Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-831-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-831-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The biogeographic pattern of microbial communities inhabiting terrestrial mud volcanoes across the Eurasian continent
Tzu-Hsuan Tu
Department of Oceanography, National Sun Yat-sen University,
Kaohsiung, Taiwan
Institute of Oceanography, National Taiwan University, Taipei, Taiwan
Department of Geosciences, National Taiwan University, Taipei, Taiwan
Li-Ling Chen
Institute of Oceanography, National Taiwan University, Taipei, Taiwan
Yi-Ping Chiu
Department of Geosciences, National Taiwan University, Taipei, Taiwan
Li-Hung Lin
Department of Geosciences, National Taiwan University, Taipei, Taiwan
Research Center for Future Earth, National Taiwan University, Taipei, Taiwan
Li-Wei Wu
Department of Life Science, Tunghai University, Taichung, Taiwan
Francesco Italiano
National Institute of Geophysics and Volcanology, Palermo, Italy
J. Bruce H. Shyu
Department of Geosciences, National Taiwan University, Taipei, Taiwan
Seyed Naser Raisossadat
Department of Geology, University of Birjand, Birjand, Iran
Earth Science Research Group, University of Birjand, Birjand, Iran
Institute of Oceanography, National Taiwan University, Taipei, Taiwan
Research Center for Future Earth, National Taiwan University, Taipei, Taiwan
Related authors
Chueh-Chen Tung, Yu-Shih Lin, Jian-Xiang Liao, Tzu-Hsuan Tu, James T. Liu, Li-Hung Lin, Pei-Ling Wang, and Chih-Lin Wei
Biogeosciences, 21, 1729–1756, https://doi.org/10.5194/bg-21-1729-2024, https://doi.org/10.5194/bg-21-1729-2024, 2024
Short summary
Short summary
This study contrasts seabed food webs between a river-fed, high-energy canyon and the nearby slope. We show higher organic carbon (OC) flows through the canyon than the slope. Bacteria dominated the canyon, while seabed fauna contributed more to the slope food web. Due to frequent perturbation, the canyon had a lower faunal stock and OC recycling. Only 4 % of the seabed OC flux enters the canyon food web, suggesting a significant role of the river-fed canyon in transporting OC to the deep sea.
Sara M. Defratyka, Julianne M. Fernandez, Getachew A. Adnew, Guannan Dong, Peter M. J. Douglas, Daniel L. Eldridge, Giuseppe Etiope, Thomas Giunta, Mojhgan A. Haghnegahdar, Alexander N. Hristov, Nicole Hultquist, Iñaki Vadillo, Josue Jautzy, Ji-Hyun Kim, Jabrane Labidi, Ellen Lalk, Wil Leavitt, Jiawen Li, Li-Hung Lin, Jiarui Liu, Lucia Ojeda, Shuhei Ono, Jeemin Rhim, Thomas Röckmann, Barbara Sherwood Lollar, Malavika Sivan, Jiayang Sun, Gregory T. Ventura, David T. Wang, Edward D. Young, Naizhong Zhang, and Tim Arnold
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-41, https://doi.org/10.5194/essd-2025-41, 2025
Preprint under review for ESSD
Short summary
Short summary
Measurement of methane’s doubly substituted isotopologues at natural abundances holds promise for better constraining the Earth’s atmospheric CH4 budget. We compiled 1475 measurements from field samples and laboratory experiments, conducted since 2014, to facilitate the differentiation of CH4 formation pathways and processes, to identify existing gaps limiting application of Δ13CH3D and Δ12CH2D2, and to develop isotope ratio source signature inputs for global CH4 flux modelling.
Chueh-Chen Tung, Yu-Shih Lin, Jian-Xiang Liao, Tzu-Hsuan Tu, James T. Liu, Li-Hung Lin, Pei-Ling Wang, and Chih-Lin Wei
Biogeosciences, 21, 1729–1756, https://doi.org/10.5194/bg-21-1729-2024, https://doi.org/10.5194/bg-21-1729-2024, 2024
Short summary
Short summary
This study contrasts seabed food webs between a river-fed, high-energy canyon and the nearby slope. We show higher organic carbon (OC) flows through the canyon than the slope. Bacteria dominated the canyon, while seabed fauna contributed more to the slope food web. Due to frequent perturbation, the canyon had a lower faunal stock and OC recycling. Only 4 % of the seabed OC flux enters the canyon food web, suggesting a significant role of the river-fed canyon in transporting OC to the deep sea.
