Articles | Volume 20, issue 9
https://doi.org/10.5194/bg-20-1773-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1773-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sea–air methane flux estimates derived from marine surface observations and instantaneous atmospheric measurements in the northern Labrador Sea and Baffin Bay
Department of Earth Sciences, St. Francis Xavier University,
Antigonish, B2G 2W5, Canada
Environmental Science Program, Memorial University of Newfoundland,
St. John's, A1B 3X7, Canada
David Risk
Department of Earth Sciences, St. Francis Xavier University,
Antigonish, B2G 2W5, Canada
Evelise Bourlon
Department of Earth Sciences, St. Francis Xavier University,
Antigonish, B2G 2W5, Canada
Kumiko Azetsu-Scott
Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth,
B2Y 4A2, Canada
Evan N. Edinger
Department of Geography, Memorial University of Newfoundland, St.
John's, A1B 3X9, Canada
Owen A. Sherwood
Department of Earth and Environmental Sciences, Dalhousie University,
Halifax, B3H 4R2, Canada
Related authors
Judith Vogt, Martijn M. T. A. Pallandt, Luana S. Basso, Abdullah Bolek, Kseniia Ivanova, Mark Schlutow, Gerardo Celis, McKenzie Kuhn, Marguerite Mauritz, Edward A. G. Schuur, Kyle Arndt, Anna-Maria Virkkala, Isabel Wargowsky, and Mathias Göckede
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-456, https://doi.org/10.5194/essd-2024-456, 2024
Preprint under review for ESSD
Short summary
Short summary
We present ARGO, a meta-dataset of greenhouse gas observations in Arctic and boreal regions including information about sites where greenhouse gases were measured across different measurement techniques. This dataset provides a novel repository for metadata to facilitate synthesis efforts for regions experiencing rapid environmental change. The meta-dataset shows where measurements lack and will be updated as new measurements are made public.
Judith Vogt, Martijn M. T. A. Pallandt, Luana S. Basso, Abdullah Bolek, Kseniia Ivanova, Mark Schlutow, Gerardo Celis, McKenzie Kuhn, Marguerite Mauritz, Edward A. G. Schuur, Kyle Arndt, Anna-Maria Virkkala, Isabel Wargowsky, and Mathias Göckede
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-456, https://doi.org/10.5194/essd-2024-456, 2024
Preprint under review for ESSD
Short summary
Short summary
We present ARGO, a meta-dataset of greenhouse gas observations in Arctic and boreal regions including information about sites where greenhouse gases were measured across different measurement techniques. This dataset provides a novel repository for metadata to facilitate synthesis efforts for regions experiencing rapid environmental change. The meta-dataset shows where measurements lack and will be updated as new measurements are made public.
Shao-Min Chen, Thibaud Dezutter, David Cote, Catherine Lalande, Evan Edinger, and Owen A. Sherwood
EGUsphere, https://doi.org/10.5194/egusphere-2024-3265, https://doi.org/10.5194/egusphere-2024-3265, 2024
Short summary
Short summary
The origins and composition of sinking organic matter are still understudied for the oceans, especially in ice-covered areas. We use amino acid stable isotopes combined with particle flux and plankton taxonomy to investigate the sources and composition of exported organic matter from a sediment trap derived time-series of sinking particles in the northwest Labrador Sea. We found that sea ice algae and fecal pellets may be important contributors to the sinking fluxes of carbon and nitrogen.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Hannah Sharpe, Michel Gosselin, Catherine Lalande, Alexandre Normandeau, Jean-Carlos Montero-Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, and Audrey Limoges
Biogeosciences, 20, 4981–5001, https://doi.org/10.5194/bg-20-4981-2023, https://doi.org/10.5194/bg-20-4981-2023, 2023
Short summary
Short summary
We studied the impact of submarine canyon processes within the Pointe-des-Monts system on biogenic matter export and phytoplankton assemblages. Using data from three oceanographic moorings, we show that the canyon experienced two low-amplitude sediment remobilization events in 2020–2021 that led to enhanced particle fluxes in the deep-water column layer > 2.6 km offshore. Sinking phytoplankton fluxes were lower near the canyon compared to background values from the lower St. Lawrence Estuary.
Daniel Wesley, Scott Dallimore, Roger MacLeod, Torsten Sachs, and David Risk
The Cryosphere, 17, 5283–5297, https://doi.org/10.5194/tc-17-5283-2023, https://doi.org/10.5194/tc-17-5283-2023, 2023
Short summary
Short summary
The Mackenzie River delta (MRD) is an ecosystem with high rates of methane production from biologic and geologic sources, but little research has been done to determine how often geologic or biogenic methane is emitted to the atmosphere. Stable carbon isotope analysis was used to identify the source of CH4 at several sites. Stable carbon isotope (δ13C-CH4) signatures ranged from −42 to −88 ‰ δ13C-CH4, indicating that CH4 emission in the MRD is caused by biologic and geologic sources.
Olivia Gibb, Frédéric Cyr, Kumiko Azetsu-Scott, Joël Chassé, Darlene Childs, Carrie-Ellen Gabriel, Peter S. Galbraith, Gary Maillet, Pierre Pepin, Stephen Punshon, and Michel Starr
Earth Syst. Sci. Data, 15, 4127–4162, https://doi.org/10.5194/essd-15-4127-2023, https://doi.org/10.5194/essd-15-4127-2023, 2023
Short summary
Short summary
The ocean absorbs large quantities of carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels. This, in turn, causes ocean acidification, which poses a major threat to global ocean ecosystems. In this study, we compiled 9 years (2014–2022) of ocean carbonate data (i.e., ocean acidification parameters) collected in Atlantic Canada as part of the Atlantic Zone Monitoring Program.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Owen A. Sherwood, Samuel H. Davin, Nadine Lehmann, Carolyn Buchwald, Evan N. Edinger, Moritz F. Lehmann, and Markus Kienast
Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021, https://doi.org/10.5194/bg-18-4491-2021, 2021
Short summary
Short summary
Pacific water flowing eastward through the Canadian Arctic plays an important role in redistributing nutrients to the northwest Atlantic Ocean. Using samples collected from northern Baffin Bay to the southern Labrador Shelf, we show that stable isotopic ratios in seawater nitrate reflect the fraction of Pacific to Atlantic water. These results provide a new framework for interpreting patterns of nitrogen isotopic variability recorded in modern and archival organic materials in the region.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Tara Hanlon and David Risk
Atmos. Meas. Tech., 13, 191–203, https://doi.org/10.5194/amt-13-191-2020, https://doi.org/10.5194/amt-13-191-2020, 2020
Short summary
Short summary
In this study, we aimed to improve accuracy of wind speed and direction measurements from an anemometer mounted atop a research vehicle. Controlled field tests and computer simulations showed that the vehicle shape biases airflow above the vehicle. The results indicate that placing an anemometer at a significant height (> 1 m) above the vehicle, and calibrating anemometer measurements for vehicle shape and wind angle, can be effective in reducing bias in measurements of wind speed and direction.
Jocelyn E. Egan, David R. Bowling, and David A. Risk
Biogeosciences, 16, 3197–3205, https://doi.org/10.5194/bg-16-3197-2019, https://doi.org/10.5194/bg-16-3197-2019, 2019
Short summary
Short summary
Traditionally a mass-dependent correction is made when measuring the radiocarbon composition in organic samples. This correction has not been evaluated for the soil gas environment where gas transport processes are important. Here, we show using theory that this traditional correction is not appropriate for estimating the radiocarbon composition of soil biological production. We also propose a new solution that accounts for soil gas transport processes.
Laura Graham and David Risk
Biogeosciences, 15, 847–859, https://doi.org/10.5194/bg-15-847-2018, https://doi.org/10.5194/bg-15-847-2018, 2018
Short summary
Short summary
Winter carbon dioxide (CO2) respiration from soils is a significant and understudied component of the global carbon (C) cycle. In this study, we were able to show with a field campaign and a model how windy (advective) conditions can affect the usually slow (diffusive) transport of CO2 from soils and out of snowpacks. This research is important to help with understanding winter CO2 dynamics, especially for continued accurate accounting of the annual global C cycle.
