Articles | Volume 20, issue 7
https://doi.org/10.5194/bg-20-1381-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1381-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-proxy assessment of brachiopod shell calcite as a potential archive of seawater temperature and oxygen isotope composition
Thomas Letulle
CORRESPONDING AUTHOR
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622 Villeurbanne,
France
Danièle Gaspard
UMR 7207, Centre de Recherche en Paléontologie, Paris
(CR2P), CNRS, MNHN, Sorbonne-Université, Muséum national d'Histoire
naturelle, 8 Rue Buffon, CP 38, 75005 Paris, France
Mathieu Daëron
Laboratoire des Sciences du Climat et de l'Environnement,
LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Orme des Merisiers,
91191 Gif-sur-Yvette CEDEX, France
Florent Arnaud-Godet
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622 Villeurbanne,
France
Arnauld Vinçon-Laugier
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622 Villeurbanne,
France
Guillaume Suan
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622 Villeurbanne,
France
Christophe Lécuyer
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622 Villeurbanne,
France
Related authors
Thomas Letulle, Guillaume Suan, Mathieu Daëron, Mikhail Rogov, Christophe Lécuyer, Arnauld Vinçon-Laugier, Bruno Reynard, Gilles Montagnac, Oleg Lutikov, and Jan Schlögl
Clim. Past, 18, 435–448, https://doi.org/10.5194/cp-18-435-2022, https://doi.org/10.5194/cp-18-435-2022, 2022
Short summary
Short summary
In this study, we applied geochemical tools to well-preserved ∼180-million-year-old marine mollusc shells from polar and mid-latitude seas. These results indicate that polar shells grew at temperatures of 8–18°C, while mid-latitude shells grew at temperatures of 24–28°C. These results, together with previously published data, raise concerns about the ability of climate models to predict accurate polar temperatures under reasonably high atmospheric CO2 levels.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Nicolas Séon, Romain Amiot, Guillaume Suan, Christophe Lécuyer, François Fourel, Fabien Demaret, Arnauld Vinçon-Laugier, Sylvain Charbonnier, and Peggy Vincent
Biogeosciences, 19, 2671–2681, https://doi.org/10.5194/bg-19-2671-2022, https://doi.org/10.5194/bg-19-2671-2022, 2022
Short summary
Short summary
We analysed the oxygen isotope composition of bones and teeth of four marine species possessing regional heterothermies. We observed a consistent link between oxygen isotope composition and temperature heterogeneities recorded by classical methods. This opens up new perspectives on the determination of the thermoregulatory strategies of extant marine vertebrates where conventional methods are difficult to apply, but also allows us to investigate thermophysiologies of extinct vertebrates.
Christoph Lécuyer, François Atrops, François Fourel, Jean-Pierre Flandrois, Gilles Pinay, and Philippe Davy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-132, https://doi.org/10.5194/hess-2022-132, 2022
Manuscript not accepted for further review
Short summary
Short summary
Located in the French Southern Alps, the Cerveyrette valley constitutes a watershed of about 100 km2. Cyclicality in the stable isotope compositions of the river waters recorded over two years allowed us to estimate a time lag of three to four months between precipitations and their sampling at the discharge point of the watershed. We thus show that the transfer time from mountain-accumulated snow toward the low-altitude areas is a sensitive variable responding to the current climate warming.
Thomas Letulle, Guillaume Suan, Mathieu Daëron, Mikhail Rogov, Christophe Lécuyer, Arnauld Vinçon-Laugier, Bruno Reynard, Gilles Montagnac, Oleg Lutikov, and Jan Schlögl
Clim. Past, 18, 435–448, https://doi.org/10.5194/cp-18-435-2022, https://doi.org/10.5194/cp-18-435-2022, 2022
Short summary
Short summary
In this study, we applied geochemical tools to well-preserved ∼180-million-year-old marine mollusc shells from polar and mid-latitude seas. These results indicate that polar shells grew at temperatures of 8–18°C, while mid-latitude shells grew at temperatures of 24–28°C. These results, together with previously published data, raise concerns about the ability of climate models to predict accurate polar temperatures under reasonably high atmospheric CO2 levels.
Cited articles
Anand, P., Elderfield, H., and Conte, M. H.: Calibration of
thermometry in planktonic foraminifera from a sediment trap time series:
calibration of thermometry in planktonic foraminifera,
Paleoceanography, 18, 1050, https://doi.org/10.1029/2002PA000846, 2003.
Anderson, N. T., Kelson, J. R., Kele, S., Daëron, M., Bonifacie, M.,
Horita, J., Mackey, T. J., John, C. M., Kluge, T., Petschnig, P., Jost, A.
B., Huntington, K. W., Bernasconi, S. M., and Bergmann, K. D.: A Unified
Clumped Isotope Thermometer Calibration (0.5–1,100 ∘C) Using
Carbonate-Based Standardization, Geophys. Res. Lett., 48, e2020GL092069,
https://doi.org/10.1029/2020GL092069, 2021.
Auclair, A.-C., Joachimski, M. M., and Lécuyer, C.: Deciphering kinetic,
metabolic and environmental controls on stable isotope fractionations
between seawater and the shell of Terebratalia transversa (Brachiopoda),
Chem. Geol., 202, 59–78, https://doi.org/10.1016/S0009-2541(03)00233-X,
2003.
Ayling, B. F., McCulloch, M. T., Gagan, M. K., Stirling, C. H., Andersen, M.
B., and Blake, S. G.: and δ18O seasonality in a Porites coral
from the MIS 9 (339–303 ka) interglacial, Earth Planet. Sc. Lett., 248,
462–475, https://doi.org/10.1016/j.epsl.2006.06.009, 2006.