Alessandro Gattuso, Francesco Italiano, Giorgio Capasso, Antonino D'Alessandro, Fausto Grassa, Antonino Fabio Pisciotta, and Davide Romano
Nat. Hazards Earth Syst. Sci., 21, 3407–3419, https://doi.org/10.5194/nhess-21-3407-2021, https://doi.org/10.5194/nhess-21-3407-2021, 2021
Short summary
Short summary
Santa Barbara and Aragona are affected by mud volcanism with episodic hazardous paroxysm events. Two potentially hazardous paroxysm exposed surfaces of 0.12 and 0.20 km2 were elaborated with DSMs and with historical information on the paroxysms that occurred in the past. This paper, in the end, could be a useful tool for civil protection authorities in order to take appropriate risk mitigation measurements for exposed people and for monitoring activities.
Cited articles
Allison, P. A. and Pye, K.: Early diagenetic mineralization and fossil
Preservation in modern carbonate concretions, Palaios, 9, 561–575,
https://doi.org/10.2307/3515128, 1994.
Astorga, A., Oksanen, J., Luoto, M., Soininen, J., Virtanen, R., and Muotka,
T.: Distance decay of similarity in freshwater communities: Do macro- and
microorganisms follow the same rules?, Global Ecol. Biogeogr., 21, 365–375,
https://doi.org/10.1111/j.1466-8238.2011.00681.x, 2012.
Beal, E. J., House, C. H., and Orphan, V. J.: Manganese- and iron-dependent
marine methane oxidation, Science, 325, 184–187,
https://doi.org/10.1126/science.1169984, 2009.
Bolyen, E., Rideout, J. R., Dillon, M. R., et al.: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2, Nat. Biotechnol., 37, 852–857, https://doi.org/10.1038/s41587-019-0209-9, 2019.
Borrel, G., Adam, P. S., McKay, L. J., Chen, L.-X., Sierra-García, I.
N., Sieber, C. M. K., Letourneur, Q., Ghozlane, A., Andersen, G. L., Li,
W.-J., Hallam, S. J., Muyzer, G., Oliveira, V. M. de, Inskeep, W. P.,
Banfield, J. F., and Gribaldo, S.: Wide diversity of methane and short-chain
alkane metabolisms in uncultured archaea, Nat. Microbiol., 4, 603–613,
https://doi.org/10.1038/s41564-019-0363-3, 2019.
Bray, J. R. and Curtis, J. T.: An ordination of the upland forest
communities of southern Wisconsin, Ecol. Monogr., 27, 325–349, 1957.
Canfield, D. E.: Reactive iron in marine sediments, Geochim. Cosmochim. Ac.,
53, 619–632, https://doi.org/10.1016/0016-7037(89)90005-7, 1989.
Chang, Y.-H., Cheng, T.-W., Lai, W.-J., Tsai, W.-Y., Sun, C.-H., Lin, L.-H.,
and Wang, P.-L.: Microbial methane cycling in a terrestrial mud volcano in
eastern Taiwan, Environ. Microbiol., 14, 895–908,
https://doi.org/10.1111/j.1462-2920.2011.02658.x, 2012.
Chen, N.-C., Yang, T. F., Hong, W.-L., Yu, T.-L., Lin, I.-T., Wang, P.-L.,
Lin, S., Su, C.-C., Shen, C.-C., Wang, Y., and Lin, L.-H.: Discharge of
deeply rooted fluids from submarine mud volcanism in the Taiwan accretionary
prism, Sci. Rep.-UK, 10, 381, https://doi.org/10.1038/s41598-019-57250-9, 2020.
