but the OMZ was well ventilated during the LGM period. We found an unstable mode of oscillating oxygenation states, from moderately oxygenated in cold stadials to deoxygenated in warm interstadials in MIS 3.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Nicole Burdanowitz, Tim Rixen, Birgit Gaye, and Kay-Christian Emeis
Clim. Past, 17, 1735–1749, https://doi.org/10.5194/cp-17-1735-2021, https://doi.org/10.5194/cp-17-1735-2021, 2021
Short summary
Short summary
To study the interaction of the westerlies and Indian summer monsoon (ISM) during the Holocene, we used paleoenvironmental reconstructions using a sediment core from the northeast Arabian Sea. We found a climatic transition period between 4.6 and 3 ka BP during which the ISM shifted southwards and the influence of Westerlies became prominent. Our data indicate a stronger influence of agriculture activities and enhanced soil erosion, adding to Bond event impact after this transition period.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Cited articles
Abramson, L., Lee, C., Liu, Z., Wakeham, S. G., and Szlosek, J.: Exchange
between suspended and sinking particles in the northwest Mediterranean as
inferred from the organic composition of in situ pump and sediment trap
samples, Limnol. Oceanogr., 55, 725–739, 2011.
Alldredge, A.: The carbon, nitrogen and mass content of marine snow as a
function of aggregate size, Deep-Sea Res. Pt. I, 45, 529–541, 1998.
Alldredge, A. L. and Silver, M. W.: Charateristics, dynamics and
significance of marine snow, Prog. Oceanogr., 20, 41–82, 1988.
Altabet, M. A.: Isotopic Tracers of the Marine Nitrogen Cycle: Present and
Past, in: Marine Organic Matter: Biomarkers, Isotopes and DNA, The Handbook
of Environmental Chemistry, edited by: Volkman, J. K., Springer, Berlin,
Heidelberg, 251–293, https://doi.org/10.1007/698_2_008,
2006.
Altabet, M. A., Deuser, W. G., Honjo, S., and Stienen, C.: Seasonal and
depth-related changes in the source of sinking particles in the North
Atlantic, Nature, 354, 136–139, 1991.
Aluwihare, L. I., Repeta, D. J., Pantoja, S., and Johnson, C. G.: Two
chemically distinct pools of organic nitrogen accumulate in the ocean,
Science, 308, 1007–1010, 2005.
Aristegui, J., Gasol, J. M., Duarte, C. M., and Herndl, G. J.: Microbial
oceanography of the dark ocean's pelagic realm, Limnol. Oceanogr.,
54, 1501–1529, https://doi.org/10.4319/lo.2009.54.5.1501, 2009.
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A
new, mechanistic model for organic carbon fluxes in the ocean based on the
quantitative association of POC with ballast minerals, Deep-Sea Res.
Pt. II, 49, 219–236, 2002.
Arnarson, T. S. and Keil, R. G.: Influence of organic-mineral aggregates on
microbial degradation of the dinoflagellate Scrippsiella trochoidea,
Geochim. Cosmochim. Ac., 69, 2111–2117, https://doi.org/10.1016/j.gca.2004.11.004,
2005.
Arnarson, T. S. and Keil, R. G.: Changes in organic matter-mineral
interactions for marine sediments with varying oxygen exposure times,
Geochim. Cosmochim. Ac., 71, 3545–3556, https://doi.org/10.1016/j.gca.2007.04.027,
2007.
Arrieta, J. M., Mayol, E., Hansman, R. L., Herndl, G. J., Dittmar, T., and
Duarte, C. M.: Dilution limits dissolved organic carbon utilization in the
deep ocean, Science, 348, 331–333, https://doi.org/10.1126/science.1258955, 2015.
Benner, R. and Kaiser, J.: Abundance of amino sugars and peptidoglycan in
marine particulate and dissolved organic matter, Limnol. Oceanogr.,
48, 118–128, 2003.
Benner, R., Louchouarn, P., and Amon, R. M. W.: Terrigenous dissolved
organic matter in the Arctic Ocean and its transport to surface and deep
waters of the North Atlantic, Global Biogeochem. Cy., 19, GB2025,
https://doi.org/10.1029/2004GB002398, 2005.
Boetius, A. and Lochte, K.: Regulation of microbial enzymatic degradation of
organic matter in deep-sea sediments, Mar. Ecol.-Prog. Ser., 104, 299–307,
https://doi.org/10.3354/meps104299, 1994.
Boetius, A., Ferdelman, T., and Lochte, K.: Bacterial activity in sediments
of the deep Arabian Sea in relation to vertical flux, Deep-Sea Res. Pt.
II, 47, 2835–2875, https://doi.org/10.1016/s0967-0645(00)00051-5,
2000a.
Boetius, A., Springer, B., and Petry, C.: Microbial activity and particulate
matter in the benthic nepheloid layer (BNL) of the deep Arabian Sea,
Deep-Sea Res. Pt. II, 47, 2687–2706,
https://doi.org/10.1016/s0967-0645(00)00045-x, 2000b.
Boyd, P., Claustre, H., Levy, M., Siegel, D., and Weber, T.: Multi-faceted
particle pumps drive carbon sequestration in the ocean, Nature, 568,
327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019.
Boyd, S. R.: Nitrogen in future biosphere studies, Chem. Geol., 176,
1–30, https://doi.org/10.1016/S0009-2541(00)00405-8, 2001.
Brockmeyer, B. and Spitzy, A.: Evaluation of a Disc Tube Methodology for
Nano- and Ultrafiltration of Natural Dissolved Organic Matter, Int.
J. Org. Chem., 3, 17–25, 2013.
Bronk, D. A.: Chapter 5 – Dynamics of DON, in: Biogeochemistry of Marine Dissolved Organic Matter, edited by: Hansell, D. A., and Carlson, C. A., Academic Press, San Diego, 153–247, https://doi.org/10.1016/B978-012323841-2/50007-5, 2002.
Carlson, C. A. and Hansell, D. A.: Chapter 3 – DOM Sources, Sinks, Reactivity, and Budgets, in: Biogeochemistry of Marine Dissolved Organic Matter, 2nd Edn., edited by: Hansell, D. A. and Carlson, C. A., Academic Press, Boston, 65–126, https://doi.org/10.1016/B978-0-12-405940-5.00003-0, 2015.