Emmaline Atherton, David Risk, Chelsea Fougère, Martin Lavoie, Alex Marshall, John Werring, James P. Williams, and Christina Minions
Atmos. Chem. Phys., 17, 12405–12420, https://doi.org/10.5194/acp-17-12405-2017, https://doi.org/10.5194/acp-17-12405-2017, 2017
Short summary
Short summary
Methane is a potent greenhouse gas, and leaks from natural gas infrastructure are thought to be a significant emission source. We used a mobile survey method to measure GHGs near Canadian infrastructure. Our results show that ~ 47 % of active wells were emitting. Abandoned and aging wells were also associated with emissions. We estimate methane emissions from this development are just over 111 Mt year−1, which is more than previous government estimates, but less than similar studies in the US.
Owen A. Sherwood, Stefan Schwietzke, Victoria A. Arling, and Giuseppe Etiope
Earth Syst. Sci. Data, 9, 639–656, https://doi.org/10.5194/essd-9-639-2017, https://doi.org/10.5194/essd-9-639-2017, 2017
Short summary
Short summary
Multiple natural and anthropogenic emissions sources contribute to the global atmospheric methane budget. Methane emissions are constrained, in part, by inverse (top-down) models that incorporate data on the concentration and stable carbon and hydrogen isotopic ratios of methane from different sources. To aid in these modeling efforts, we present a geochemical database comprising over 10 000 discrete samples from fossil and non-fossil fuel sources of methane.
Robyn N. C. Latimer and David A. Risk
Biogeosciences, 13, 2111–2122, https://doi.org/10.5194/bg-13-2111-2016, https://doi.org/10.5194/bg-13-2111-2016, 2016
Short summary
Short summary
This study examines an inversion approach for estimating Q10 and depth of production using a physically based soil model, constrained by observed high-frequency surface fluxes and/or five concentrations. Inversions using exclusively surface flux measurements were successful, but using multiple shallow subsurface CO2 measurements yielded the best results. This work is a first step toward building a reliable computing framework for removing physical artefacts from high-frequency soil CO2 data.
D. R. Bowling, J. E. Egan, S. J. Hall, and D. A. Risk
Biogeosciences, 12, 5143–5160, https://doi.org/10.5194/bg-12-5143-2015, https://doi.org/10.5194/bg-12-5143-2015, 2015
Short summary
Short summary
Soil respiration and its stable isotopes were studied in a subalpine forest. There was strong diel variability in soil efflux but not in the isotope content of soil efflux or CO2 from biological activity in the soil. Following rain, soil efflux increased, but the isotope content of these fluxes did not change. Temporal variation in the isotope content of soil efflux was unrelated to environmental variables. Results confirmed established theory regarding diffusive soil gas transport.
Related subject area
Biogeochemistry: Air - Sea Exchange
Dimethyl sulfide (DMS) climatologies, fluxes, and trends – Part 1: Differences between seawater DMS estimations
Dimethyl sulfide (DMS) climatologies, fluxes, and trends – Part 2: Sea–air fluxes
Aerosol trace element solubility and deposition fluxes over the polluted, dusty Mediterranean and Black Sea basins
High-frequency continuous measurements reveal strong diel and seasonal cycling of pCO2 and CO2 flux in a mesohaline reach of the Chesapeake Bay
Significant role of physical transport in the marine carbon monoxide (CO) cycle: observations in the East Sea (Sea of Japan), the western North Pacific, and the Bering Sea in summer
Central Arctic Ocean surface–atmosphere exchange of CO2 and CH4 constrained by direct measurements
Spatial and seasonal variability in volatile organic sulfur compounds in seawater and the overlying atmosphere of the Bohai and Yellow seas
Estimating marine carbon uptake in the northeast Pacific using a neural network approach
Global analysis of the controls on seawater dimethylsulfide spatial variability
Air–sea gas exchange in a seagrass ecosystem – results from a 3He ∕ SF6 tracer release experiment
Concentrations of dissolved dimethyl sulfide (DMS), methanethiol and other trace gases in context of microbial communities from the temperate Atlantic to the Arctic Ocean
Marine nitrogen fixation as a possible source of atmospheric water-soluble organic nitrogen aerosols in the subtropical North Pacific
Ice nucleating properties of the sea ice diatom Fragilariopsis cylindrus and its exudates
On physical mechanisms enhancing air–sea CO2 exchange
Winter season Southern Ocean distributions of climate-relevant trace gases
How biogenic polymers control surfactant dynamics in the surface microlayer: insights from a coastal Baltic Sea study
Identifying the biological control of the annual and multi-year variations in South Atlantic air–sea CO2 flux
The sensitivity of pCO2 reconstructions to sampling scales across a Southern Ocean sub-domain: a semi-idealized ocean sampling simulation approach
Physical mechanisms for biological carbon uptake during the onset of the spring phytoplankton bloom in the northwestern Mediterranean Sea (BOUSSOLE site)
Wintertime process study of the North Brazil Current rings reveals the region as a larger sink for CO2 than expected
New constraints on biological production and mixing processes in the South China Sea from triple isotope composition of dissolved oxygen
Tidal mixing of estuarine and coastal waters in the western English Channel is a control on spatial and temporal variability in seawater CO2
A seamless ensemble-based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans
Sea ice concentration impacts dissolved organic gases in the Canadian Arctic
Evaluating the Arabian Sea as a regional source of atmospheric CO2: seasonal variability and drivers
An empirical MLR for estimating surface layer DIC and a comparative assessment to other gap-filling techniques for ocean carbon time series
Derivation of seawater pCO2 from net community production identifies the South Atlantic Ocean as a CO2 source
Eukaryotic community composition in the sea surface microlayer across an east–west transect in the Mediterranean Sea
Enhancement of the North Atlantic CO2 sink by Arctic Waters
Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network
Atmospheric deposition of organic matter at a remote site in the central Mediterranean Sea: implications for the marine ecosystem
Underway seawater and atmospheric measurements of volatile organic compounds in the Southern Ocean
Dimethylsulfide (DMS), marine biogenic aerosols and the ecophysiology of coral reefs
Spatial variations in CO2 fluxes in the Saguenay Fjord (Quebec, Canada) and results of a water mixing model
Gas exchange estimates in the Peruvian upwelling regime biased by multi-day near-surface stratification
Insights from year-long measurements of air–water CH4 and CO2 exchange in a coastal environment
On the role of climate modes in modulating the air–sea CO2 fluxes in eastern boundary upwelling systems
Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study
Increase of dissolved inorganic carbon and decrease in pH in near-surface waters in the Mediterranean Sea during the past two decades
Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2
Effect of wind speed on the size distribution of gel particles in the sea surface microlayer: insights from a wind–wave channel experiment
The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models
Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2
Interannual drivers of the seasonal cycle of CO2 in the Southern Ocean
Constraints on global oceanic emissions of N2O from observations and models
Arctic Ocean CO2 uptake: an improved multiyear estimate of the air–sea CO2 flux incorporating chlorophyll a concentrations
Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis
Phytoplankton growth response to Asian dust addition in the northwest Pacific Ocean versus the Yellow Sea
Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation
Changes in the partial pressure of carbon dioxide in the Mauritanian–Cap Vert upwelling region between 2005 and 2012
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, and Rafel Simó
Biogeosciences, 21, 4439–4452, https://doi.org/10.5194/bg-21-4439-2024, https://doi.org/10.5194/bg-21-4439-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emission and quantification of its impacts have large uncertainties, but a detailed study on the emissions and drivers of their uncertainty is missing to date. The emissions are usually calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in DMS seawater products, which can affect DMS fluxes.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, Mingxi Yang, and Rafel Simó
Biogeosciences, 21, 4453–4467, https://doi.org/10.5194/bg-21-4453-2024, https://doi.org/10.5194/bg-21-4453-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emissions and quantification of their impacts have large uncertainties, but a detailed study on the range of emissions and drivers of their uncertainty is missing to date. The emissions are calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in the effect of flux parameterizations used in models.