Cheng, T.-W., Chang, Y.-H., Tang, S.-L., Tseng, C.-H., Chiang, P.-W., Chang,
K.-T., Sun, C.-H., Chen, Y.-G., Kuo, H.-C., Wang, C.-H., Chu, P.-H., Song,
S.-R., Wang, P.-L., and Lin, L.-H.: Metabolic stratification driven by
surface and subsurface interactions in a terrestrial mud volcano, ISME J.,
6, 2280–2290, https://doi.org/10.1038/ismej.2012.61, 2012.
Chiu, Y.-P.: Microbial community structure and methane cycling in mud
volcanoes of Sicily, Italy, MS thesis, National Taiwan University, Taiwan,
137 pp., https://hdl.handle.net/11296/9j6jqr (last access: 5 February 2022), 2015.
Claypool, G. E. and Kvenvolden, K. A.: Methane and other hydrocarbon gases
in marine sediment, Annu. Rev. Earth Pl. Sc., 11, 299–327,
https://doi.org/10.1146/annurev.ea.11.050183.001503, 1983.
Comte, J., Monier, A., Crevecoeur, S., Lovejoy, C., and Vincent, W. F.:
Microbial biogeography of permafrost thaw ponds across the changing northern
landscape, Ecography, 39, 609–618, https://doi.org/10.1111/ecog.01667, 2016.
Condit, R., Pitman, N., Leigh, E. G., Chave, J., Terborgh, J., Foster, R.
B., Núñez, P., Aguilar, S., Valencia, R., Villa, G., Muller-Landau,
H. C., Losos, E., and Hubbell, S. P.: Beta-diversity in tropical forest
trees, Science, 295, 666–669, https://doi.org/10.1126/science.1066854,
2002.
DasSarma, S. and DasSarma, P.: Halophiles, in: eLS, John Wiley & Sons, Ltd, 1–13,
https://doi.org/10.1002/9780470015902.a0000394.pub4, 2001.
Dice, L. R.: Measures of the amount of ecologic association between species,
Ecology, 26, 297–302, https://doi.org/10.2307/1932409, 1945.
Dimitrov, L. I.: Mud volcanoes – the most important pathway for degassing
deeply buried sediments, Earth-Sci. Rev., 59, 49–76, 2002.
Etiope, G., Ciotoli, G., Schwietzke, S., and Schoell, M.: Gridded maps of geological methane emissions and their isotopic signature, Earth Syst. Sci. Data, 11, 1–22, https://doi.org/10.5194/essd-11-1-2019, 2019.
Ettwig, K. F., Zhu, B., Speth, D., Keltjens, J. T., Jetten, M. S. M., and
Kartal, B.: Archaea catalyze iron-dependent anaerobic oxidation of methane,
P. Natl. Acad. Sci. USA, 113, 12792–12796, https://doi.org/10.1073/pnas.1609534113, 2016.
Grant, W. D.: Life at low water activity, Philos. T. R. Soc. Lon. B, 359, 1249–1267,
https://doi.org/10.1098/rstb.2004.1502, 2004.
Halevy, I., Peters, S. E., and Fischer, W. W.: Sulfate Burial Constraints on
the Phanerozoic Sulfur Cycle, Science, 337, 331–334,
https://doi.org/10.1126/science.1220224, 2012.
Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C., and Martiny, J. B. H.:
Beyond biogeographic patterns: processes shaping the microbial landscape,
Nat. Rev. Microbiol, 10, 497–506, https://doi.org/10.1038/nrmicro2795, 2012.
Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P.,
Yuan, Z., and Tyson, G. W.: Anaerobic oxidation of methane coupled to
nitrate reduction in a novel archaeal lineage, Nature, 500, 567–570, 2013.
Hill, M. O.: Diversity and evenness: a unifying notation and its
consequences, Ecology, 54, 427–432, 1973.
Hutchison, D. W. and Templeton, A. R.: Correlation of pairwise genetic and
geographic distance measures: inferring the relative influences of gene flow
and drift on the distribution of genetic variability, Evolution, 53,
1898–1914, 1999.
Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A.,
Suzuki, M., Takai, K., Delwiche, M., Colwell, F. S., Nealson, K. H.,
Horikoshi, K., D'Hondt, S., and Jørgensen, B. B.: Biogeographical
distribution and diversity of microbes in methane hydrate-bearing deep
marine sediments on the Pacific Ocean Margin, P. Natl. Acad. Sci. USA, 103, 2815–2820,
https://doi.org/10.1073/pnas.0511033103, 2006.