Bajnai, D., Fiebig, J., Tomašových, A., Milner Garcia, S.,
Rollion-Bard, C., Raddatz, J., Löffler, N., Primo-Ramos, C., and Brand,
U.: Assessing kinetic fractionation in brachiopod calcite using clumped
isotopes, Sci. Rep., 8, 533, https://doi.org/10.1038/s41598-017-17353-7,
2018.
Bajnai, D., Guo, W., Spötl, C., Coplen, T. B., Methner, K., Löffler,
N., Krsnik, E., Gischler, E., Hansen, M., Henkel, D., Price, G. D., Raddatz,
J., Scholz, D., and Fiebig, J.: Dual clumped isotope thermometry resolves
kinetic biases in carbonate formation temperatures, Nat. Commun., 11, 4005,
https://doi.org/10.1038/s41467-020-17501-0, 2020.
Baker, P. G.: Thecideida, in: Treatise on Invertebrate Paleontology (Part H)
Brachiopoda Revised: 1938–1943, Vol. 5, edited by: Selden, P. A., Geological Society of America and the University of Kansas, Bouder, Colorado and Lawrence, Kansas, ISBN 0-8137-3135-6, 2006.
Balter, V. and Lécuyer, C.: Determination of Sr and Ba partition
coefficients between apatite from fish (Sparus aurata) and seawater: The
influence of temperature, Geochim. Cosmochim. Ac., 74, 3449–3458,
https://doi.org/10.1016/j.gca.2010.03.015, 2010.
Bergmann, K. D., Finnegan, S., Creel, R., Eiler, J. M., Hughes, N. C.,
Popov, L. E., and Fischer, W. W.: A paired apatite and calcite clumped
isotope thermometry approach to estimating Cambro-Ordovician seawater
temperatures and isotopic composition, Geochim. Cosmochim. Ac., 224,
18–41, https://doi.org/10.1016/j.gca.2017.11.015, 2018.
Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F.
M., Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A. N., Millan, I., and
Ziegler, M.: Reducing Uncertainties in Carbonate Clumped Isotope Analysis
Through Consistent Carbonate-Based Standardization, Geochem. Geophy.
Geosy., 19, 2895–2914, https://doi.org/10.1029/2017GC007385, 2018.
Bernasconi, S. M., Daëron, M., Bergmann, K. D., Bonifacie, M., Meckler,
A. N., Affek, H. P., Anderson, N., Bajnai, D., Barkan, E., Beverly, E.,
Blamart, D., Burgener, L., Calmels, D., Chaduteau, C., Clog, M.,
Davidheiser-Kroll, B., Davies, A., Dux, F., Eiler, J., Elliott, B., Fetrow,
A. C., Fiebig, J., Goldberg, S., Hermoso, M., Huntington, K. W., Hyland, E.,
Ingalls, M., Jaggi, M., John, C. M., Jost, A. B., Katz, S., Kelson, J.,
Kluge, T., Kocken, I. J., Laskar, A., Leutert, T. J., Liang, D., Lucarelli,
J., Mackey, T. J., Mangenot, X., Meinicke, N., Modestou, S. E., Müller,
I. A., Murray, S., Neary, A., Packard, N., Passey, B. H., Pelletier, E.,
Petersen, S., Piasecki, A., Schauer, A., Snell, K. E., Swart, P. K.,
Tripati, A., Upadhyay, D., Vennemann, T., Winkelstern, I., Yarian, D.,
Yoshida, N., Zhang, N., and Ziegler, M.: InterCarb: A Community Effort to
Improve Interlaboratory Standardization of the Carbonate Clumped Isotope
Thermometer Using Carbonate Standards, Geochem. Geophy. Geosy., 22,
e2020GC009588, https://doi.org/10.1029/2020GC009588, 2021.
Billups, K. and Schrag, D. P.: Application of benthic foraminiferal
ratios to questions of Cenozoic climate change, Earth Planet. Sc. Lett.,
209, 181–195, https://doi.org/10.1016/S0012-821X(03)00067-0, 2003.
Brand, U. and Veizer, J.: Chemical diagenesis of a multicomponent carbonate
system; 1, Trace elements, J. Sediment. Res., 50, 1219–1236,
https://doi.org/10.1306/212F7BB7-2B24-11D7-8648000102C1865D, 1980.
Brand, U., Logan, A., Hiller, N., and Richardson, J.: Geochemistry of modern
brachiopods: applications and implications for oceanography and
paleoceanography, Chem. Geol., 198, 305–334,
https://doi.org/10.1016/S0009-2541(03)00032-9, 2003.
Brand, U., Azmy, K., Bitner, M. A., Logan, A., Zuschin, M., Came, R., and
Ruggiero, E.: Oxygen isotopes and MgCO3 in brachiopod calcite and a new
paleotemperature equation, Chem. Geol., 359, 23–31,
https://doi.org/10.1016/j.chemgeo.2013.09.014, 2013.
Brand, U., Bitner, M. A., Logan, A., Azmy, K., Crippa, G., Angiolini, L.,
Colin, P., Griesshaber, E., Harper, E. M., Ruggiero, E. T., and
Häussermann, V.: Brachipods-based oxygen-isotope thermometer: update and
review, Riv. Ital. Paleontol. S., 125, 775–787,
https://doi.org/10.13130/2039-4942/12226, 2019.
Breitenbach, S. F. M., Mleneck-Vautravers, M. J., Grauel, A.-L., Lo, L.,
Bernasconi, S. M., Müller, I. A., Rolfe, J., Gázquez, F., Greaves,
M., and Hodell, D. A.: Coupled and clumped isotope analyses of
foraminifera provide consistent water temperatures, Geochim. Cosmochim.
Ac., 14, 283–296, https://doi.org/10.1016/j.gca.2018.03.010, 2018.