Rachel Ursula Shelley, Alexander Roberts Baker, Max Thomas, and Sam Murphy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2667, https://doi.org/10.5194/egusphere-2024-2667, 2024
Short summary
Short summary
The fractions of trace elements in atmospheric particles over the Mediterranean and Black seas that are soluble have been measured. These soluble fractions can affect the growth of microorganisms in the ocean and our results show that they are affected by mixing with pollutants from the surrounding land and shipping emissions. Atmospheric particles contribute to the soluble element loads found in the Mediterranean surface waters and influence the balance between nitrogen and phosphorus there.
A. Whitman Miller, Jim R. Muirhead, Amanda C. Reynolds, Mark S. Minton, and Karl J. Klug
Biogeosciences, 21, 3717–3734, https://doi.org/10.5194/bg-21-3717-2024, https://doi.org/10.5194/bg-21-3717-2024, 2024
Short summary
Short summary
High frequency pCO2 measurements reveal net neutral CO2 flux in a mesohaline reach of the Chesapeake Bay. Net off-gassing to the atmosphere begins in June when water temperatures rise above ~26ºC, continuing through November when temperatures fall below ~10ºC. Dissolved CO2 concentrations follow day–night cycles and are especially pronounced in warm waters. From December through May, the river is largely an uninterrupted sink for CO2 (i.e. CO2 is drawn out of the atmosphere into the river).
Young Shin Kwon, Tae Siek Rhee, Hyun-Cheol Kim, and Hyoun-Woo Kang
Biogeosciences, 21, 1847–1865, https://doi.org/10.5194/bg-21-1847-2024, https://doi.org/10.5194/bg-21-1847-2024, 2024
Short summary
Short summary
Delving into CO dynamics from the East Sea to the Bering Sea, our study unveils the influence of physical transport on CO budgets. By measuring CO concentrations and parameters, we elucidate the interplay between biological and physical processes, highlighting the role of lateral transport in shaping CO distributions. Our findings underscore the importance of considering both biogeochemical and physical drivers in understanding marine carbon fluxes.
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024, https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary
Short summary
We directly measured methane and carbon dioxide exchange between ocean or sea ice and the atmosphere during an icebreaker-based expedition to the central Arctic Ocean (CAO) in summer 2021. These measurements can help constrain climate models and carbon budgets. The methane measurements, the first such made in the CAO, are lower than previous estimates and imply that the CAO is an insignificant contributor to Arctic methane emission. Gas exchange rates are slower than previous estimates.
Juan Yu, Lei Yu, Zhen He, Gui-Peng Yang, Jing-Guang Lai, and Qian Liu
Biogeosciences, 21, 161–176, https://doi.org/10.5194/bg-21-161-2024, https://doi.org/10.5194/bg-21-161-2024, 2024
Short summary
Short summary
The distributions of volatile organic sulfur compounds (VSCs) (DMS, COS, and CS2) in the seawater and atmosphere of the Bohai and Yellow Seas were evaluated. Seasonal variations in VSCs were found and showed summer > spring. The COS concentrations exhibited positive correlation with DOC concentrations in seawater during summer. VSCs concentrations in seawater decreased with the depth. Sea-to-air fluxes of COS, DMS, and CS2 indicated that these marginal seas are sources of atmospheric VSCs.
Patrick J. Duke, Roberta C. Hamme, Debby Ianson, Peter Landschützer, Mohamed M. M. Ahmed, Neil C. Swart, and Paul A. Covert
Biogeosciences, 20, 3919–3941, https://doi.org/10.5194/bg-20-3919-2023, https://doi.org/10.5194/bg-20-3919-2023, 2023
Short summary
Short summary
The ocean is both impacted by climate change and helps mitigate its effects through taking up carbon from the atmosphere. We used a machine learning approach to investigate what controls open-ocean carbon uptake in the northeast Pacific open ocean. Marine heatwaves that lasted 2–3 years increased uptake, while the upwelling strength of the Alaskan Gyre controlled uptake over 10-year time periods. The trend from 1998–2019 suggests carbon uptake in the northeast Pacific open ocean is increasing.
George Manville, Thomas G. Bell, Jane P. Mulcahy, Rafel Simó, Martí Galí, Anoop S. Mahajan, Shrivardhan Hulswar, and Paul R. Halloran
Biogeosciences, 20, 1813–1828, https://doi.org/10.5194/bg-20-1813-2023, https://doi.org/10.5194/bg-20-1813-2023, 2023
Short summary
Short summary
We present the first global investigation of controls on seawater dimethylsulfide (DMS) spatial variability over scales of up to 100 km. Sea surface height anomalies, density, and chlorophyll a help explain almost 80 % of DMS variability. The results suggest that physical and biogeochemical processes play an equally important role in controlling DMS variability. These data provide independent confirmation that existing parameterisations of seawater DMS concentration use appropriate variables.
Ryo Dobashi and David T. Ho
Biogeosciences, 20, 1075–1087, https://doi.org/10.5194/bg-20-1075-2023, https://doi.org/10.5194/bg-20-1075-2023, 2023
Short summary
Short summary
Seagrass meadows are productive ecosystems and bury much carbon. Understanding their role in the global carbon cycle requires knowledge of air–sea CO2 fluxes and hence the knowledge of gas transfer velocity (k). In this study, k was determined from the dual tracer technique in Florida Bay. The observed gas transfer velocity was lower than previous studies in the coastal and open oceans at the same wind speeds, most likely due to wave attenuation by seagrass and limited wind fetch in this area.
Valérie Gros, Bernard Bonsang, Roland Sarda-Estève, Anna Nikolopoulos, Katja Metfies, Matthias Wietz, and Ilka Peeken
Biogeosciences, 20, 851–867, https://doi.org/10.5194/bg-20-851-2023, https://doi.org/10.5194/bg-20-851-2023, 2023
Short summary
Short summary
The oceans are both sources and sinks for trace gases important for atmospheric chemistry and marine ecology. Here, we quantified selected trace gases (including the biological metabolites dissolved dimethyl sulfide, methanethiol and isoprene) along a 2500 km transect from the North Atlantic to the Arctic Ocean. In the context of phytoplankton and bacterial communities, our study suggests that methanethiol (rarely measured before) might substantially influence ocean–atmosphere cycling.
Tsukasa Dobashi, Yuzo Miyazaki, Eri Tachibana, Kazutaka Takahashi, Sachiko Horii, Fuminori Hashihama, Saori Yasui-Tamura, Yoko Iwamoto, Shu-Kuan Wong, and Koji Hamasaki
Biogeosciences, 20, 439–449, https://doi.org/10.5194/bg-20-439-2023, https://doi.org/10.5194/bg-20-439-2023, 2023
Short summary
Short summary
Water-soluble organic nitrogen (WSON) in marine aerosols is important for biogeochemical cycling of bioelements. Our shipboard measurements suggested that reactive nitrogen produced and exuded by nitrogen-fixing microorganisms in surface seawater likely contributed to the formation of WSON aerosols in the subtropical North Pacific. This study provides new implications for the role of marine microbial activity in the formation of WSON aerosols in the ocean surface.
Lukas Eickhoff, Maddalena Bayer-Giraldi, Naama Reicher, Yinon Rudich, and Thomas Koop
Biogeosciences, 20, 1–14, https://doi.org/10.5194/bg-20-1-2023, https://doi.org/10.5194/bg-20-1-2023, 2023
Short summary
Short summary
The formation of ice is an important process in Earth’s atmosphere, biosphere, and cryosphere, in particular in polar regions. Our research focuses on the influence of the sea ice diatom Fragilariopsis cylindrus and of molecules produced by it upon heterogenous ice nucleation. For that purpose, we studied the freezing of tiny droplets containing the diatoms in a microfluidic device. Together with previous studies, our results suggest a common freezing behaviour of various sea ice diatoms.