Jørgensen, S. L., Hannisdal, B., Lanzen, A., Baumberger, T., Flesland,
K., Fonseca, R., Ovreås, L., Steen, I. H., Thorseth, I. H., Pedersen, R.
B., and Schleper, C.: Correlating microbial community profiles with
geochemical data in highly stratified sediments from the Arctic Mid-Ocean
Ridge, P. Natl. Acad. Sci. USA, 109, E2846–E2855, https://doi.org/10.1073/pnas.1207574109, 2012.
Kahle, D. and Wickham, H.: ggmap: Spatial visualization with ggplot2, R J.,
5, 144–161, https://doi.org/10.32614/rj-2013-014, 2013.
Knittel, K. and Boetius, A.: Anaerobic oxidation of methane: progress with
an unknown process, Annu. Rev. Microbiol., 63, 311–334,
https://doi.org/10.1146/annurev.micro.61.080706.093130, 2009.
Kuever, J.: The family Desulfobulbaceae, in: The Prokaryotes, edited by: Rosenberg, E., DeLong, E., Lory, S., Stackebrandt E., and Thompson, F., Springer, Berlin, Heidelberg, Germany, 75–86, https://doi.org/10.1007/978-3-642-39044-9_270, 2014.
Lin, Y.-T., Tu, T.-H., Wei, C.-L., Rumble, D., Lin, L.-H., and Wang, P.-L.:
Steep redox gradient and biogeochemical cycling driven by deeply sourced
fluids and gases in a terrestrial mud volcano, FEMS Microbiol. Ecol., 94,
3796, https://doi.org/10.1093/femsec/fiy171, 2018.
Liu, X., Li, M., Castelle, C. J., Probst, A. J., Zhou, Z., Pan, J., Liu, Y.,
Banfield, J. F., and Gu, J.-D.: Insights into the ecology, evolution, and
metabolism of the widespread Woesearchaeotal lineages, Microbiome, 6, 102,
https://doi.org/10.1186/s40168-018-0488-2, 2018.
Lomolino, M. V., Riddle, B. R., and Brown, J. H. (Eds.): Biogeography, 3rd Edn., Sinauer
Associates, Inc., ISBN 10-08-7893-486-3, 2006.
Martiny, J. B. H., Eisen, J. A., Penn, K., Allison, S. D., and
Horner-Devine, M. C.: Drivers of bacterial beta-diversity depend on spatial
scale, P. Natl. Acad. Sci. USA, 108, 7850–7854, https://doi.org/10.1073/pnas.1016308108,
2011.
Mazzini, A. and Etiope, G.: Mud volcanism: An updated review, Earth-Sci.
Rev., 168, 81–112, https://doi.org/10.1016/j.earscirev.2017.03.001, 2017.
McGenity, T. J.: Halophilic hydrocarbon degraders, in: Handbook of hydrocarbon and lipid microbiology, edited by: Timmis, K. N., Springer, Berlin, Heidelberg, Germany, 1939–1951, https://doi.org/10.1007/978-3-540-77587-4_142, 2010.
McIlroy, S. J. and Nielsen, P. H.: The family Saprospiraceae, in: The Prokaryotes, edited by: Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., and Thompson F., Springer, Berlin, Heidelberg, Germany, 863–889, https://doi.org/10.1007/978-3-642-38954-2_138, 2014.
Mori, J. F., Chen, L.-X., Jessen, G. L., Rudderham, S. B., McBeth, J. M.,
Lindsay, M. B. J., Slater, G. F., Banfield, J. F., and Warren, L. A.:
Putative mixotrophic nitrifying-denitrifying Gammaproteobacteria implicated
in nitrogen cycling within the ammonia/oxygen transition zone of an oil
sands pit lake, Front. Microbiol., 10, 2435,
https://doi.org/10.3389/fmicb.2019.02435, 2019.