Carr, S. A., Mills, C. T., and Mandernack, K. W.: The use of amino acid
indices for assessing organic matter quality and microbial abundance in
deep-sea Antarctic sediments of IODP Expedition 318, Mar. Chem., 186,
72–82, https://doi.org/10.1016/j.marchem.2016.08.002, 2016.
Cho, B. C. and Azam, F.: Major role of bacteria in biogeochemical fluxes in
the ocean's interior, Nature, 332, 441–443, 1988.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quere,
C., Myneni, R. B., Piao, S. L., Thornton, P., Ahlstrom, A., Anav, A.,
Andrews, O., Archer, D., Arora, V., Bonan, G., Borges, A. V., Bousquet, P.,
Bouwman, L., Bruhwiler, L. M., Caldeira, K., Cao, L., Chappellaz, J.,
Chevallier, F., Cleveland, C., Cox, P., Dentener, F. J., Doney, S. C.,
Erisman, J. W., Euskirchen, E. S., Friedlingstein, P., Gruber, N., Gurney,
K., Holland, E. A., Hopwood, B., Houghton, R. A., House, J. I., Houweling,
S., Hunter, S., Hurtt, G., Jacobson, A. D., Jain, A., Joos, F., Jungclaus,
J., Kaplan, J. O., Kato, E., Keeling, R., Khatiwala, S., Kirschke, S.,
Goldewijk, K. K., Kloster, S., Koven, C., Kroeze, C., Lamarque, J. F.,
Lassey, K., Law, R. M., Lenton, A., Lomas, M. R., Luo, Y. Q., Maki, T.,
Marland, G., Matthews, H. D., Mayorga, E., Melton, J. R., Metzl, N.,
Munhoven, G., Niwa, Y., Norby, R. J., O'Connor, F., Orr, J., Park, G. H.,
Patra, P., Peregon, A., Peters, W., Peylin, P., Piper, S., Pongratz, J.,
Poulter, B., Raymond, P. A., Rayner, P., Ridgwell, A., Ringeval, B.,
Rodenbeck, C., Saunois, M., Schmittner, A., Schuur, E., Sitch, S., Spahni,
R., Stocker, B., Takahashi, T., Thompson, R. L., Tjiputra, J., van der Werf,
G., van Vuuren, D., Voulgarakis, A., Wania, R., Zaehle, S., and Zeng, N.:
Carbon and Other Biogeochemical Cycles, Climate Change 2013: The Physical
Science Basis, Cambridge Univ. Press, Cambridge, 465–570, ISBN 978-1-107-66182, 978-1-107-05799-9, 2014.
Cohen, J.: Statistical power analysis for the behavorial sciences, 2nd Edn.,
L. Erlbaum Associates, edited by: Hillsdale, N. J., 567 pp., ISBN 978-0805802832, 1988.
Costello, M. J., Cheung, A., and De Hauwere, N.: Surface Area and the Seabed
Area, Volume, Depth, Slope, and Topographic Variation for the World's Seas,
Oceans, and Countries, Environ. Sci. Technol., 44, 8821–8828,
https://doi.org/10.1021/es1012752, 2010.
Cowie, G. L. and Hedges, J. I.: Sources and reactivities of amino acids in a
coastal marine environment, Limnol. Oceanogr., 37, 703–724, 1992.
Cowie, G. L. and Hedges, J. I.: Biogeochemical indicators of diagenetic
alteration in natural organic-matter mixtures, Nature, 369, 304–307, 1994.
Cowie, G. L., Hedges, J. I., Prahl, F. G., and De Lange, G. J.: Elemental
and major biochemical changes across an oxidation front in a relict
turbidite: An oxygen effect, Geochim. Cosmochim. Ac., 59, 33–46,
1995.
Dauwe, B. and Middelburg, J. J.: Amino acids and hexosamines as indicators
of organic matter degradation state in North Sea sediments, Limnol.
Oceanogr., 43, 782–798, 1998.
Dauwe, B., Middelburg, J. J., Hermann, P. M. J., and Heip, C. H. R.: Linking
diagenetic alteration of amino acids and bulk organic matter reactivity,
Limnol. Oceanogr., 44, 1809–1814, 1999.
Davis, J. and Benner, R.: Seasonal trends in the abundance, composition and
bioavailability of particulate and dissolved organic matter in the
Chukchi/Beaufort Seas and western Canada Basin, Deep-Sea Res. Pt. II, 52, 3396–3410, https://doi.org/10.1016/j.dsr2.2005.09.006, 2005.
Davis, J., Kaiser, K., and Benner, R.: Amino acid and amino sugar yields and
compositions as indicators of dissolved organic matter diagenesis, Org.
Geochem., 40, 343–352, https://doi.org/10.1016/j.orggeochem.2008.12.003, 2009.
Degens, E. T. and Ittekkot, V.: Dissolved organic carbon – An overview,
Mitt. Geol.-Paläont. Inst. Univ. Hamburg, Heft 55, 21–38, 1983.
Degens, E. T. and Ittekkot, V.: A new look at clay-organic interactions, in:
Ein Nord-Süd Profil: Zentraleuropa-Mittelmmeerraum-Afrika, edited by:
Degens, E. T., Krumbein, W. E., and Prashnowsky, A. A., Mitteilungen aus dem
Geologisch-Paläontologischen Institut der Universität Hamburg,
Krause-Druck, Stade, 229–248, 1984.
Degens, E. T. and Ittekkot, V.: Particulate organic carbon – An overview,
Mitt. Geol.-Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderband,
Heft 58, 7–27, 1985.
Degens, E. T. and Mopper, K.: Early diagenesis of organic matter in marine
soils, Soil Sci., 119, 65–72, https://doi.org/10.1097/00010694-197501000-00010, 1975.
Druffel, E. R. M. and Williams, P. M.: Identification of a deep marine
source of particulate organic carbon using bomb 14C, Nature, 347,
172–174, https://doi.org/10.1038/347172a0, 1990.
Emeis, K.-C., Mara, P., Schlarbaum, T., Möbius, J., Dähnke, K.,
Struck, U., Mihalopoulos, N., and Krom, M.: External inputs and internal N
cycling traced by isotope ratios of nitrate, dissolved reduced nitrogen, and
particulate nitrogen in the eastern Mediterranean Sea, J.
Geophys. Res., 115, G04041, https://doi.org/10.1029/2009JG001214, 2010.