Busenberg, E. and Plummer, L. N.: Kinetic and thermodynamic factors
controlling the distribution of SO and Na+ in calcites and selected
aragonites, Geochim. Cosmochim. Ac., 49, 713–725,
https://doi.org/10.1016/0016-7037(85)90166-8, 1985.
Butler, S., Bailey, T. R., Lear, C. H., Curry, G. B., Cherns, L., and
McDonald, I.: The -temperature relationship in brachiopod shells:
Calibrating a potential palaeoseasonality proxy, Chem. Geol., 397, 106–117,
https://doi.org/10.1016/j.chemgeo.2015.01.009, 2015.
Came, R. E., Brand, U., and Affek, H. P.: Clumped isotope signatures in
modern brachiopod carbonate, Chem. Geol., 377, 20–30,
https://doi.org/10.1016/j.chemgeo.2014.04.004, 2014.
Carpenter, S. J. and Lohmann, K. C.: δ18O and δ13C values of
modern brachiopod shells, Geochim. Cosmochim. Ac., 59, 3749–3764,
https://doi.org/10.1016/0016-7037(95)00291-7, 1995.
Chacko, T. and Deines, P.: Theoretical calculation of oxygen isotope
fractionation factors in carbonate systems, Geochim. Cosmochim. Ac., 72,
3642–3660, https://doi.org/10.1016/j.gca.2008.06.001, 2008.
Coplen, T. B.: Calibration of the calcite–water oxygen-isotope
geothermometer at Devils Hole, Nevada, a natural laboratory, Geochim.
Cosmochim. Ac., 71, 3948–3957, https://doi.org/10.1016/j.gca.2007.05.028,
2007.
Cuny-Guirriec, K., Douville, E., Reynaud, S., Allemand, D., Bordier, L.,
Canesi, M., Mazzoli, C., Taviani, M., Canese, S., McCulloch, M., Trotter,
J., Rico-Esenaro, S. D., Sanchez-Cabeza, J.-A., Ruiz-Fernández, A. C.,
Carricart-Ganivet, J. P., Scott, P. M., Sadekov, A., and Montagna, P.: Coral
thermometry: Caveats and constraints, Chem. Geol., 523, 162–178,
https://doi.org/10.1016/j.chemgeo.2019.03.038, 2019.
Cusack, M., Pérez-Huerta, A., and EIMF: Brachiopods recording seawater
temperature – A matter of class or maturation?, Chem. Geol., 334, 139–143,
https://doi.org/10.1016/j.chemgeo.2012.10.021, 2012.
Daëron, M.: Full Propagation of Analytical Uncertainties in Δ47 Measurements, Geochem. Geophy. Geosy., 22, e2020GC009592,
https://doi.org/10.1029/2020GC009592, 2021.
Daëron, M.: mdaeron/D47crunch: D47crunch v2.0.1 (v2.0.3), Zenodo [code], https://doi.org/10.5281/zenodo.6300900, 2022.
Daëron, M., Blamart, D., Peral, M., and Affek, H. P.: Absolute isotopic
abundance ratios and the accuracy of Δ47 measurements, Chem. Geol.,
442, 83–96, https://doi.org/10.1016/j.chemgeo.2016.08.014, 2016.
Daëron, M., Drysdale, R. N., Peral, M., Huyghe, D., Blamart, D., Coplen,
T. B., Lartaud, F., and Zanchetta, G.: Most Earth-surface calcites
precipitate out of isotopic equilibrium, Nat. Commun., 10, 429,
https://doi.org/10.1038/s41467-019-08336-5, 2019.
Delaney, M. L., Popp, B. N., Lepzelter, C. G., and Anderson, T. F.:
Lithium-to-calcium ratios in modern, cenozoic, and paleozoic articulate
brachiopod shells, Paleoceanography, 4, 681–691,
https://doi.org/10.1029/PA004i006p00681, 1989.
Dellinger, M., West, A. J., Paris, G., Adkins, J. F., Pogge von Strandmann,
P. A. E., Ullmann, C. V., Eagle, R. A., Freitas, P., Bagard, M.-L., Ries, J.
B., Corsetti, F. A., Perez-Huerta, A., and Kampf, A. R.: The Li isotope
composition of marine biogenic carbonates: Patterns and mechanisms, Geochim.
Cosmochim. Ac., 236, 315–335, https://doi.org/10.1016/j.gca.2018.03.014,
2018.
DeLong, K. L., Flannery, J. A., Maupin, C. R., Poore, R. Z., and Quinn, T.
M.: A coral calibration and replication study of two massive corals
from the Gulf of Mexico, Palaeogeogr. Palaeocl., 307,
117–128, https://doi.org/10.1016/j.palaeo.2011.05.005, 2011.
de Winter, N. J., Müller, I. A., Kocken, I. J., Thibault, N., Ullmann,
C. V., Farnsworth, A., Lunt, D. J., Claeys, P., and Ziegler, M.: Absolute
seasonal temperature estimates from clumped isotopes in bivalve shells
suggest warm and variable greenhouse climate, Commun. Earth Environ., 2,
121, https://doi.org/10.1038/s43247-021-00193-9, 2021.
de Winter, N. J., Witbaard, R., Kocken, I. J., Müller, I. A., Guo, J.,
Goudsmit, B., and Ziegler, M.: Temperature Dependence of Clumped Isotopes (Δ47) in Aragonite, Geophys. Res. Lett., 49, e2022GL099479,
https://doi.org/10.1029/2022GL099479, 2022.
El Meknassi, S., Dera, G., De Rafélis, M., Brahmi, C., Lartaud, F.,
Hodel, F., Jeandel, C., Menjot, L., Mounic, S., Henry, M., Besson, P., and
Chavagnac, V.: Seawater ratios along continental margins: Patterns
and processes in open and restricted shelf domains, Chem. Geol., 558,
119874, https://doi.org/10.1016/j.chemgeo.2020.119874, 2020.