Müller, A. L., Rezende, J. R. de, Hubert, C. R. J., Kjeldsen, K. U.,
Lagkouvardos, I., Berry, D., Jørgensen, B. B., and Loy, A.: Endospores of
thermophilic bacteria as tracers of microbial dispersal by ocean currents.,
ISME J., 8, 1153–1165, https://doi.org/10.1038/ismej.2013.225, 2014.
Nekola, J. C. and White, P. S.: The distance decay of similarity in
biogeography and ecology, J. Biogeogr., 26, 867–878, 1999.
Ning, D., Deng, Y., Tiedje, J. M., and Zhou, J.: A general framework for
quantitatively assessing ecological stochasticity, P. Natl. Acad. Sci. USA, 116, 16892–16898,
https://doi.org/10.1073/pnas.1904623116, 2019.
Or, D., Smets, B. F., Wraith, J. M., Dechesne, A., and Friedman, S. P.:
Physical constraints affecting bacterial habitats and activity in
unsaturated porous media – a review, Adv. Water Resour., 30, 1505–1527,
https://doi.org/10.1016/j.advwatres.2006.05.025, 2007.
Orcutt, B. N., Sylvan, J. B., Knab, N. J., and Edwards, K. J.: Microbial
ecology of the dark ocean above, at, and below the seafloor, Microbiol.
Mol. Biol. R., 75, 361–422, https://doi.org/10.1128/mmbr.00039-10, 2011.
Oren, A.: The family Halobacteriaceae, in: The Prokaryotes, edited by: Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., and Thompson, F., Springer, Berlin, Heidelberg, Germany, 41–121, https://doi.org/10.1007/978-3-642-38954-2_313, 2014.
Orphan, V. J., Hinrichs, K.-U., Ussler, W., Paull, C. K., Taylor, L. T.,
Sylva, S. P., Hayes, J. M., and DeLong, E. F.: Comparative analysis of
methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine
sediments, Appl. Environ. Microb., 67, 1922–1934, 2001.
Paulson, J. N., Stine, O. C., Bravo, H. C., and Pop, M.: Differential
abundance analysis for microbial marker-gene surveys, Nat. Methods, 10,
1200–1222, https://doi.org/10.1038/nmeth.2658, 2013.
Petro, C., Starnawski, P., Schramm, A., and Kjeldsen, K. U.: Microbial
community assembly in marine sediments, Aquat. Microb. Ecol., 79, 177–195,
https://doi.org/10.3354/ame01826, 2017.
Power, J. F., Carere, C. R., Lee, C. K., Wakerley, G. L. J., Evans, D. W.,
Button, M., White, D., Climo, M. D., Hinze, A. M., Morgan, X. C., McDonald,
I. R., Cary, S. C., and Stott, M. B.: Microbial biogeography of 925
geothermal springs in New Zealand, Nat. Commun., 9, 3152,
https://doi.org/10.1038/s41467-018-05020-y, 2018.
Ranjard, L., Dequiedt, S., Prévost-Bouré, N. C., Thioulouse, J.,
Saby, N. P. A., Lelievre, M., Maron, P. A., Morin, F. E. R., Bispo, A.,
Jolivet, C., Arrouays, D., and Lemanceau, P.: Turnover of soil bacterial
diversity driven by wide-scale environmental heterogeneity, Nat. Commun.,
4, 1434, https://doi.org/10.1038/ncomms2431, 2013.
Ruff, S. E., Biddle, J. F., Teske, A. P., Knittel, K., Boetius, A., and
Ramette, A.: Global dispersion and local diversification of the methane seep
microbiome, P. Natl. Acad. Sci. USA, 112, 4015–4020, https://doi.org/10.1073/pnas.1421865112,
2015.
Scheller, S., Yu, H., Chadwick, G. L., McGlynn, S. E., and Orphan, V. J.:
Artificial electron acceptors decouple archaeal methane oxidation from
sulfate reduction, Science, 351, 703–707,
https://doi.org/10.1126/science.aad7154, 2016.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M.,
Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., and
Robinson, C. J.: Introducing mothur: open-source, platform-independent,
community-supported software for describing and comparing microbial
communities, Appl. Environ. Microb., 75, 7537–7541, 2009.