England, M. E.: The Age of Water and Ventilation Timescales in a Global
Ocean Model, J. Phys. Oceanogr., 25, 2756–2777,
https://doi.org/10.1175/1520-0485(1995)025<2756:taowav>2.0.co;2, 1995.
Fowler, S. W. and Knauer, G. A.: Role of large particles in the transport of
elements and organic compounds through the oceanic water column, Prog.
Oceanogr., 16, 147–194, https://doi.org/10.1016/0079-6611(86)90032-7, 1986.
Galbraith, E. D., Kienast, M., Albuquerque, A. L., Altabet, M. A., Batista,
F., Bianchi, D., Calvert, S. E., Contreras, S., Crosta, X., De Pol-Holz, R.,
Dubois, N., Etourneau, J., Francois, R., Hsu, T. C., Ivanochko, T., Jaccard,
S. L., Kao, S. J., Kiefer, T., Kienast, S., Lehmann, M. F., Martinez, P.,
McCarthy, M., Meckler, A. N., Mix, A., Mobius, J., Pedersen, T. F.,
Pichevin, L., Quan, T. M., Robinson, R. S., Ryabenko, E., Schmittner, A.,
Schneider, R., Schneider-Mor, A., Shigemitsu, M., Sinclair, D., Somes, C.,
Studer, A. S., Tesdal, J. E., Thunell, R., Yang, J. Y. T., and Members, N.
W. G.: The acceleration of oceanic denitrification during deglacial warming,
Nat. Geosci., 6, 579–584, https://doi.org/10.1038/ngeo1832, 2013.
Gaye-Haake, B., Unger, D., Nöthig, E.-M., Okolodkov, Y., Fahl, K., and
Ittekkot, V.: Particle fluxes from short term sediment trap deployments in
late summer in the southern Kara Sea, in: Siberian River Run-off in
the Kara Sea: Characterisation, Quantification, Variability, and
Environmental Significance, edited by: Stein, R., Fahl, K.,
Fütterer, D. K., Galimov, E., and Stepanets, O., Proceedings in Marine Science, Elsevier,
Amsterdam, 309–328, 2003.
Gaye-Haake, B., Lahajnar, N., Emeis, K.-C., Unger, D., Rixen, T., Suthhof,
A., Ramaswamy, V., Schulz, H., Paropkari, A. L., Guptha, M. V. S., and
Ittekkot, V.: Stable nitrogen isotopic ratios of sinking particles and
sediments from the northern Indian Ocean, Mar. Chem., 96, 243–255,
2005.
Gaye, B., Fahl, K., Kodina, L. A., Lahajnar, N., Nagel, B., Unger, D., and
Gebhardt, A. C.: Particulate matter fluxes in the southern and central Kara
Sea compared to sediments: Bulk fluxes, amino acids, stable carbon and
nitrogen isotopes, sterols and fatty acids, Cont. Shelf Res., 27, 2570–2594,
https://doi.org/10.1016/j.csr.2007.07.003, 2007.
Gaye, B., Wiesner, M. G., and Lahajnar, N.: Nitrogen sources in the South
China Sea, as discerned from stable nitrogen isotopic ratios in rivers,
sinking particles, and sediments, Mar. Chem., 114, 72–85, 2009.
Gaye, B., Nagel, B., Daehnke, K., Rixen, T., and Emeis, K.-C.: Evidence of
parallel denitrification and nitrite oxidation in the ODZ of the Arabian Sea
from paired stable isotopes of nitrate and nitrite, Global Biogeochem.
Cy., 27, 1059–1071, https://doi.org/10.1002/2011GB004115, 2013a.
Gaye, B., Nagel, B., Dähnke, K., Rixen, T., Lahajnar, N., and Emeis, K.-C.: Amino acid composition and δ15N of suspended matter in the Arabian Sea: implications for organic matter sources and degradation, Biogeosciences, 10, 7689–7702, https://doi.org/10.5194/bg-10-7689-2013, 2013b.
Gaye, B., Boell, A., Segschneider, J., Burdanowitz, N., Emeis, K.-C.,
Ramaswamy, V., Lahajnar, N., Lueckge, A., and Rixen, T.:
Glacial-interglacial changes and Holocene variations in Arabian Sea
denitrification, Biogeosciences, 15, 507–527, https://doi.org/10.5194/bg-15-507-2018, 2018.
Gaye, B., Lahajnar, N., Harms, N., Paul, S. A. L., Rixen, T., and Emeis, K.-C.: Amino acids and hexosamines in suspended matter samples collected in different oceanic areas between 1999 and 2017 from shelf seas to the deep ocean, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.940723, 2022a.
Gaye, B., Lahajnar, N., Harms, N., Paul, S. A. L., Rixen, T., and Emeis, K.-C.: Amino acids and hexosamines of sediment samples from different oceanic areas between 1987 and 2015 from shelf seas to the deep ocean, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.940791, 2022b.
Gebbie, G. and Huybers, P.: The Mean Age of Ocean Waters Inferred from
Radiocarbon Observations: Sensitivity to Surface Sources and Accounting for
Mixing Histories, J. Phys. Oceanogr., 42, 291–305, https://doi.org/10.1175/jpo-d-11-043.1,
2012.
Gloeckler, K., Choy, C. A., Hannides, C. C. S., Close, H. G., Goetze, E.,
Popp, B. N., and Drazen, J. C.: Stable isotope analysis of micronekton
around Hawaii reveals suspended particles are an important nutritional
source in the lower mesopelagic and upper bathypelagic zones, Limnol.
Oceanogr., 63, 1168–1180, https://doi.org/10.1002/lno.10762, 2018.
Goutx, M., Wakeham, S. G., Lee, C., Duflos, M., Guigue, C., Liu, Z.,
Moriceau, B., Sempére, R., Tedetti, M., and Xue, J.: Composition and
degradation of marine particles with different settling velocities in the
northwestern Mediterranean Sea, Limnol. Oceanogr., 52, 1645–1664,
2007.
Gruber, N.: The marine nitrogen cycle: Overview and challenges, in: Nitrogen
in the Marine Environment, 2nd Edn., edited by: Capone, D. G., Bronk, D.
A., Mulholland, M. R., and Carpenter, E., Academic Press, San Diego, 51, ISBN 9780123725226,
2008.