Lucía Gutiérrez-Loza, Erik Nilsson, Marcus B. Wallin, Erik Sahlée, and Anna Rutgersson
Biogeosciences, 19, 5645–5665, https://doi.org/10.5194/bg-19-5645-2022, https://doi.org/10.5194/bg-19-5645-2022, 2022
Short summary
Short summary
The exchange of CO2 between the ocean and the atmosphere is an essential aspect of the global carbon cycle and is highly relevant for the Earth's climate. In this study, we used 9 years of in situ measurements to evaluate the temporal variability in the air–sea CO2 fluxes in the Baltic Sea. Furthermore, using this long record, we assessed the effect of atmospheric and water-side mechanisms controlling the efficiency of the air–sea CO2 exchange under different wind-speed conditions.
Li Zhou, Dennis Booge, Miming Zhang, and Christa A. Marandino
Biogeosciences, 19, 5021–5040, https://doi.org/10.5194/bg-19-5021-2022, https://doi.org/10.5194/bg-19-5021-2022, 2022
Short summary
Short summary
Trace gas air–sea exchange exerts an important control on air quality and climate, especially in the Southern Ocean (SO). Almost all of the measurements there are skewed to summer, but it is essential to expand our measurement database over greater temporal and spatial scales. Therefore, we report measured concentrations of dimethylsulfide (DMS, as well as related sulfur compounds) and isoprene in the Atlantic sector of the SO. The observations of isoprene are the first in the winter in the SO.
Theresa Barthelmeß and Anja Engel
Biogeosciences, 19, 4965–4992, https://doi.org/10.5194/bg-19-4965-2022, https://doi.org/10.5194/bg-19-4965-2022, 2022
Short summary
Short summary
Greenhouse gases released by human activity cause a global rise in mean temperatures. While scientists can predict how much of these gases accumulate in the atmosphere based on not only human-derived sources but also oceanic sinks, it is rather difficult to predict the major influence of coastal ecosystems. We provide a detailed study on the occurrence, composition, and controls of substances that suppress gas exchange. We thus help to determine what controls coastal greenhouse gas fluxes.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 4287–4304, https://doi.org/10.5194/bg-19-4287-2022, https://doi.org/10.5194/bg-19-4287-2022, 2022
Short summary
Short summary
This study explores the seasonal, inter-annual, and multi-year drivers of the South Atlantic air–sea CO2 flux. Our analysis showed seasonal sea surface temperatures dominate in the subtropics, and the subpolar regions correlated with biological processes. Inter-annually, the El Niño–Southern Oscillation correlated with the CO2 flux by modifying sea surface temperatures and biological activity. Long-term trends indicated an important biological contribution to changes in the air–sea CO2 flux.
Laique M. Djeutchouang, Nicolette Chang, Luke Gregor, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 19, 4171–4195, https://doi.org/10.5194/bg-19-4171-2022, https://doi.org/10.5194/bg-19-4171-2022, 2022
Short summary
Short summary
Based on observing system simulation experiments using a mesoscale-resolving model, we found that to significantly improve uncertainties and biases in carbon dioxide (CO2) mapping in the Southern Ocean, it is essential to resolve the seasonal cycle (SC) of the meridional gradient of CO2 through high frequency (at least daily) observations that also span the region's meridional axis. We also showed that the estimated SC anomaly and mean annual CO2 are highly sensitive to seasonal sampling biases.
Liliane Merlivat, Michael Hemming, Jacqueline Boutin, David Antoine, Vincenzo Vellucci, Melek Golbol, Gareth A. Lee, and Laurence Beaumont
Biogeosciences, 19, 3911–3920, https://doi.org/10.5194/bg-19-3911-2022, https://doi.org/10.5194/bg-19-3911-2022, 2022
Short summary
Short summary
We use in situ high-temporal-resolution measurements of dissolved inorganic carbon and atmospheric parameters at the air–sea interface to analyse phytoplankton bloom initiation identified as the net rate of biological carbon uptake in the Mediterranean Sea. The shift from wind-driven to buoyancy-driven mixing creates conditions for blooms to begin. Active mixing at the air–sea interface leads to the onset of the surface phytoplankton bloom due to the relaxation of wind speed following storms.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Hana Jurikova, Osamu Abe, Fuh-Kwo Shiah, and Mao-Chang Liang
Biogeosciences, 19, 2043–2058, https://doi.org/10.5194/bg-19-2043-2022, https://doi.org/10.5194/bg-19-2043-2022, 2022
Short summary
Short summary
We studied the isotopic composition of oxygen dissolved in seawater in the South China Sea. This tells us about the origin of oxygen in the water column, distinguishing between biological oxygen produced by phytoplankton communities and atmospheric oxygen entering seawater through gas exchange. We found that the East Asian Monsoon plays an important role in determining the amount of oxygen produced vs. consumed by the phytoplankton, as well as in inducing vertical water mass mixing.
Richard P. Sims, Michael Bedington, Ute Schuster, Andrew J. Watson, Vassilis Kitidis, Ricardo Torres, Helen S. Findlay, James R. Fishwick, Ian Brown, and Thomas G. Bell
Biogeosciences, 19, 1657–1674, https://doi.org/10.5194/bg-19-1657-2022, https://doi.org/10.5194/bg-19-1657-2022, 2022
Short summary
Short summary
The amount of carbon dioxide (CO2) being absorbed by the ocean is relevant to the earth's climate. CO2 values in the coastal ocean and estuaries are not well known because of the instrumentation used. We used a new approach to measure CO2 across the coastal and estuarine zone. We found that CO2 and salinity were linked to the state of the tide. We used our CO2 measurements and model salinity to predict CO2. Previous studies overestimate how much CO2 the coastal ocean draws down at our site.
Thi Tuyet Trang Chau, Marion Gehlen, and Frédéric Chevallier
Biogeosciences, 19, 1087–1109, https://doi.org/10.5194/bg-19-1087-2022, https://doi.org/10.5194/bg-19-1087-2022, 2022
Short summary
Short summary
Air–sea CO2 fluxes and associated uncertainty over the open ocean to coastal shelves are estimated with a new ensemble-based reconstruction of pCO2 trained on observation-based data. The regional distribution and seasonality of CO2 sources and sinks are consistent with those suggested in previous studies as well as mechanisms discussed therein. The ensemble-based uncertainty field allows identifying critical regions where improvements in pCO2 and air–sea CO2 flux estimates should be a priority.
Charel Wohl, Anna E. Jones, William T. Sturges, Philip D. Nightingale, Brent Else, Brian J. Butterworth, and Mingxi Yang
Biogeosciences, 19, 1021–1045, https://doi.org/10.5194/bg-19-1021-2022, https://doi.org/10.5194/bg-19-1021-2022, 2022
Short summary
Short summary
We measured concentrations of five different organic gases in seawater in the high Arctic during summer. We found higher concentrations near the surface of the water column (top 5–10 m) and in areas of partial ice cover. This suggests that sea ice influences the concentrations of these gases. These gases indirectly exert a slight cooling effect on the climate, and it is therefore important to measure the levels accurately for future climate predictions.
Alain de Verneil, Zouhair Lachkar, Shafer Smith, and Marina Lévy
Biogeosciences, 19, 907–929, https://doi.org/10.5194/bg-19-907-2022, https://doi.org/10.5194/bg-19-907-2022, 2022
Short summary
Short summary
The Arabian Sea is a natural CO2 source to the atmosphere, but previous work highlights discrepancies between data and models in estimating air–sea CO2 flux. In this study, we use a regional ocean model, achieve a flux closer to available data, and break down the seasonal cycles that impact it, with one result being the great importance of monsoon winds. As demonstrated in a meta-analysis, differences from data still remain, highlighting the great need for further regional data collection.