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C.: Revised
carbonate-water isotopic temperature scale, Geol. Soc. Am. Bull., 64, 1315,
https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2, 1953.
Fiebig, J., Daëron, M., Bernecker, M., Guo, W., Schneider, G., Boch, R.,
Bernasconi, S. M., Jautzy, J., and Dietzel, M.: Calibration of the dual
clumped isotope thermometer for carbonates, Geochim. Cosmochim. Ac., 312,
235–256, https://doi.org/10.1016/j.gca.2021.07.012, 2021.
Freitas, P. S., Clarke, L. J., Kennedy, H., Richardson, C. A., and Abrantes,
F.: Environmental and biological controls on elemental ( , and
) ratios in shells of the king scallop Pecten maximus, Geochim.
Cosmochim. Ac., 70, 5119–5133, https://doi.org/10.1016/j.gca.2006.07.029,
2006.
Gabitov, R. I., Schmitt, A. K., Rosner, M., McKeegan, K. D., Gaetani, G. A.,
Cohen, A. L., Watson, E. B., and Harrison, T. M.: In situ δ7
Li, , and analyses of synthetic aragonites, Geochem. Geophy.
Geosy., 12, Q03001, https://doi.org/10.1029/2010GC003322, 2011.
Gabitov, R. I., Sadekov, A., and Leinweber, A.: Crystal growth rate effect
on and partitioning between calcite and fluid: An in situ
approach, Chem. Geol., 367, 70–82,
https://doi.org/10.1016/j.chemgeo.2013.12.019, 2014.
Gaspard, D. and Nouet, J.: Hierarchical architecture of the inner layers of
selected extant rhynchonelliform brachiopods, J. Struct. Biol., 196,
197–205, https://doi.org/10.1016/j.jsb.2016.07.021, 2016.
Gaspard, D., Marie, B., Luquet, G., and Marin, F.: Biochemical characteristics of the soluble organic matrix from the shell of three Recent terebratulid brachiopod species, Fossils and Strata, 54, 269–275, 2008.
Gaspard, D., Aldridge, A. E., Boudouma, O., Fialin, M., Rividi, N., and
Lécuyer, C.: Analysis of growth and form in Aerothyris kerguelenensis
(rhynchonelliform brachiopod) – Shell spiral deviations, microstructure,
trace element contents and stable isotope ratios, Chem. Geol., 483,
474–490, https://doi.org/10.1016/j.chemgeo.2018.03.018, 2018.
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A.,
Schrag, D., and Eiler, J. M.: 13C–18O bonds in carbonate minerals: A new
kind of paleothermometer, Geochim. Cosmochim. Ac., 70, 1439–1456,
https://doi.org/10.1016/j.gca.2005.11.014, 2006.
Goodwin, E. and Cornelisen, C.: Near-surface water temperatures in Doubtful Sound and response to natural and anthropogenic drivers, New Zeal. J. Mar. Fresh., 46, 411–429, https://doi.org/10.1080/00288330.2012.697071, 2012.
Griesshaber, E., Kelm, K., Sehrbrock, A., Mader, W., Mutterlose, J., Brand,
U., and Schmahl, W. W.: Amorphous calcium carbonate in the shell material of
the brachiopod Megerlia truncata, Eur. J. Mineral., 21, 715–723,
https://doi.org/10.1127/0935-1221/2009/0021-1950, 2009.
Henkes, G. A., Passey, B. H., Wanamaker, A. D., Grossman, E. L., Ambrose, W.
G., and Carroll, M. L.: Carbonate clumped isotope compositions of modern
marine mollusk and brachiopod shells, Geochim. Cosmochim. Ac., 106,
307–325, https://doi.org/10.1016/j.gca.2012.12.020, 2013.
Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Yancey, T.
E., and Pérez-Huerta, A.: Temperature evolution and the oxygen isotope
composition of Phanerozoic oceans from carbonate clumped isotope
thermometry, Earth Planet. Sc. Lett., 490, 40–50,
https://doi.org/10.1016/j.epsl.2018.02.001, 2018.
Huang, K.-F., You, C.-F., Chung, C.-H., and Lin, I.-T.: Nonhomogeneous
seawater Sr isotopic composition in the coastal oceans: A novel tool for
tracing water masses and submarine groundwater discharge, Geochem. Geophy.
Geosy., 12, Q05002, https://doi.org/10.1029/2010GC003372, 2011.
Huyghe, D., Daëron, M., de Rafelis, M., Blamart, D., Sébilo, M.,
Paulet, Y.-M., and Lartaud, F.: Clumped isotopes in modern marine bivalves,
Geochim. Cosmochim. Ac., 316, 41–58,
https://doi.org/10.1016/j.gca.2021.09.019, 2022.
Immenhauser, A., Schöne, B. R., Hoffmann, R., and Niedermayr, A.: Mollusc and brachiopod skeletal hard parts: Intricate archives of their marine environment, Sedimentology, 63, 1–59, https://doi.org/10.1111/sed.12231, 2016.
Jacobson, P.: Physical oceanography of the Trondheimsfjord, Geophys. Astro. Fluid, 26, 3–26, https://doi.org/10.1080/03091928308221761, 1983.
Jautzy, J. J., Savard, M. M., Dhillon, R. S., Bernasconi, S. M., and
Smirnoff, A.: Clumped isotope temperature calibration for calcite: Bridging
theory and experimentation, Geochem. Perspect. Lett., 14, 36–41,
https://doi.org/10.7185/geochemlet.2021, 2020.
Jiménez-López, C., Romanek, C. S., Huertas, F. J., Ohmoto, H., and
Caballero, E.: Oxygen isotope fractionation in synthetic magnesian calcite,
Geochim. Cosmochim. Ac., 68, 3367–3377,
https://doi.org/10.1016/j.gca.2003.11.033, 2004.