Guo, J., Liang, S.-K., Li, X.-J., Li, W., Wang, Y., and Su, R.-G.:
Composition and bioavailability of dissolved organic matter in different
water masses of the East China Sea, Estuar. Coas. Shelf Sci.,
212, 189–202, https://doi.org/10.1016/j.ecss.2018.07.009, 2018.
Haake, B., Rixen, T., and Ittekkot, V.: Variability of monsoonal upwelling
signals in the deep western Arabian Sea, Mitt. Geol.-Paläont. Inst.
Univ. Hamburg, Scope/UNEP Sonderband, Heft 76, 85–96, 1993a.
Haake, B., Ittekkot, V., Honjo, S., and Manganini, S.: Amino acids,
hexosamines and carbohydrate fluxes to the deep Subarctic Pacific (Station
P), Deep-Sea Res. Pt. I, 40, 547–560, 1993b.
Haake, B., Ittekkot, V., Ramaswamy, V., Nair, R. R., and Honjo, S.: Fluxes
of amino acids and hexosamines of the deep Arabian Sea, Mar. Chem.,
40, 291–314, 1992.
Haake, B., Rixen, T., Reemtsma, T., Ramaswamy, V., and Ittekkot, V.:
Processes determining seasonality and interannual variability of settling
particle fluxes to the deep Arabian Sea, in: Particle Flux in the Ocean,
edited by: Ittekkot, V., Schäfer, P., Honjo, S., and Depetris, P. J.,
John Wiley&Sons Ltd., 251–270, ISBN 0-471-96073-X, 1996.
Haeckel, M.: Particulate geochemistry of sediment core SO242/1_108-1_MUC 26, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.884975, 2018a.
Haeckel, M.: Particulate geochemistry of sediment core SO242/1_38-1_GC 1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.884981, 2018b.
Haeckel, M.: Particulate geochemistry of sediment push core SO242/2_166_PUC-70, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.885023, 2018c.
Hannides, C. C. S., Popp, B. N., Choy, C. A., and Drazen, J. C.: Midwater
zooplankton and suspended particle dynamics in the North Pacific Subtropical
Gyre: A stable isotope perspective, Limnol. Oceanogr., 58,
1931–1946, https://doi.org/10.4319/lo.2013.58.6.1931, 2013.
Hansell, D. A. and Carlson, C. A.: Localized refractory dissolved organic
carbon sinks in the deep ocean, Global Biogeochem. Cy., 27, 705–710,
2013.
Hansell, D., Carlson, C. A., Repeta, D. J., and Schlitzer, R.: Dissolved
organic matter in the ocean, Oceanography, 22, 202–211, 2009.
Harms, N. C., Lahajnar, N., Gaye, B., Rixen, T., Dähnke, K., Ankele, M.,
Schwarz-Schampera, U., and Emeis, K. C.: Nutrient distribution and nitrogen
and oxygen isotopic composition of nitrate in water masses of the
subtropical southern Indian Ocean, Biogeosciences, 16, 2715–2732,
https://doi.org/10.5194/bg-16-2715-2019, 2019.
Harms, N. C., Lahajnar, N., Gaye, B., Rixen, T., Schwarz-Schampera, U., and
Emeis, K.-C.: Sediment trap-derived particulate matter fluxes in the
oligotrophic subtropical gyre of the South Indian Ocean, Deep-Sea Res.
Pt. II, 183, 104924, https://doi.org/10.1016/j.dsr2.2020.104924, 2021.
Hedges, J. I. and Hare, P. E.: Amino acid adsorption by clay minerals in
distilled water, Geochim. Cosmochim. Ac., 51, 255–259, 1987.
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation an
assessment and speculative synthesis, Mar. Chem., 49, 137–139,
https://doi.org/10.1016/0304-4203(95)00013-h, 1995.
Hildebrandt, Tatjana M., Nunes Nesi, A., Araújo, Wagner L., and Braun,
H.-P.: Amino Acid Catabolism in Plants, Mol. Plant, 8, 1563–1579,
https://doi.org/10.1016/j.molp.2015.09.005, 2015.
Honjo, S., Manganini, S. J., Krishfield, R. A., and Francois, R.:
Particulate organic carbon fluxes to the ocean interior and factors
controlling the biological pump: A synthesis of global sediment trap
programs since 1983, Prog. Oceanogr., 76, 217–285,
https://doi.org/10.1016/j.pocean.2007.11.003, 2008.
Ingalls, A. E., Aller, R. C., Lee, C., and Wakeham, S. G.: Organic matter
diagenesis in shallow water carbonate sediments, Geochim. Cosmochim.
Ac., 68, 4263–4379, 2004.
Ingalls, A. E., Liu, Z., and Lee, C.: Seasonal trends in the pigment and
amino acid compositions of sinking particles in biogenic CaCO3 and
SiO2 dominated regions of the Pacific sector of the Southern Ocean
along 170∘ W, Deep-Sea Res. Pt. I, 53, 836–859, 2006.
Ittekkot, V.: Verteilung von gelöstem organischen Kohlenstoff,
gelösten Zuckern und Aminosäuren in Fladengrund, nördliche
Nordsee (FLEX 1976), Mitt. Geol.-Paläont. Inst. Univ. Hamburg, Heft 51,
115–187, 1981.
Ittekkot, V. and Arain, R.: Nature of Particulate Organic-Matter in the
River Indus, Pakistan, Geochim. Cosmochim. Ac., 50, 1643–1653,
https://doi.org/10.1016/0016-7037(86)90127-4, 1986.
Ittekkot, V., Degens, E. T., and Honjo, S.: Seasonality in the fluxes of
sugars, amino acids, and amino sugars to the deep ocean: Panama Basin,
Deep-Sea Res., 31, 1071–1083, 1984a.
Ittekkot, V., Deuser, W. G., and Degens, E. T.: Seasonality in the fluxes of
sugars, amino acids, and amino sugars to the deep ocean: Sargasso Sea,
Deep-Sea Res., 31, 1057–1069, 1984b.
Ittekkot, V., Safiullah, S., and Arain, R.: Nature of Organic-Matter in
Rivers with Deep-Sea Connections – the Ganges-Brahmaputra and Indus, Sci. Total Environ., 58, 93–107, https://doi.org/10.1016/0048-9697(86)90080-x, 1986.