Jesse M. Vance, Kim Currie, John Zeldis, Peter W. Dillingham, and Cliff S. Law
Biogeosciences, 19, 241–269, https://doi.org/10.5194/bg-19-241-2022, https://doi.org/10.5194/bg-19-241-2022, 2022
Short summary
Short summary
Long-term monitoring is needed to detect changes in our environment. Time series of ocean carbon have aided our understanding of seasonal cycles and provided evidence for ocean acidification. Data gaps are inevitable, yet no standard method for filling gaps exists. We present a regression approach here and compare it to seven other common methods to understand the impact of different approaches when assessing seasonal to climatic variability in ocean carbon.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 93–115, https://doi.org/10.5194/bg-19-93-2022, https://doi.org/10.5194/bg-19-93-2022, 2022
Short summary
Short summary
This study identifies the most accurate biological proxy for the estimation of seawater pCO2 fields, which are key to assessing the ocean carbon sink. Our analysis shows that the net community production (NCP), the balance between photosynthesis and respiration, was more accurate than chlorophyll a within a neural network scheme. The improved pCO2 estimates, based on NCP, identified the South Atlantic Ocean as a net CO2 source, compared to a CO2 sink using chlorophyll a.
Birthe Zäncker, Michael Cunliffe, and Anja Engel
Biogeosciences, 18, 2107–2118, https://doi.org/10.5194/bg-18-2107-2021, https://doi.org/10.5194/bg-18-2107-2021, 2021
Short summary
Short summary
Fungi are found in numerous marine environments. Our study found an increased importance of fungi in the Ionian Sea, where bacterial and phytoplankton counts were reduced, but organic matter was still available, suggesting fungi might benefit from the reduced competition from bacteria in low-nutrient, low-chlorophyll (LNLC) regions.
Jon Olafsson, Solveig R. Olafsdottir, Taro Takahashi, Magnus Danielsen, and Thorarinn S. Arnarson
Biogeosciences, 18, 1689–1701, https://doi.org/10.5194/bg-18-1689-2021, https://doi.org/10.5194/bg-18-1689-2021, 2021
Short summary
Short summary
The Atlantic north of 50° N is an intense ocean sink area for atmospheric CO2. Observations in the vicinity of Iceland reveal a previously unrecognized Arctic contribution to the North Atlantic CO2 sink. Sustained CO2 influx to waters flowing from the Arctic Ocean is linked to their excess alkalinity derived from sources in the changing Arctic. The results relate to the following question: will the North Atlantic continue to absorb CO2 in the future as it has in the past?
Wei-Lei Wang, Guisheng Song, François Primeau, Eric S. Saltzman, Thomas G. Bell, and J. Keith Moore
Biogeosciences, 17, 5335–5354, https://doi.org/10.5194/bg-17-5335-2020, https://doi.org/10.5194/bg-17-5335-2020, 2020
Short summary
Short summary
Dimethyl sulfide, a volatile compound produced as a byproduct of marine phytoplankton activity, can be emitted to the atmosphere via gas exchange. In the atmosphere, DMS is oxidized to cloud condensation nuclei, thus contributing to cloud formation. Therefore, oceanic DMS plays an important role in regulating the planet's climate by influencing the radiation budget. In this study, we use an artificial neural network model to update the global DMS climatology and estimate the sea-to-air flux.
Yuri Galletti, Silvia Becagli, Alcide di Sarra, Margherita Gonnelli, Elvira Pulido-Villena, Damiano M. Sferlazzo, Rita Traversi, Stefano Vestri, and Chiara Santinelli
Biogeosciences, 17, 3669–3684, https://doi.org/10.5194/bg-17-3669-2020, https://doi.org/10.5194/bg-17-3669-2020, 2020
Short summary
Short summary
This paper reports the first data about atmospheric deposition of dissolved organic matter (DOM) on the island of Lampedusa. It also shows the implications for the surface marine layer by studying the impact of atmospheric organic carbon deposition in the marine ecosystem. It is a preliminary study, but it is pioneering and important for having new data that can be crucial in order to understand the impact of atmospheric deposition on the marine carbon cycle in a global climate change scenario.
Charel Wohl, Ian Brown, Vassilis Kitidis, Anna E. Jones, William T. Sturges, Philip D. Nightingale, and Mingxi Yang
Biogeosciences, 17, 2593–2619, https://doi.org/10.5194/bg-17-2593-2020, https://doi.org/10.5194/bg-17-2593-2020, 2020
Short summary
Short summary
The oceans represent a poorly understood source of organic carbon to the atmosphere. In this paper, we present ship-based measurements of specific compounds in ambient air and seawater of the Southern Ocean. We present fluxes of these gases between air and sea at very high resolution. The data also contain evidence for day and night variations in some of these compounds. These measurements can be used to better understand the role of the Southern Ocean in the cycling of these compounds.
Rebecca L. Jackson, Albert J. Gabric, Roger Cropp, and Matthew T. Woodhouse
Biogeosciences, 17, 2181–2204, https://doi.org/10.5194/bg-17-2181-2020, https://doi.org/10.5194/bg-17-2181-2020, 2020
Short summary
Short summary
Coral reefs are a strong source of atmospheric sulfur through stress-induced emissions of dimethylsulfide (DMS). This biogenic sulfur can influence aerosol and cloud properties and, consequently, the radiative balance over the ocean. DMS emissions may therefore help to mitigate coral physiological stress via increased low-level cloud cover and reduced sea surface temperature. The importance of DMS in coral physiology and climate is reviewed and the implications for coral bleaching are discussed.
Louise Delaigue, Helmuth Thomas, and Alfonso Mucci
Biogeosciences, 17, 547–566, https://doi.org/10.5194/bg-17-547-2020, https://doi.org/10.5194/bg-17-547-2020, 2020
Short summary
Short summary
This paper reports on the first compilation and analysis of the surface water pCO2 distribution in the Saguenay Fjord, the southernmost subarctic fjord in the Northern Hemisphere, and thus fills a significant knowledge gap in current regional estimates of estuarine CO2 emissions.
Tim Fischer, Annette Kock, Damian L. Arévalo-Martínez, Marcus Dengler, Peter Brandt, and Hermann W. Bange
Biogeosciences, 16, 2307–2328, https://doi.org/10.5194/bg-16-2307-2019, https://doi.org/10.5194/bg-16-2307-2019, 2019
Short summary
Short summary
We investigated air–sea gas exchange in oceanic upwelling regions for the case of nitrous oxide off Peru. In this region, routine concentration measurements from ships at 5 m or 10 m depth prove to overestimate surface (bulk) concentration. Thus, standard estimates of gas exchange will show systematic error. This is due to very shallow stratified layers that inhibit exchange between surface water and waters below and can exist for several days. Maximum bias occurs in moderate wind conditions.
Mingxi Yang, Thomas G. Bell, Ian J. Brown, James R. Fishwick, Vassilis Kitidis, Philip D. Nightingale, Andrew P. Rees, and Timothy J. Smyth
Biogeosciences, 16, 961–978, https://doi.org/10.5194/bg-16-961-2019, https://doi.org/10.5194/bg-16-961-2019, 2019
Short summary
Short summary
We quantify the emissions and uptake of the greenhouse gases carbon dioxide and methane from the coastal seas of the UK over 1 year using the state-of-the-art eddy covariance technique. Our measurements show how these air–sea fluxes vary twice a day (tidal), diurnally (circadian) and seasonally. We also estimate the air–sea gas transfer velocity, which is essential for modelling and predicting coastal air-sea exchange.
Riley X. Brady, Nicole S. Lovenduski, Michael A. Alexander, Michael Jacox, and Nicolas Gruber
Biogeosciences, 16, 329–346, https://doi.org/10.5194/bg-16-329-2019, https://doi.org/10.5194/bg-16-329-2019, 2019
Stelios Myriokefalitakis, Akinori Ito, Maria Kanakidou, Athanasios Nenes, Maarten C. Krol, Natalie M. Mahowald, Rachel A. Scanza, Douglas S. Hamilton, Matthew S. Johnson, Nicholas Meskhidze, Jasper F. Kok, Cecile Guieu, Alex R. Baker, Timothy D. Jickells, Manmohan M. Sarin, Srinivas Bikkina, Rachel Shelley, Andrew Bowie, Morgane M. G. Perron, and Robert A. Duce
Biogeosciences, 15, 6659–6684, https://doi.org/10.5194/bg-15-6659-2018, https://doi.org/10.5194/bg-15-6659-2018, 2018
Short summary
Short summary
The first atmospheric iron (Fe) deposition model intercomparison is presented in this study, as a result of the deliberations of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP; http://www.gesamp.org/) Working Group 38. We conclude that model diversity over remote oceans reflects uncertainty in the Fe content parameterizations of dust aerosols, combustion aerosol emissions and the size distribution of transported aerosol Fe.