Slatkin, M.: Isolation by distance in eqilibrium and non-equilibrium
populations, Evolution, 47, 264–279,
https://doi.org/10.1111/j.1558-5646.1993.tb01215.x, 1993.
Sorokin, D. Y., Merkel, A. Y., and Muyzer, G.: Thiohalorhabdus, in Bergey's manual of systematics of archaea and bacteria (1–6), edited by: Trujillo, M. E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F. A., and Whitman, W. B., John Wiley & Sons, New York, New Jersey, United States, https://doi.org/10.1002/9781118960608.gbm01940, 2020.
Tu, T.-H., Wu, L.-W., Lin, Y.-S., Imachi, H., Lin, L.-H., and Wang, P.-L.:
Microbial community composition and functional capacity in a terrestrial
ferruginous, sulfate-depleted mud volcano, Front. Microbiol., 8, 2137,
https://doi.org/10.3389/fmicb.2017.02137, 2017.
Tu, T.-H., Chen, L.-L., Chiu, Y.-P., Lin, L.-H., Wu, L.-W., Italiano, F., Shyu, J. B. H., Raisossadat, S. N., and Wang, P.-L.: The biogeographic pattern of microbial communities inhabiting
terrestrial mud volcanoes across the Eurasian continent, Zenodo [data set, code], https://doi.org/10.5281/zenodo.5973870, 2022a.
Tu, T.-H., Chen, L.-L., Chiu, Y.-P., Lin, L.-H., Wu, L.-W., Italiano, F., Shyu, J. B. H., Raisossadat, S. N., and Wang, P.-L.: The biogeographic pattern of microbial communities inhabiting terrestrial mud volcanoes across the Eurasian continent, NCBI [data set], https://www.ncbi.nlm.nih.gov/bioproject/PRJNA560274, last access: 8 February 2022b.
Wang, P.-L., Chiu, Y.-P., Cheng, T.-W., Chang, Y.-H., Tu, W.-X., and Lin,
L.-H.: Spatial variations of community structures and methane cycling across
a transect of Lei-Gong-Hou mud volcanoes in eastern Taiwan, Front.
Microbiol., 5, 2946, https://doi.org/10.3389/fmicb.2014.00121, 2014.
Weber, L., DeForce, E., and Apprill, A.: Optimization of DNA extraction for
advancing coral microbiota investigations, Microbiome, 5, 18,
https://doi.org/10.1186/s40168-017-0229-y, 2017.
Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial
formation and oxidation of methane, Chem. Geol., 161, 291–314,
https://doi.org/10.1016/s0009-2541(99)00092-3, 1999.
Yamada, T. and Sekiguchi, Y.: Cultivation of Uncultured Chloroflexi
Subphyla: Significance and Ecophysiology of Formerly Uncultured Chloroflexi
“Subphylum I” with Natural and Biotechnological Relevance, Microbes
Environment, 24, 205–216, https://doi.org/10.1264/jsme2.me09151s, 2009.
Yao, W. and Millero, F. J.: Oxidation of hydrogen sulfide by hydrous Fe(III)
oxides in seawater, Mar. Chem., 52, 1–16,
https://doi.org/10.1016/0304-4203(95)00072-0, 1996.
Zheng, G., Xu, S., Liang, M., Dermatas, D., and Xu, X.: Transformations of
organic carbon and its impact on lead weathering in shooting range soils,
Environ. Earth Sci., 64, 2241–2246,
https://doi.org/10.1007/s12665-011-1052-6, 2011.
Zinger, L., Boetius, A., and Ramette, A.: Bacterial taxa-area and
distance-decay relationships in marine environments, Mol. Ecol., 23,
954–964, https://doi.org/10.1111/mec.12640, 2014.
Short summary
This investigation of microbial biogeography in terrestrial mud volcanoes (MVs) covers study sites over a geographic distance of up to 10 000 km across the Eurasian continent. It compares microbial community compositions' coupling with geochemical data across a 3D space. We demonstrate that stochastic processes operating at continental scales and environmental filtering at local scales drive the formation of patchy habitats and the pattern of diversification for microbes in terrestrial MVs.
This investigation of microbial biogeography in terrestrial mud volcanoes (MVs) covers study...
Altmetrics
Final-revised paper
Preprint