Jurikova, H., Ippach, M., Liebetrau, V., Gutjahr, M., Krause, S., Büsse,
S., Gorb, S. N., Henkel, D., Hiebenthal, C., Schmidt, M., Leipe, T.,
Laudien, J., and Eisenhauer, A.: Incorporation of minor and trace elements
into cultured brachiopods: Implications for proxy application with new
insights from a biomineralisation model, Geochim. Cosmochim. Ac., 286,
418–440, https://doi.org/10.1016/j.gca.2020.07.026, 2020.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475,
https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
Kim, S.-T., Mucci, A., and Taylor, B. E.: Phosphoric acid fractionation
factors for calcite and aragonite between 25 and 75 ∘C:
Revisited, Chem. Geol., 246, 135–146,
https://doi.org/10.1016/j.chemgeo.2007.08.005, 2007.
Lear, C. H.: Cenozoic Deep-Sea Temperatures and Global Ice Volumes from
in Benthic Foraminiferal Calcite, Science, 287, 269–272,
https://doi.org/10.1126/science.287.5451.269, 2000.
Lebrato, M., Garbe-Schönberg, D., Müller, M. N., Blanco-Ameijeiras,
S., Feely, R. A., Lorenzoni, L., Molinero, J.-C., Bremer, K., Jones, D. O.
B., Iglesias-Rodriguez, D., Greeley, D., Lamare, M. D., Paulmier, A., Graco,
M., Cartes, J., Barcelos e Ramos, J., de Lara, A., Sanchez-Leal, R.,
Jimenez, P., Paparazzo, F. E., Hartman, S. E., Westernströer, U.,
Küter, M., Benavides, R., da Silva, A. F., Bell, S., Payne, C.,
Olafsdottir, S., Robinson, K., Jantunen, L. M., Korablev, A., Webster, R.
J., Jones, E. M., Gilg, O., Bailly du Bois, P., Beldowski, J., Ashjian, C.,
Yahia, N. D., Twining, B., Chen, X.-G., Tseng, L.-C., Hwang, J.-S., Dahms,
H.-U., and Oschlies, A.: Global variability in seawater Mg : Ca and Sr : Ca
ratios in the modern ocean, P. Natl. Acad. Sci. USA, 117, 22281–22292,
https://doi.org/10.1073/pnas.1918943117, 2020.
Lécuyer, C.: Seawater residence times of some elements of geochemical
interest and the salinity of the oceans, B. Soc. Géol. Fr., 187, 245–260,
https://doi.org/10.2113/gssgfbull.187.6.245, 2016.
LeGrande, A. N. and Schmidt, G. A.: Global gridded data set of the oxygen
isotopic composition in seawater, Geophys. Res. Lett., 33, L12604,
https://doi.org/10.1029/2006GL026011, 2006.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M.
M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K., Paver, C. R.,
and Smolyar, I.: World Ocean Atlas 2018, Volume 1: Temperature, technical editor: Mishonov, A., NOAA Atlas NESDIS 81, 52 pp., 2018.
Lorens, R. B.: Sr, Cd, Mn and Co distribution coefficients in calcite as a
function of calcite precipitation rate, Geochim. Cosmochim. Ac., 45,
553–561, https://doi.org/10.1016/0016-7037(81)90188-5, 1981.
Lowenstam, H. A.: Mineralogy, Ratios, and Strontium and Magnesium
Contents of Recent and Fossil Brachiopods and Their Bearing on the History
of the Oceans, J. Geol., 69, 241–260, https://doi.org/10.1086/626740, 1961.
Marchitto, T. M., Bryan, S. P., Doss, W., McCulloch, M. T., and Montagna,
P.: A simple biomineralization model to explain Li, Mg, and Sr incorporation
into aragonitic foraminifera and corals, Earth Planet. Sc. Lett., 481,
20–29, https://doi.org/10.1016/j.epsl.2017.10.022, 2018.
Marriott, C. S., Henderson, G. M., Belshaw, N. S., and Tudhope, A. W.:
Temperature dependence of δ7Li, δ44Ca and during
growth of calcium carbonate, Earth Planet. Sc. Lett., 222, 615–624,
https://doi.org/10.1016/j.epsl.2004.02.031, 2004.
Marshall, J. F. and McCulloch, M. T.: An assessment of the ratio in
shallow water hermatypic corals as a proxy for sea surface temperature,
Geochim. Cosmochim. Ac., 66, 3263–3280,
https://doi.org/10.1016/S0016-7037(02)00926-2, 2002.
McConnaughey, T.: 13C and 18O isotopic disequilibrium in biological
carbonates: I. Patterns, Geochim. Cosmochim. Ac., 53, 151–162,
https://doi.org/10.1016/0016-7037(89)90282-2, 1989.
McCulloch, M. T., Gagan, M. K., Mortimer, G. E., Chivas, A. R., and Isdale,
P. J.: A high-resolution and δ18O coral record from the Great
Barrier Reef, Australia, and the 1982–1983 El Niño, Geochim. Cosmochim.
Ac., 58, 2747–2754, https://doi.org/10.1016/0016-7037(94)90142-2, 1994.
Meckler, A. N., Sexton, P. F., Piasecki, A. M., Leutert, T. J., Marquardt,
J., Ziegler, M., Agterhuis, T., Lourens, L. J., Rae, J. W. B., Barnet, J.,
Tripati, A., and Bernasconi, S. M.: Cenozoic evolution of deep ocean
temperature from clumped isotope thermometry, Science, 377, 86–90,
https://doi.org/10.1126/science.abk0604, 2022.
Meinicke, N., Ho, S. L., Hannisdal, B., Nürnberg, D., Tripati, A.,
Schiebel, R., and Meckler, A. N.: A robust calibration of the clumped
isotopes to temperature relationship for foraminifers, Geochim. Cosmochim.