Liliane Merlivat, Jacqueline Boutin, David Antoine, Laurence Beaumont, Melek Golbol, and Vincenzo Vellucci
Biogeosciences, 15, 5653–5662, https://doi.org/10.5194/bg-15-5653-2018, https://doi.org/10.5194/bg-15-5653-2018, 2018
Short summary
Short summary
The fugacity of carbon dioxide in seawater (fCO2) was measured hourly in the surface waters of the NW Mediterranean Sea during two 3-year sequences separated by 18 years. A decrease of pH of 0.0022 yr−1 was computed. About 85 % of the accumulation of dissolved inorganic carbon (DIC) comes from chemical equilibration with increasing atmospheric CO2; the remaining 15 % accumulation is consistent with estimates of transfer of Atlantic waters through the Gibraltar Strait.
Amanda R. Fay, Nicole S. Lovenduski, Galen A. McKinley, David R. Munro, Colm Sweeney, Alison R. Gray, Peter Landschützer, Britton B. Stephens, Taro Takahashi, and Nancy Williams
Biogeosciences, 15, 3841–3855, https://doi.org/10.5194/bg-15-3841-2018, https://doi.org/10.5194/bg-15-3841-2018, 2018
Short summary
Short summary
The Southern Ocean is highly under-sampled and since this region dominates the ocean sink for CO2, understanding change is critical. Here we utilize available observations to evaluate how the seasonal cycle, variability, and trends in surface ocean carbon in the well-sampled Drake Passage region compare to that of the broader subpolar Southern Ocean. Results indicate that the Drake Passage is representative of the broader region; however, additional winter observations would improve comparisons.
Cui-Ci Sun, Martin Sperling, and Anja Engel
Biogeosciences, 15, 3577–3589, https://doi.org/10.5194/bg-15-3577-2018, https://doi.org/10.5194/bg-15-3577-2018, 2018
Short summary
Short summary
Biogenic gel particles such as transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) are important components in the sea-surface microlayer (SML). Their potential role in air–sea gas exchange and in primary organic aerosol emission has generated considerable research interest. Our wind wave channel experiment revealed how wind speed controls the accumulation and size distribution of biogenic gel particles in the SML.
N. Precious Mongwe, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 15, 2851–2872, https://doi.org/10.5194/bg-15-2851-2018, https://doi.org/10.5194/bg-15-2851-2018, 2018
Short summary
Short summary
Here we analyze seasonal cycle of CO2 biases in 10 CMIP5 models in the SO. We find two main model biases; exaggeration of primary production such that biologically driven DIC changes mainly regulates FCO2 variability, and an overestimation of the role of solubility, such that changes in temperature dominantly drive FCO2 seasonal changes to an extent of opposing biological CO2 uptake in spring. CMIP5 models show greater zonal homogeneity in the seasonal cycle of FCO2 than observational products.
Allison R. Moreno, George I. Hagstrom, Francois W. Primeau, Simon A. Levin, and Adam C. Martiny
Biogeosciences, 15, 2761–2779, https://doi.org/10.5194/bg-15-2761-2018, https://doi.org/10.5194/bg-15-2761-2018, 2018
Short summary
Short summary
To bridge the missing links between variable marine elemental stoichiometry, phytoplankton physiology and carbon cycling, we embed four environmentally controlled stoichiometric models into a five-box ocean model. As predicted each model varied in its influence on the biological pump. Surprisingly, we found that variation can lead to nonlinear controls on atmospheric CO2 and carbon export, suggesting the need for further studies of ocean C : P and the impact on ocean carbon cycling.
Luke Gregor, Schalk Kok, and Pedro M. S. Monteiro
Biogeosciences, 15, 2361–2378, https://doi.org/10.5194/bg-15-2361-2018, https://doi.org/10.5194/bg-15-2361-2018, 2018
Short summary
Short summary
The Southern Ocean accounts for a large portion of the variability in oceanic CO2 uptake. However, the drivers of these changes are not understood due to a lack of observations. In this study, we used an ensemble of gap-filling methods to estimate surface CO2. We found that winter was a more important driver of longer-term variability driven by changes in wind stress. Summer variability of CO2 was driven primarily by increases in primary production.
Erik T. Buitenhuis, Parvadha Suntharalingam, and Corinne Le Quéré
Biogeosciences, 15, 2161–2175, https://doi.org/10.5194/bg-15-2161-2018, https://doi.org/10.5194/bg-15-2161-2018, 2018
Short summary
Short summary
Thanks to decreases in CFC concentrations, N2O is now the third-most important greenhouse gas, and the dominant contributor to stratospheric ozone depletion. Here we estimate the ocean–atmosphere N2O flux. We find that an estimate based on observations alone has a large uncertainty. By combining observations and a range of model simulations we find that the uncertainty is much reduced to 2.45 ± 0.8 Tg N yr−1, and better constrained and at the lower end of the estimate in the latest IPCC report.
Sayaka Yasunaka, Eko Siswanto, Are Olsen, Mario Hoppema, Eiji Watanabe, Agneta Fransson, Melissa Chierici, Akihiko Murata, Siv K. Lauvset, Rik Wanninkhof, Taro Takahashi, Naohiro Kosugi, Abdirahman M. Omar, Steven van Heuven, and Jeremy T. Mathis
Biogeosciences, 15, 1643–1661, https://doi.org/10.5194/bg-15-1643-2018, https://doi.org/10.5194/bg-15-1643-2018, 2018
Short summary
Short summary
We estimated monthly air–sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014, after mapping pCO2 in the surface water using a self-organizing map technique. The addition of Chl a as a parameter enabled us to improve the estimate of pCO2 via better representation of its decline in spring. The uncertainty in the CO2 flux estimate was reduced, and a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C y−1 was determined to be significant.
Alizée Roobaert, Goulven G. Laruelle, Peter Landschützer, and Pierre Regnier
Biogeosciences, 15, 1701–1720, https://doi.org/10.5194/bg-15-1701-2018, https://doi.org/10.5194/bg-15-1701-2018, 2018
Chao Zhang, Huiwang Gao, Xiaohong Yao, Zongbo Shi, Jinhui Shi, Yang Yu, Ling Meng, and Xinyu Guo
Biogeosciences, 15, 749–765, https://doi.org/10.5194/bg-15-749-2018, https://doi.org/10.5194/bg-15-749-2018, 2018
Short summary
Short summary
This study compares the response of phytoplankton growth in the northwest Pacific to those in the Yellow Sea. In general, larger positive responses of phytoplankton induced by combined nutrients (in the subtropical gyre of the northwest Pacific) than those induced by a single nutrient (in the Kuroshio Extension and the Yellow Sea) from the dust are observed. We also emphasize the importance of an increase in bioavailable P stock for phytoplankton growth following dust addition.
Goulven G. Laruelle, Peter Landschützer, Nicolas Gruber, Jean-Louis Tison, Bruno Delille, and Pierre Regnier
Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, https://doi.org/10.5194/bg-14-4545-2017, 2017
Melchor González-Dávila, J. Magdalena Santana Casiano, and Francisco Machín
Biogeosciences, 14, 3859–3871, https://doi.org/10.5194/bg-14-3859-2017, https://doi.org/10.5194/bg-14-3859-2017, 2017
Short summary
Short summary
The Mauritanian–Cap Vert upwelling is shown to be sensitive to climate change forcing on upwelling processes, which strongly affects the CO2 surface distribution, ocean acidification rates, and air–sea CO2 exchange. We confirmed an upwelling intensification, an increase in the CO2 outgassing, and an important decrease in the pH of the surface waters. Upwelling areas are poorly studied and VOS lines are shown as one of the most significant contributors to our knowledge of the ocean's response.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Tech. Memo NESDIS NGDC-24. National Geophysical Data Center, NOAA [data set], https://doi.org/10.7289/V5C8276M, 2009.