Jennerjahn, T. and Ittekkot, V.: Organic matter in sediments in the mangrove
areas and adjacent continental margins of Brazil: I. Amino acids and
hexosamines, Oceanol. Acta, 20, 359–369, 1997.
Kaiser, K. and Benner, R.: Biochemical composition and size distribution of
organic matter at the Pacific and Atlantic time-series stations, Mar.
Chem., 113, 63–77, https://doi.org/10.1016/j.marchem.2008.12.004,
2009.
Kandler, O.: Cell-wall structures in methane bacteria – evolution of
procaryotes, Naturwissenschaften, 66, 95–105, https://doi.org/10.1007/bf00373500, 1979.
Karl, D., Knauer, G. A., and Martin, A. P.: Downward flux of particulate
organic matter in the ocean: a particle composition paradox, Nature, 332,
438–441, 1988.
Keil, R. G. and Kirchman, D. L.: Dissolved Combined Amino Acids: Chemical
Form and Utilization by Marine Bacteria, Limnol. Oceanogr., 38,
1256–1270, 1993.
Keil, R. G. and Kirchman, D. L.: Abiotic Transformation of Labile Protein to
Refractory Protein in Sea-Water, Mar. Chem., 45, 187–196,
https://doi.org/10.1016/0304-4203(94)90002-7, 1994.
Keil, R. G. and Kirchman, D. L.: Utilization of dissolved protein and amino
acids in the northern Sargasso Sea, Aquat. Microb. Ecol., 18, 293–300, 1999.
Keil, R. G., Montlucon, D. B., Prahl, F. G., and Hedges, J. I.: Sorptive
Preservation of Labile Organic-Matter in Marine-Sediments, Nature, 370,
549–552, https://doi.org/10.1038/370549a0, 1994.
Kienast, M., Lehmann, M. F., Timmermann, A., Galbraith, E., Bolliet, T.,
Holboum, A., Normandeau, C., and Laj, C.: A mid-Holocene transition in the
nitrogen dynamics of the western equatorial Pacific: Evidence of a deepening
thermocline?, Geophys. Res. Lett., 35, L23610, https://doi.org/10.1029/2008gl035464,
2008.
Kim, T. H., Kim, G., Shen, Y., and Benner, R.: Strong linkages between
surface and deep-water dissolved organic matter in the East/Japan Sea,
Biogeosciences, 14, 2561–2570, https://doi.org/10.5194/bg-14-2561-2017, 2017.
King, K. J.: Amino acid composition of the silicified matrix in fossil
polycystine Radiolaria, Micropaleontology, 21, 215–226, 1975.
King, K. J. and Hare, P. E.: Amino acid composition of the test as a
taxonomic character for living and fossil planktonic foraminifera,
Micropaleontology, 18, 285–293, 1972.
Klein, I., von Rad, U., and Durner, J.: Homoserine lactones: do plants
really listen to bacterial talk?, Plant Signal. Behav., 4, 50–51,
2009.
Koppelmann, R., Bottger-Schnack, R., Mobius, J., and Weikert, H.: Trophic
relationships of zooplankton in the eastern Mediterranean based on stable
isotope measurements, J. Plankton Res., 31, 669–686, https://doi.org/10.1093/plankt/fbp013,
2009.
Lahajnar, N., Rixen, T., Gaye-Haake, B., Schafer, P., and Ittekkot, V.:
Dissolved organic carbon (DOC) fluxes of deep-sea sediments from the Arabian
Sea and NE Atlantic, Deep-Sea Res. Pt. II, 52,
1947–1964, https://doi.org/10.1016/j.dsr2.2005.05.006, 2005.
Lahajnar, N., Wiesner, M. G., and Gaye, B.: Fluxes of amino acids and
hexosamines to the deep South China Sea, Deep-Sea Res. Pt. I, 54, 2120–2144, https://doi.org/10.1016/j.dsr.2007.08.009, 2007.
Lam, P. J. and Marchal, O.: Insights into Particle Cycling from Thorium and
Particle Data, in: Annual Review of Marine Science, Vol 7, edited by:
Carlson, C. A. and Giovannoni, S. J., Annual Review of Marine Science,
Annual Reviews, Palo Alto, 159–184, https://doi.org/10.1146/annurev-marine-010814-015623,
2015.
Lee, C.: Amino acids and amine biogeochemistry in marine particulate
material and sediments, in: Nitrogen cycling in coastal marine environments,
edited by: Blackburn, T. H., and Sörensen, J., SCOPE, Wiley and Sons, 125–141, ISBN 0 471 91404 5,
1988.
Lee, C. and Cronin, C.: The vertical flux of particulate organic nitrogen in
the sea: decomposition of amino acids in the Peru upwelling area and the
equatorial Atlantic, J. Mar. Res., 40, 227–251, 1982.
Lee, C. and Cronin, C.: Particulate amino acids in the sea: Effects of
primary productivity and biological decomposition, J. Mar. Res., 42,
1075–1097, 1984.
Lee, C., Wakeham, S., and Arnosti, C.: Particulate organic matter in the
sea: The composition conundrum, Ambio, 33, 565–575,
https://doi.org/10.1639/0044-7447(2004)033[0565:pomits]2.0.co;2, 2004.
Legendre, L., Rivkin, R. B., Weinbauer, M. G., Guidi, L., and Uitz, J.: The
microbial carbon pump concept: Potential biogeochemical significance in the
globally changing ocean, Prog. Oceanogr., 134, 432–450,
https://doi.org/10.1016/j.pocean.2015.01.008, 2015.
Loh, A. N., Bauer, J. E., and Druffel, E. R. M.: Variable ageing and storage
of dissolved organic components in the open ocean, Nature, 430, 877–881,
https://doi.org/10.1038/nature02780, 2004.
Loick-Wilde, N., Weber, S. C., Eglite, E., Liskow, I., Schulz-Bull, D.,
Wasmund, N., Wodarg, D., and Montoya, J. P.: De novo amino acid synthesis
and turnover during N-2 fixation, Limnol. Oceanogr., 63, 1076–1092,
https://doi.org/10.1002/lno.10755, 2018.
Lonborg, C., Alvarez-Salgado, X. A., Letscher, R. T., and Hansell, D. A.:
Large Stimulation of Recalcitrant Dissolved Organic Carbon Degradation by
Increasing Ocean Temperatures, Front. Mar. Sci., 4, 436,
https://doi.org/10.3389/fmars.2017.00436, 2018.