Ac., 270, 160–183, https://doi.org/10.1016/j.gca.2019.11.022, 2020.
Meinicke, N., Reimi, M. A., Ravelo, A. C., and Meckler, A. N.: Coupled
and Clumped Isotope Measurements Indicate Lack of Substantial Mixed Layer
Cooling in the Western Pacific Warm Pool During the Last ∼ 5 Million Years, Paleoceanogr. Paleocl., 36, e2020PA004115,
https://doi.org/10.1029/2020PA004115, 2021.
Meredith, M. P., Venables, H. J., Clarke, A., Ducklow, H. W., Erickson, M.,
Leng, M. J., Lenaerts, J. T. M., and van den Broeke, M. R.: The Freshwater
System West of the Antarctic Peninsula: Spatial and Temporal Changes, J.
Climate, 26, 1669–1684, https://doi.org/10.1175/JCLI-D-12-00246.1, 2013.
Mii, H.-S. and Grossman, E. L.: Late Pennsylvanian seasonality reflected in
the 18O and elemental composition of a brachiopod shell, Geology, 22, 661, https://doi.org/10.1130/0091-7613(1994)022<0661:LPSRIT>2.3.CO;2, 1994.
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G.
S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from
deep-sea geochemical and continental margin records, Sci. Adv., 6, eaaz1346,
https://doi.org/10.1126/sciadv.aaz1346, 2020.
Montagna, P., McCulloch, M., Douville, E., López Correa, M., Trotter,
J., Rodolfo-Metalpa, R., Dissard, D., Ferrier-Pagès, C., Frank, N.,
Freiwald, A., Goldstein, S., Mazzoli, C., Reynaud, S., Rüggeberg, A.,
Russo, S., and Taviani, M.: systematics in scleractinian corals:
Calibration of the thermometer, Geochim. Cosmochim. Ac., 132, 288–310,
https://doi.org/10.1016/j.gca.2014.02.005, 2014.
Müller, T., Tomašových, A., Correa, M. L., Mertz-Kraus, R., and
Mikuš, T.: Mapping intrashell variation in of brachiopods to
external growth lines: Mg enrichment corresponds to seasonal growth
slowdown, Chem. Geol., 593, 120758,
https://doi.org/10.1016/j.chemgeo.2022.120758, 2022.
Nürnberg, D.: Magnesium in tests of Neogloboquadrina pachyderma
sinistral from high northern and southern latitudes, J. Foramin. Res.,
25, 350–368, https://doi.org/10.2113/gsjfr.25.4.350, 1995.
Ocean Data View: World Ocean Atlas 2018, ODV [data set], https://odv.awi.de/data/ocean/world-ocean-atlas-2018/, last access: 31 March 2023.
Parkinson, D., Curry, G. B., Cusack, M., and Fallick, A. E.: Shell
structure, patterns and trends of oxygen and carbon stable isotopes in
modern brachiopod shells, Chem. Geol., 219, 193–235,
https://doi.org/10.1016/j.chemgeo.2005.02.002, 2005.
Peck, L. S., Brockington, S., and Brey, T.: Growth and metabolism in the
Antarctic brachiopod Liothyrella uva, Philos. T. R. Soc. Lon. B, 352,
851–858, https://doi.org/10.1098/rstb.1997.0065, 1997.
Peral, M., Daëron, M., Blamart, D., Bassinot, F., Dewilde, F.,
Smialkowski, N., Isguder, G., Bonnin, J., Jorissen, F., Kissel, C., Michel,
E., Vázquez Riveiros, N., and Waelbroeck, C.: Updated calibration of the
clumped isotope thermometer in planktonic and benthic foraminifera, Geochim.
Cosmochim. Ac., 239, 1–16, https://doi.org/10.1016/j.gca.2018.07.016,
2018.
Peral, M., Bassinot, F., Daëron, M., Blamart, D., Bonnin, J., Jorissen,
F., Kissel, C., Michel, E., Waelbroeck, C., Rebaubier, H., and Gray, W. R.:
On the combination of the planktonic foraminiferal , clumped (Δ47) and conventional (δ18O) stable isotope paleothermometers in
palaeoceanographic studies, Geochim. Cosmochim. Ac., 339, 22–34,
https://doi.org/10.1016/j.gca.2022.10.030, 2022.
Pérez-Huerta, A., Cusack, M., Jeffries, T. E., and Williams, C. T.: High
resolution distribution of magnesium and strontium and the evaluation of
thermometry in Recent brachiopod shells, Chem. Geol., 247, 229–241,
https://doi.org/10.1016/j.chemgeo.2007.10.014, 2008.
Petersen, S. V., Tabor, C. R., Lohmann, K. C., Poulsen, C. J., Meyer, K. W.,
Carpenter, S. J., Erickson, J. M., Matsunaga, K. K. S., Smith, S. Y., and
Sheldon, N. D.: Temperature and salinity of the Late Cretaceous Western
Interior Seaway, Geology, 44, 903–906, https://doi.org/10.1130/G38311.1,
2016.
Price, G. D., Bajnai, D., and Fiebig, J.: Carbonate clumped isotope evidence
for latitudinal seawater temperature gradients and the oxygen isotope
composition of Early Cretaceous seas, Palaeogeogr. Palaeocl., 552, 109777, https://doi.org/10.1016/j.palaeo.2020.109777,
2020.
Prokoph, A., Shields, G. A., and Veizer, J.: Compilation and time-series
analysis of a marine carbonate δ18O, δ13C, and
δ34S database through Earth history, Earth-Sci. Rev., 87, 113–133,
https://doi.org/10.1016/j.earscirev.2007.12.003, 2008.