Amundsen Science Data Collection: CCGS Amundsen Navigation (NAV) data
recorded during the annual science expeditions in the Canadian Arctic., Can.
Cryospheric Inf. Netw. CCIN Waterloo Can., Complete data Version 1, PolarData [data set],
https://doi.org/10.5884/12447, 2021a.
Amundsen Science Data Collection: AVOS Meteorological Data collected by the
CCGS Amundsen in the Canadian Arctic, Can. Cryospheric Inf. Netw. CCIN
Waterloo Can., Processed data, PolarData [data set], https://doi.org/10.5884/12518, 2021b.
Amundsen Science Data Collection: CTD-Rosette data collected by the CCGS
Amundsen in the Canadian Arctic, Can. Cryospheric Inf. Netw. CCIN Waterloo
Can., Processed data Version 1, PolarData [data set], https://doi.org/10.5884/12713, 2021c.
Amundsen Science Data Collection: TSG data collected by the CCGS Amundsen in
the Canadian Arctic, Can. Cryospheric Inf. Netw. CCIN Waterloo Can.,
Processed data Version 3, PolarData [data set], https://doi.org/10.5884/12715, 2021d.
Amundsen Science Data Collection: Amundsen Science field station lists, Can.
Cryospheric Inf. Netw. CCIN Waterloo Can., PolarData [data set], https://doi.org/10.5884/13248, 2021e.
Azetsu-Scott, K., Petrie, B., Yeats, P., and Lee, C.: Composition and fluxes
of freshwater through Davis Strait using multiple chemical tracers, J.
Geophys. Res.-Oceans, 117, C12011, https://doi.org/10.1029/2012JC008172, 2012.
Berchet, A., Pison, I., Crill, P. M., Thornton, B., Bousquet, P., Thonat, T., Hocking, T., Thanwerdas, J., Paris, J.-D., and Saunois, M.: Using ship-borne observations of methane isotopic ratio in the Arctic Ocean to understand methane sources in the Arctic, Atmos. Chem. Phys., 20, 3987–3998, https://doi.org/10.5194/acp-20-3987-2020, 2020.
Boles, J. R., Clark, J. F., Leifer, I., and Washburn, L.: Temporal variation
in natural methane seep rate due to tides, Coal Oil Point area, California,
J. Geophys. Res.-Oceans, 106, 27077–27086,
https://doi.org/10.1029/2000JC000774, 2001.
Bonaglia, S., Rütting, T., Kononets, M., Stigebrandt, A., Santos, I. R.,
and Hall, P. O. J.: High methane emissions from an anoxic fjord driven by
mixing and oxygenation, Limnol. Oceanogr. Lett., 7, 392–400,
https://doi.org/10.1002/lol2.10259, 2022.
Bryden, H. L.: New polynomials for thermal expansion, adiabatic temperature
gradient and potential temperature of sea water, Deep-Sea Res. Oceanogr.
Abstr., 20, 401–408, https://doi.org/10.1016/0011-7471(73)90063-6, 1973.
Budkewitsch, P., Pavlic, G., Oakey, G., Jauer, C., and Decker, V.:
Reconnaissance mapping of suspect oil seep occurrences in Baffin Bay and
Davis Strait using satellite radar: preliminary results, Geol. Surv. Can.,
7068, https://doi.org/10.4095/292280, 2013.
Castro-Morales, K., Canning, A., Arzberger, S., Overholt, W. A., Küsel, K., Kolle, O., Göckede, M., Zimov, N., and Körtzinger, A.: Highest methane concentrations in an Arctic river linked to local terrestrial inputs, Biogeosciences, 19, 5059–5077, https://doi.org/10.5194/bg-19-5059-2022, 2022.
Cramm, M. A., Neves, B. de M., Manning, C. C. M., Oldenburg, T. B. P.,
Archambault, P., Chakraborty, A., Cyr-Parent, A., Edinger, E. N., Jaggi, A.,
Mort, A., Tortell, P., and Hubert, C. R. J.: Characterization of marine
microbial communities around an Arctic seabed hydrocarbon seep at Scott
Inlet, Baffin Bay, Sci. Total Environ., 762, 143961,
https://doi.org/10.1016/j.scitotenv.2020.143961, 2021.
Damm, E., Rudels, B., Schauer, U., Mau, S., and Dieckmann, G.: Methane
excess in Arctic surface water- triggered by sea ice formation and melting,
Sci. Rep., 5, 16179, https://doi.org/10.1038/srep16179, 2015.
Damm, E., Ericson, Y., and Falck, E.: Waterside convection and
stratification control methane spreading in supersaturated Arctic fjords
(Spitsbergen), Cont. Shelf Res., 224, 104473,
https://doi.org/10.1016/j.csr.2021.104473, 2021.
Dlugokencky, E. J.: Atmospheric Methane Dry Air Mole Fractions (1983–2015)
and Atmospheric Carbon Dioxide Dry Air Mole Fractions (1968–2015) from the
NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, original
data files, NOAA Bremerhav. [data set], http://hdl.handle.net/10013/epic.51033.d001,
2016.
Dlugokencky, E. J.: Trends in Atmospheric Methane, NOAA/GML,
https://gml.noaa.gov/ccgg/trends_ch4/ (last access: 25 November 2022), 2022.
Dlugokencky, E. J., Crotwell, A. M., Mund, J. W., Crotwell, M. J., and
Thoning, K. W.: Atmospheric Methane Dry Air Mole Fractions from the NOAA GML
Carbon Cycle Cooperative Global Air Sampling Network, 1983–2020, Version
2021-07-30, NOAA [data set], https://doi.org/10.15138/VNCZ-M766, 2021.
Dølven, K. O., Ferré, B., Silyakova, A., Jansson, P., Linke, P., and Moser, M.: Autonomous methane seep site monitoring offshore western Svalbard: hourly to seasonal variability and associated oceanographic parameters, Ocean Sci., 18, 233–254, https://doi.org/10.5194/os-18-233-2022, 2022.
Fenwick, L., Capelle, D., Damm, E., Zimmermann, S., Williams, W. J., Vagle,
S., and Tortell, P. D.: Methane and nitrous oxide distributions across the
North American Arctic Ocean during summer, 2015, J. Geophys. Res.-Oceans,
122, 390–412, https://doi.org/10.1002/2016JC012493, 2017.
Fisher, R. E., Sriskantharajah, S., Lowry, D., Lanoisellé, M., Fowler,
C. M. R., James, R. H., Hermansen, O., Lund Myhre, C., Stohl, A., Greinert,
J., Nisbet-Jones, P. B. R., Mienert, J., and Nisbet, E. G.: Arctic methane
sources: Isotopic evidence for atmospheric inputs, Geophys. Res. Lett., 38,
https://doi.org/10.1029/2011GL049319, 2011.
Fofonoff, N. P. and Millard Jr, R. C.: Algorithms for the computation of fundamental properties of seawater, Paris, France, UNESCO, 53 pp. (UNESCO Technical Papers in Marine Sciences; 44), https://doi.org/10.25607/OBP-1450, 1983.
Fratantoni, P. S. and Pickart, R. S.: The Western North Atlantic Shelfbreak
Current System in Summer, J. Phys. Oceanogr., 37, 2509–2533,
https://doi.org/10.1175/JPO3123.1, 2007.
Fröb, F., Olsen, A., Våge, K., Moore, G. W. K., Yashayaev, I.,
Jeansson, E., and Rajasakaren, B.: Irminger Sea deep convection injects
oxygen and anthropogenic carbon to the ocean interior, Nat. Commun., 7,
13244, https://doi.org/10.1038/ncomms13244, 2016.