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: Vertex:
carbon cycling in the northeast Pacific, Deep-Sea Res., 34, 267–285,
1987.
Mayzaud, P. and Martin, J. L. M.: Some aspects of biochemical and mineral
composition of marine plankton J. Exp. Mar. Biol. Ecol., 17, 297–310,
https://doi.org/10.1016/0022-0981(75)90005-2, 1975.
McCarthy, M., Pratum, T., Hedges, J., and Benner, R.: Chemical composition
of dissolved organic nitrogen in the ocean, Nature, 390, 150–154,
https://doi.org/10.1038/36535, 1997.
McCarthy, M. D., Benner, R., Lee, C., Hedges, J. I., and Fogel, M. L.: Amino
acid carbon isotopic fractionation patterns in oceanic dissolved organic
matter: an unaltered photoautotrophic source for dissolved organic nitrogen
in the ocean?, Mar. Chem., 92, 123–134, 2004.
McCarthy, M. D., Benner, R., Lee, C., and Fogel, M. L.: Amino acid nitrogen
isotopic fractionation patterns as indicators of heterotrophy in plankton,
particulate, and dissolved organic matter, Geochim. Cosmochim. Ac.,
71, 4727–4744, https://doi.org/10.1016/j.gca.2007.06.061, 2007.
McCave, I. N.: Size spectra and aggregation of suspended particles in the
ocean, Deep-Sea Res., 31, 329–352, 1984.
Menzel, P., Anupama, K., Basavaiah, N., Das, B. K., Gaye, B., Herrmann, N.,
and Prasad, S.: The use of amino acid analyses in (palaeo-) limnological
investigations: A comparative study of four Indian lakes in different
climate regimes, Geochim. Cosmochim. Ac., 160, 25–37,
https://doi.org/10.1016/j.gca.2015.03.028, 2015.
Menzel, P., Gaye, B., Wiesner, M. G., Prasad, S., Stebich, M., Das, B. K.,
Anoop, A., Riedel, N., and Basavaiah, N.: Influence of bottom water anoxia
on nitrogen isotopic ratios and amino acid contributions of recent sediments
from small eutrophic Lonar Lake, Central India, Limnol. Oceanogr.,
58, 1061–1074, 2013.
Möbius, J.: Isotope fractionation during nitrogen remineralization
(ammonification): Implications for nitrogen isotope biogeochemistry,
Geochim. Cosmochim. Ac., 105, 422–432, 2013.
Möbius, J., Lahajnar, N., and Emeis, K.-C.: Diagenetic control on
nitrogen isotope ratios in Holocene sapropels and recent sediments from the
Eastern Mediterranean Sea, Biogeosciences 7, 3901–3914,
https://doi.org/10.5194/bg-7-3901-2010, 2010.
Möbius, J., Gaye, B., Lahajnar, N., Bahlmann, E., and Emeis, K.-C.:
Influence of diagenesis on sedimentary ä15N in the Arabian Sea over
the last 130 kyr, Mar. Geol., 284, 127–138, 2011.
Müller, P. J.: ratios in Pacific deep sea sediments: Effect of
inorganic ammonium and organic nitrogen compounds sorbed by clays,
Geochim. Cosmochim. Ac., 11, 765–776, 1977.
Müller, P. J., Suess, E., and Ungerer, C. A.: Amino acids and amino sugars
of surface particulate and sediment trap material from waters of the Scotia
Sea Deep-Sea Res. Pt. A, 33, 819–838,
https://doi.org/10.1016/0198-0149(86)90090-7, 1986.
Nagel, B., Gaye, B., Kodina, L. A., and Lahajnar, N.: Stable carbon and
nitrogen isotopes as indicators for organic matter sources in the Kara Sea,
Mar. Geol., 266, 42–51, https://doi.org/10.1016/j.margeo.2009.07.010, 2009.
Nagel, B., Emeis, K.-C., Flohr, A., Rixen, T., Schlarbaum, T., Mohrholz, V.,
and van der Plas, A.: N-cycling and balancing of the N-deficit generated in
the oxygen minimum zone over the Namibian shelf – An isotope-based approach,
J. Geophys. Res.-Biogeo., 118, 361–371, 2013.
Nagel, B., Gaye, B., Lahajnar, N., Struck, U., and Emeis, K.-C.: Effects of
current regimes and oxygenation on particulate matter preservation on the
Namibian shelf: Insights from amino acid biogeochemistry, Mar. Chem.,
186, 121–132, https://doi.org/10.1016/j.marchem.2016.09.001, 2016.
Niggemann, J. and Schubert, C. J.: Sources and fate of amino sugars in
coastal Peruvian sediments, Geochim. Cosmochim. Ac., 70, 2229–2237,
2006.
Niggemann, J., Lomstein, B. A., and Schubert, C. J.: Diagenesis of amino
compounds in water column and sediment of Lake Baikal, Org. Geochem., 115,
67–77, https://doi.org/10.1016/j.orggeochem.2017.10.008, 2018.
Orellana, M. V. and Leck, C.: Marine Microgels, Biogeochemistry of Marine
Dissolved Organic Matter, 2nd Edn., Academic Press Ltd.-Elsevier Science
Ltd., London, 451–480, https://doi.org/10.1016/b978-0-12-405940-5.00009-1, 2015.
Pantoja, S., Sepúlveda, J., and Gonzálvez, H. E.: Decomposition of
sinking proteinaceous material during fall in the oxygen minimum zone off
northern Chile, Deep-Sea Res. Pt. I, 51, 55–70, 2004.
Parsek, M. R., Val, D. L., Hanzelka, B. L., Cronan Jr., J. E., and
Greenberg, E. P.: Acyl homoserine-lactone quorum-sensing signal generation,
P. Natl. Acad. Sci. USA, 96, 4360–4365, 1999.
Paul, S. A. L., Koschinsky, A., Gaye, B., and Dähnke, K.: N-isotopes and amino acids from sediment multi cores of SONNE cruise SO242/1 at the DISCOL area, Peru Basin, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.881804, 2017a.
Paul, S. A. L., Koschinsky, A., Gaye, B., and Dähnke, K.: N-isotopes and amino acids from sediment push cores of SONNE cruise SO242/2 at the DISCOL area, Peru Basin, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.881813, 2017b.