Roelandts, I. and Duchesne, J. C.: AWI-1 SBO-1, PRI-1, AND DWA-1, Belgian
Sedimentary Rock Reference Materials, Geostand. Geoanal. Res., 12,
13–38, https://doi.org/10.1111/j.1751-908X.1988.tb00037.x, 1988.
Rollion-Bard, C., Milner Garcia, S., Burckel, P., Angiolini, L., Jurikova,
H., Tomašových, A., and Henkel, D.: Assessing the biomineralization
processes in the shell layers of modern brachiopods from oxygen isotopic
composition and elemental ratios: Implications for their use as
paleoenvironmental proxies, Chem. Geol., 524, 49–66,
https://doi.org/10.1016/j.chemgeo.2019.05.031, 2019.
Romanin, M., Crippa, G., Ye, F., Brand, U., Bitner, M. A., Gaspard, D.,
Häusermann, V., and Laudien, J.: A sampling strategy for recent and
fossil brachiopods: selecting the optimal shell segment for geochemical
analyses, Riv. Ital. Paleontol. S., 124,
343–359, https://doi.org/10.13130/2039-4942/10193, 2018.
Schmahl, W. W., Griesshaber, E., Kelm, K., Goetz, A., Jordan, G., Ball, A.,
Xu, D., Merkel, C., and Brand, U.: Hierarchical structure of marine shell
biomaterials: biomechanical functionalization of calcite by brachiopods, Z. Krist.-Cryst. Mater., 227, 793–804,
https://doi.org/10.1524/zkri.2012.1542, 2012.
Schöne, B. R.: The curse of physiology – challenges and opportunities in
the interpretation of geochemical data from mollusk shells, Geo-Mar. Lett.,
28, 269–285, https://doi.org/10.1007/s00367-008-0114-6, 2008.
Shen, C.-C., Lee, T., Chen, C.-Y., Wang, C.-H., Dai, C.-F., and Li, L.-A.:
The calibration of D[Sr/Ca]versus sea surface temperature relationship for
Porites corals, Geochim. Cosmochim. Ac., 60, 3849–3858,
https://doi.org/10.1016/0016-7037(96)00205-0, 1996.
Simonet Roda, M., Griesshaber, E., Ziegler, A., Rupp, U., Yin, X., Henkel,
D., Häussermann, V., Laudien, J., Brand, U., Eisenhauer, A., Checa, A.
G., and Schmahl, W. W.: Calcite fibre formation in modern brachiopod shells,
Sci. Rep., 9, 598, https://doi.org/10.1038/s41598-018-36959-z, 2019a.
Simonet Roda, M., Ziegler, A., Griesshaber, E., Yin, X., Rupp, U., Greiner,
M., Henkel, D., Häussermann, V., Eisenhauer, A., Laudien, J., and
Schmahl, W. W.: Terebratulide brachiopod shell biomineralization by mantle
epithelial cells, J. Struct. Biol., 207, 136–157,
https://doi.org/10.1016/j.jsb.2019.05.002, 2019b.
Simonet Roda, M., Griesshaber, E., Angiolini, L., Rollion-Bard, C., Harper,
E. M., Bitner, M. A., Milner Garcia, S., Ye, F., Henkel, D.,
Häussermann, V., Eisenhauer, A., Gnägi, H., Brand, U., Logan, A.,
and Schmahl, W. W.: The architecture of Recent brachiopod shells: diversity
of biocrystal and biopolymer assemblages in rhynchonellide, terebratulide,
thecideide and craniide shells, Mar. Biol., 169, 4,
https://doi.org/10.1007/s00227-021-03962-4, 2022.
Swart, P. K., Burns, S. J., and Leder, J. J.: Fractionation of the stable
isotopes of oxygen and carbon in carbon dioxide during the reaction of
calcite with phosphoric acid as a function of temperature and technique,
Chem. Geol. Isot. Geosci. Sect., 86, 89–96,
https://doi.org/10.1016/0168-9622(91)90055-2, 1991.
Swart, P. K., Elderfield, H., and Greaves, M. J.: A high-resolution
calibration of thermometry using the Caribbean coral Montastraea
annularis, Geochem. Geophy. Geosy., 3, 1–11,
https://doi.org/10.1029/2002GC000306, 2002.
Takayanagi, H., Asami, R., Abe, O., Kitagawa, H., Miyajima, T., and Iryu,
Y.: Carbon- and oxygen-isotope compositions of a modern deep-water
brachiopod Campagea japonica collected off Aguni-jima, Central Ryukyu
Islands, southwestern Japan, Geochem. J., 46, 77–87,
https://doi.org/10.2343/geochemj.1.0153, 2012.
Takayanagi, H., Ryuji, A., Osamu, A., Toshihiro, M., Hiroyuki, K., Keiichi,
S., and Yasufumi, I.: Intraspecific variations in carbon-isotope and
oxygen-isotope compositions of a brachiopod Basiliola lucida collected off
Okinawa-jima, southwestern Japan, Geochim. Cosmochim. Ac., 115, 115–136,
https://doi.org/10.1016/j.gca.2013.03.026, 2013.
Takayanagi, H., Asami, R., Otake, T., Abe, O., Miyajima, T., Kitagawa, H.,
and Iryu, Y.: Quantitative analysis of intraspecific variations in the
carbon and oxygen isotope compositions of the modern cool-temperate
brachiopod Terebratulina crossei, Geochim. Cosmochim. Ac., 170, 301–320,
https://doi.org/10.1016/j.gca.2015.08.006, 2015.
Tesoriero, A. J. and Pankow, J. F.: Solid solution partitioning of Sr2+,
Ba2+, and Cd2+ to calcite, Geochim. Cosmochim. Ac., 60, 1053–1063,
https://doi.org/10.1016/0016-7037(95)00449-1, 1996.