Paul, S. A. L., Koschinsky, A., Gaye, B., and Dähnke, K.: N-isotopes and amino acids from CTD station SO242/1_58-1_CTD 4 at the DISCOL area, Peru Basin, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.885391, 2017c.
Paul, S. A. L., Gaye, B., Haeckel, M., Kasten, S., and Koschinsky, A.:
Biogeochemical Regeneration of a Nodule Mining Disturbance Site: Trace
Metals, DOC and Amino Acids in Deep-Sea Sediments and Pore Waters, Front. Mar. Sci., 5, 117, https://doi.org/10.3389/fmars.2018.00117, 2018.
Peter, S., Shen Y., Kaiser, K., Benner, R., and Durisch-Kaiser, E.:
Bioavailability and diagenetic state of dissolved organic matter in riparian
groundwater, J. Geophys. Res. Geophys.l Res.h, 117,
G04006, https://doi.org/10.1029/2012JG002072, 2012.
Peters, B. D., Lam, P. J., and Casciotti, K. L.: Nitrogen and oxygen isotope
measurements of nitrate along the US GEOTRACES Eastern Pacific Zonal
Transect (GP16) yield insights into nitrate supply, remineralization, and
water mass transport, Mar. Chem., 201, 137–150,
https://doi.org/10.1016/j.marchem.2017.09.009, 2018.
Pilskaln, C. H. and Honjo, S.: The fecal pellet fraction of biogeochemical
particle fluxes to the deep sea, Global Biogeochem. Cy., 1, 31–48,
1987.
Reinthaler, T., van Aken, H., Veth, C., Aristegui, J., Robinson, C.,
Williams, P., Lebaron, P., and Herndl, G. J.: Prokaryotic respiration and
production in the meso- and bathypelagic realm of the eastern and western
North Atlantic basin, Limnol. Oceanogr., 51, 1262–1273,
https://doi.org/10.4319/lo.2006.51.3.1262, 2006.
Resplandy, L., Lévy, M., and McGillicuddy Jr., D. J.: Effects of
Eddy-Driven Subduction on Ocean Biological Carbon Pump, Global
Biogeochem. Cy., 33, 1071–1084, https://doi.org/10.1029/2018GB006125,
2019.
Riccardi, G., Derossi, E., and Milano, A.: Amino acid biosynthesis and its
regulation in cyanobacteria, Plant Sci., 64, 135–151,
https://doi.org/10.1016/0168-9452(89)90018-6, 1989.
Ridgwell, A. and Arndt, S.: Why Dissolved Organics Matter: DOC in Ancient
Oceans and Past Climate Change, Biogeochemistry of Marine Dissolved Organic
Matter, 2nd Edn., Academic Press Ltd.-Elsevier Science Ltd., London, 1–20,
https://doi.org/10.1016/b978-0-12-405940-5.00001-7, 2015.
Rixen, T., Guptha, M. V. S., and Ittekkot, V.: Sedimentation, in: Report of
the Indian Ocean Synthesis Group on the Arabian Sea Process Study, edited
by: Burkill, P. and Smith, S. L., JGOFS Report 35, JGOFS International Project Office, Bergen, 65–73,
2002.
Rixen, T., Baum, A., Gaye, B., and Nagel, B.: Seasonal and interannual
variations in the nitrogen cycle in the Arabian Sea, Biogeosciences, 11,
5733–5747, https://doi.org/10.5194/bg-11-5733-2014, 2014.
Rixen, T., Gaye, B., and Emeis, K.-C.: The monsoon, carbon fluxes, and the
organic carbon pump in the northern Indian Ocean, Prog. Oceanogr.,
175, 24–39, https://doi.org/10.1016/j.pocean.2019.03.001, 2019a.
Rixen, T., Gaye, B., Emeis, K. C., and Ramaswamy, V.: The ballast effect of
lithogenic matter and its influences on the carbon fluxes in the Indian
Ocean, Biogeosciences, 16, 485–503, https://doi.org/10.5194/bg-16-485-2019, 2019b.
Robinson, R. S., Kienast, M., Luiza Albuquerque, A., Altabet, M., Contreras, S., De Pol Holz, R., Dubois, N., Francois, R., Galbraith, E., Hsu, T.-C., Ivanochko, T., Jaccard, S., Kao, S.-J., Kiefer, T., Kienast, S., Lehmann, M., Martinez, P., McCarthy, M., Möbius, J., Pedersen, T., Quan, T. M., Ryabenko, E., Schmittner, A., Schneider, R., Schneider-Mor, A., Shigemitsu, M., Sinclair, D., Somes, C., Studer, A., Thunell, R., and Yang, J.-Y.: A review of nitrogen isotopic alteration in marine
sediments, Paleoceanography, 27, PA4203, https://doi.org/10.1029/2012PA002321, 2012.
Rontani, J.-F., Zabeti, N., and Wakeham, S. G.: Degradation of particulate
organic matter in the equatorial Pacific Ocean: Biotic or abiotic?,
Limnol. Oceanogr., 56, 333–349, 2011.
Satterberg, J., Arnarson, T. S., Lessard, E. J., and Keil, R. G.: Sorption
of organic matter from four phytoplankton species to montmorillonite,
chlorite and kaolinite in seawater, Mar. Chem., 81, 11–18,
https://doi.org/10.1016/s0304-4203(02)00136-6, 2003.
Sheridan, C. C., Lee, C., Wakeham, S. G., and Bishop, J. K. B.: Suspended
particle organic composition and cycling in surface and midwaters of the
equatorial Pacific Ocean, Deep-Sea Res. Pt. I, 49, 1983–2008, 2002.
Silver, M. W., Coale, S. L., Pilskaln, C. H., and Steinberg, D. R.: Giant
aggregates: Importance as microbial centers and agents of material flux in
the mesopelagic zone, Limnol. Oceanogr., 43, 498–507, 1998.
Smith, D. C., Simon, M., Alldredge, A. L., and Azam, F.: Intense hydrolytic
enzyme activity on marine aggregates and implications for rapid particle
dissolution, Nature, 359, 139–142, 1992.
Suess, E.: Particulate organic carbon flux in the oceans – surface
productivity and oxygen utilization, Nature, 288, 260–263, 1980.