Ullmann, C. V., Frei, R., Korte, C., and Lüter, C.: Element Ca, C and O
isotope ratios in modern brachiopods: Species-specific signals of
biomineralization, Chem. Geol., 460, 15–24,
https://doi.org/10.1016/j.chemgeo.2017.03.034, 2017.
Veizer, J. and Prokoph, A.: Temperatures and oxygen isotopic composition of
Phanerozoic oceans, Earth-Sci. Rev., 146, 92–104,
https://doi.org/10.1016/j.earscirev.2015.03.008, 2015.
Vermeesch, P.: IsoplotR, GitHub [code], https://github.com/pvermees/IsoplotR, last access: 21 May 2022.
Vickers, M. L., Fernandez, A., Hesselbo, S. P., Price, G. D., Bernasconi, S.
M., Lode, S., Ullmann, C. V., Thibault, N., Hougaard, I. W., and Korte, C.:
Unravelling Middle to Late Jurassic palaeoceanographic and palaeoclimatic
signals in the Hebrides Basin using belemnite clumped isotope thermometry,
Earth Planet. Sc. Lett., 546, 116401,
https://doi.org/10.1016/j.epsl.2020.116401, 2020.
Vickers, M. L., Bernasconi, S. M., Ullmann, C. V., Lode, S., Looser, N.,
Morales, L. G., Price, G. D., Wilby, P. R., Hougård, I. W., Hesselbo, S.
P., and Korte, C.: Marine temperatures underestimated for past greenhouse
climate, Sci. Rep., 11, 19109, https://doi.org/10.1038/s41598-021-98528-1,
2021.
Washington, K. E., West, A. J., Kalderon-Asael, B., Katchinoff, J. A. R.,
Stevenson, E. I., and Planavsky, N. J.: Lithium isotope composition of
modern and fossilized Cenozoic brachiopods, Geology, 48, 1058–1061,
https://doi.org/10.1130/G47558.1, 2020.
Watkins, J. M., Nielsen, L. C., Ryerson, F. J., and DePaolo, D. J.: The
influence of kinetics on the oxygen isotope composition of calcium
carbonate, Earth Planet. Sc. Lett., 375, 349–360,
https://doi.org/10.1016/j.epsl.2013.05.054, 2013.
Watkins, J. M., Hunt, J. D., Ryerson, F. J., and DePaolo, D. J.: The
influence of temperature, pH, and growth rate on the δ18O
composition of inorganically precipitated calcite, Earth Planet. Sc. Lett.,
404, 332–343, https://doi.org/10.1016/j.epsl.2014.07.036, 2014.
Wierzbowski, H., Bajnai, D., Wacker, U., Rogov, M. A., Fiebig, J., and
Tesakova, E. M.: Clumped isotope record of salinity variations in the
Subboreal Province at the Middle–Late Jurassic transition, Glob. Planet.
Change, 167, 172–189, https://doi.org/10.1016/j.gloplacha.2018.05.014,
2018.
Williams, A.: A history of skeletal secretion among articulate brachiopods,
Lethaia, 1, 268–287, https://doi.org/10.1111/j.1502-3931.1968.tb01741.x,
1968.
Williams, A.: The secretion and structural evolution of the shell of
thecideidine brachiopods, Philos. T. R. Soc. Lon. B, 264,
439–478, https://doi.org/10.1098/rstb.1973.0001, 1973.
Woods, E. K., Barbour, S., and Bolton-Ritchie, L.: Water temperature in Lyttelton Harbour/Whakaraupo 2012–2014 and Akaroa Harbour 2013–2014, Investigations and Monitoring Group, Environment Canterbury Regional Council, Canterbury (N.Z.), 75 pp., 2014.
Yamamoto, K., Asami, R., and Iryu, Y.: Carbon and oxygen isotopic
compositions of modern brachiopod shells from a warm-temperate shelf
environment, Sagami Bay, central Japan, Palaeogeogr. Palaeocl., 291, 348–359, https://doi.org/10.1016/j.palaeo.2010.03.006,
2010a.
Yamamoto, K., Asami, R., and Iryu, Y.: Within-shell variations in carbon and
oxygen isotope compositions of two modern brachiopods from a subtropical
shelf environment off Amami-o-shima, southwestern Japan, Geochem. Geophy.
Geosy., 11, Q10009, https://doi.org/10.1029/2010GC003190, 2010b.
Yamamoto, K., Asami, R., and Iryu, Y.: Brachiopod taxa and shell portions
reliably recording past ocean environments: Toward establishing a robust
paleoceanographic proxy: BRACHIOPOD OXYGEN ISOTOPE RECORDS, Geophys. Res.
Lett., 38, L13601, https://doi.org/10.1029/2011GL047134, 2011.
York, D., Evensen, N. M., Martínez, M. L., and De Basabe Delgado, J.:
Unified equations for the slope, intercept, and standard errors of the best
straight line, Am. J. Phys., 72, 367–375,
https://doi.org/10.1119/1.1632486, 2004.
Zaarur, S., Affek, H. P., and Brandon, M. T.: A revised calibration of the
clumped isotope thermometer, Earth Planet. Sc. Lett., 382, 47–57,
https://doi.org/10.1016/j.epsl.2013.07.026, 2013.
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A.,
Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K., Paver, C. R.,
and Smolyar, I.: World Ocean Atlas 2018, Volume 2: Salinity, technical editor: Mishonov, A., NOAA Atlas NESDIS 82, 50 pp., 2018.
Short summary
This paper studies the chemistry of modern marine shells called brachiopods. We investigate the relationship of the chemistry of these shells with sea temperatures to test and develop tools for estimating sea temperatures in the distant past. Our results confirm that two of the investigated chemical markers could be useful thermometers despite some second-order variability independent of temperature. The other chemical markers investigated, however, should not be used as a thermometer.
This paper studies the chemistry of modern marine shells called brachiopods. We investigate the...
Altmetrics
Final-revised paper
Preprint