Sun, Y., Zulla, M., Joachimski, M., Bond, D., Wignall, P., Zhang, Z., and
Zhang, M.: Ammonium ocean following the end-Permian mass extinction, Earth
Planet. Sc. Lett., 518, 211–222, https://doi.org/10.1016/j.epsl.2019.04.036, 2019.
Suthhof, A., Jennerjahn, T. C., Schäfer, P., and Ittekkot, V.: Nature of
organic matter in surface sediments from the Pakistan continental margin and
the deep Arabian Sea: amino acids, Deep-Sea Res. Pt. II, 47, 329–351, 2000.
Suthhof, A., Ittekkot, V., and Gaye-Haake, B.: Millennial-scale oscillation
of denitrification intensity in the Arabian Sea during the late Quaternary
and its potential influence on atmospheric N2O and global climate,
Global Biogeochem. Cy., 15, 637–650, 2001.
Taylor, G. T.: Microbial degradation of sorbed and dissolved protein in
seawater, Limnol. Oceanogr., 40, 875–885, 1995.
Tesdal, J. E., Galbraith, E. D., and Kienast, M.: Nitrogen isotopes in bulk
marine sediment: linking seafloor observations with subseafloor records,
Biogeosciences, 10, 101–118, https://doi.org/10.5194/bg-10-101-2013, 2013.
Turnewitsch, R., Lahajnar, N., Haeckel, M., and Christiansen, B.: An abyssal
hill fractionates organic and inorganic matter in deep-sea surface
sediments, Geophys. Res. Lett., 42, 7663–7672,
https://doi.org/10.1002/2015gl065658, 2015.
Turnewitsch, R., Dale, A., Lahajnar, N., Lampitt, R. S., and Sakamoto, K.:
Can neap-spring tidal cycles modulate biogeochemical fluxes in the abyssal
near-seafloor water column?, Prog. Oceanogr., 154, 1–24,
https://doi.org/10.1016/j.pocean.2017.04.006, 2017.
Unger, D., Gaye-Haake, B., Gebhardt, A. C., and Ittekkot, V.:
Biogeochemistry of suspended and sedimentary material from the Ob and
Yenisei rivers and the adjacent Kara Sea: Amino acids and amino sugars,
Cont. Shelf Res., 25, 437–460, 2005.
Wakeham, S. G. and Canuel, E. A.: Organic geochemistry of particulate matter
in the eastern tropical North Pacific; Implications for particle dynamics,
J. Mar. Res., 46, 183–213, 1988.
Wakeham, S. G. and Lee, C.: Organic geochemistry of particulate matter in
the ocean – the role of particles in oceanic sedimentary cycles, Org.
Geochem., 14, 83–96, https://doi.org/10.1016/0146-6380(89)90022-3, 1989.
Wakeham, S. G. and Lee, C.: Production, Transport, and Alteration of
Particulate Organic Matter in the Marine Water Column, in: Organic
Geochemistry: Principles and Applications, edited by: Engel, M. H. and
Macko, S. A., Springer US, Boston, MA, 145–169,
https://doi.org/10.1007/978-1-4615-2890-6_6, 1993.
Wakeham, S. G., Lee, C., Farrington, J. W., and Gagosian, R. B.:
Biogechemistry of particulate organic matter in the oceans: results from
sediment trap experiments, Deep-Sea Res., 31, 509–528, 1984.
Walla, M. D., Lau, P. Y., Morgan, S. L., Fox, A., and Brown, A.: Capillary
gas chromatography-mass spectrometry of carbohydrate components of
legionellae and other bacteria, J. Chromatogr. A, 288, 399–413,
https://doi.org/10.1016/S0021-9673(01)93716-1, 1984.
Waples, D. W. and Sloan, J. R.: Carbon and nitrogen diagenesis in deep-sea
sediments, Geochim. Cosmochim. Ac., 44, 1463–1470,
https://doi.org/10.1016/0016-7037(80)90111-8, 1980.
Whelan, J. K. and Emeis, K.-C.: Preservation of amino acids and
carbohydrates in marine sediments, in: Organic Matter: Productivity,
Accumulation, and Preservation in Recent and Ancient Sediments, edited by:
Whelan, J. K. and Farrington, J., Columbia University Press, Palisades, N.
Y., 176–200, ISBN 0 231 07162 0, 1992.
Wilson, J. D., Barker, S., and Ridgwell, A.: Assessment of the spatial
variability in particulate organic matter and mineral sinking fluxes in the
ocean interior: Implications for the ballast hypothesis, Global
Biogeochem. Cy., 26, GB4011, https://doi.org/10.1029/2012gb004398, 2012.
Xue, J. H., Lee, C., Wakeham, S. G., and Armstrong, R. A.: Using principal
components analysis (PCA) with cluster analysis to study the organic
geochemistry of sinking particles in the ocean, Org. Geochem., 42, 356–367,
https://doi.org/10.1016/j.orggeochem.2011.01.012, 2011.
Yamaguchi, Y. T. and McCarthy, M. D.: Sources and transformation of
dissolved and particulate organic nitrogen in the North Pacific Subtropical
Gyre indicated by compound-specific ä15N analysis of amino acids,
Geochim. Cosmochim. Ac., 220, 329–347, https://doi.org/10.1016/j.gca.2017.07.036, 2018.
Yang, J.-Y. T., Kao, S.-J., Dai, M., Yan, X., and Lin, H.-L.: Examining N
cycling in the northern South China Sea from N isotopic signals in nitrate
and particulate phases, J. Geophys. Res.-Biogeo.,
122, 2118–2136, https://doi.org/10.1002/2016JG003618, 2017.
Zhang, P. Y., Yang, G. P., Chen, Y., Leng, W. S., and Ji, C. X.: Temporal
and spatial variations of particulate and dissolved amino acids in the East
China Sea, Mar. Chem., 186, 133–144, https://doi.org/10.1016/j.marchem.2016.09.004,
2016.
Short summary
Amino acids were analyzed in a large number of samples of particulate and dissolved organic matter from coastal regions and the open ocean. A statistical analysis produced two new biogeochemical indicators. An indicator of sinking particle and sediment degradation (SDI) traces the degradation of organic matter from the surface waters into the sediments. A second indicator shows the residence time of suspended matter in the ocean (RTI).
Amino acids were analyzed in a large number of samples of particulate and dissolved organic...
Altmetrics
Final-revised paper
Preprint