Gautier, D. L., Bird, K. J., Charpentier, R. R., Grantz, A., Houseknecht, D.
W., Klett, T. R., Moore, T. E., Pitman, J. K., Schenk, C. J., Schuenemeyer,
J. H., Sørensen, K., Tennyson, M. E., Valin, Z. C., and Wandrey, C. J.:
Oil and gas resource potential north of the Arctic Circle, Arct. Petr. Geol.,
35, 151, https://doi.org/10.1144/M35.9, 2011.
Gregersen, U. and Bidstrup, T.: Structures and hydrocarbon prospectivity in
the northern Davis Strait area, offshore West Greenland, Petrol. Geosci., 14,
151–166, https://doi.org/10.1144/1354-079308-752, 2008.
Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., and Hill,
P.: Measurements of air-sea gas exchange at high wind speeds in the Southern
Ocean: Implications for global parameterizations, Geophys. Res. Lett., 33, L16611,
https://doi.org/10.1029/2006GL026817, 2006.
Hou, K. and Xu, X.: Evaluation of the Influence between Local Meteorology
and Air Quality in Beijing Using Generalized Additive Models, Atmosphere,
13, 24, https://doi.org/10.3390/atmos13010024, 2022.
Hsu, S. A., Meindl, E. A., and Gilhousen, D. B.: Determining the Power-Law
Wind-Profile Exponent under Near-Neutral Stability Conditions at Sea, J.
Appl. Meteorol. Clim., 33, 757–765,
https://doi.org/10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2, 1994.
Jähne, B., Heinz, G., and Dietrich, W.: Measurement of the diffusion
coefficients of sparingly soluble gases in water, J. Geophys. Res.-Oceans,
92, 10767–10776, https://doi.org/10.1029/JC092iC10p10767, 1987.
James, R. H., Bousquet, P., Bussmann, I., Haeckel, M., Kipfer, R., Leifer,
I., Niemann, H., Ostrovsky, I., Piskozub, J., Rehder, G., Treude, T.,
Vielstädte, L., and Greinert, J.: Effects of climate change on methane
emissions from seafloor sediments in the Arctic Ocean: A review, Limnol.
Oceanogr., 61, S283–S299, https://doi.org/10.1002/lno.10307, 2016.
Jauer, C. D. and Budkewitsch, P.: Old marine seismic and new satellite radar
data: Petroleum exploration of north west Labrador Sea, Canada, Mar. Petrol.
Geol., 27, 1379–1394, https://doi.org/10.1016/j.marpetgeo.2010.03.003,
2010.
Karl, D. M., Beversdorf, L., Björkman, K. M., Church, M. J., Martinez,
A., and Delong, E. F.: Aerobic production of methane in the sea, Nat.
Geosci., 1, 473–478, https://doi.org/10.1038/ngeo234, 2008.
Kvenvolden, K. A.: Methane hydrate – A major reservoir of carbon in the
shallow geosphere?, Chem. Geol., 71, 41–51,
https://doi.org/10.1016/0009-2541(88)90104-0, 1988.
Lan, X., Basu, S., Schwietzke, S., Bruhwiler, L. M. P., Dlugokencky, E. J.,
Michel, S. E., Sherwood, O. A., Tans, P. P., Thoning, K., Etiope, G.,
Zhuang, Q., Liu, L., Oh, Y., Miller, J. B., Pétron, G., Vaughn, B. H.,
and Crippa, M.: Improved Constraints on Global Methane Emissions and Sinks
Using δ13C-CH4, Global Biogeochem. Cy., 35, e2021GB007000,
https://doi.org/10.1029/2021GB007000, 2021.
Law, C. S., Nodder, S. D., Mountjoy, J. J., Marriner, A., Orpin, A.,
Pilditch, C. A., Franz, P., and Thompson, K.: Geological, hydrodynamic and
biogeochemical variability of a New Zealand deep-water methane cold seep
during an integrated three-year time-series study, Mar. Geol., 272,
189–208, https://doi.org/10.1016/j.margeo.2009.06.018, 2010.
Leifer, I. and Boles, J.: Measurement of marine hydrocarbon seep flow
through fractured rock and unconsolidated sediment, Mar. Petrol. Geol., 22,
551–568, https://doi.org/10.1016/j.marpetgeo.2004.10.026, 2005.
Leonte, M., Kessler, J. D., Kellermann, M. Y., Arrington, E. C., Valentine,
D. L., and Sylva, S. P.: Rapid rates of aerobic methane oxidation at the
feather edge of gas hydrate stability in the waters of Hudson Canyon, US
Atlantic Margin, Geochim. Cosmochim. Ac., 204, 375–387,
https://doi.org/10.1016/j.gca.2017.01.009, 2017.
Levy, E. M. and MacIean, B.: Natural Hydrocarbon Seepage At Scott Inlet and
Buchan Gulf, Baffin Island Shelf: 1980 Update, Geol. Surv. Can., 81-1A,
401–403, https://doi.org/10.4095/109550, 1981.
Li, Y., Xie, H., Scarratt, M., Damm, E., Bourgault, D., Galbraith, P. S.,
and Wallace, D. W. R.: Dissolved methane in the water column of the Saguenay
Fjord, Mar. Chem., 230, 103926,
https://doi.org/10.1016/j.marchem.2021.103926, 2021.
Loncarevic, B. D. and Falconer, R. K. H.: An oil slick occurrence off Baffin
Island, Rep. Act. Part Geol. Surv. Can. Pap., 523–524, 77-1A, https://doi.org/10.4095/102743, 1977.
Manning, C. C. M. and Nicholson, D. P.: dnicholson/gas_toolbox: MATLAB code for calculating gas fluxes, Zenodo [code],
https://doi.org/10.5281/zenodo.6126685, 2022.
Manning, C. C. M., Zheng, Z., Fenwick, L., McCulloch, R. D., Damm, E.,
Izett, R. W., Williams, W. J., Zimmermann, S., Vagle, S., and Tortell, P.
D.: Interannual Variability in Methane and Nitrous Oxide Concentrations and
Sea-Air Fluxes Across the North American Arctic Ocean (2015–2019), Global
Biogeochem. Cy., 36, e2021GB007185, https://doi.org/10.1029/2021GB007185,
2022.
Mau, S., Blees, J., Helmke, E., Niemann, H., and Damm, E.: Vertical distribution of methane oxidation and methanotrophic response to elevated methane concentrations in stratified waters of the Arctic fjord Storfjorden (Svalbard, Norway), Biogeosciences, 10, 6267–6278, https://doi.org/10.5194/bg-10-6267-2013, 2013.
Mau, S., Römer, M., Torres, M. E., Bussmann, I., Pape, T., Damm, E.,
Geprägs, P., Wintersteller, P., Hsu, C.-W., Loher, M., and Bohrmann, G.:
Widespread methane seepage along the continental margin off Svalbard – from
Bjørnøya to Kongsfjorden, Sci. Rep., 7, 42997,
https://doi.org/10.1038/srep42997, 2017.
McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E., and Wüest,
A.: Fate of rising methane bubbles in stratified waters: How much methane
reaches the atmosphere?, J. Geophys. Res.-Oceans, 111, C09007,
https://doi.org/10.1029/2005JC003183, 2006.
Melling, H., Gratton, Y., and Ingram, G.: Ocean circulation within the North
Water polynya of Baffin Bay, Atmos. Ocean, 39, 301–325,
https://doi.org/10.1080/07055900.2001.9649683, 2001.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A.,
Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert,
M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Chapter 3:
Polar regions, in: IPCC Special Report on the Ocean and Cryosphere in a
Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York,
USA, 203–320, https://doi.org/10.1017/9781009157964.005, 2019.
Millero, F. J. and Poisson, A.: International one-atmosphere equation of
state of seawater, Deep-Sea Res. Pt. Oceanogr. Res. Pap., 28, 625–629,
https://doi.org/10.1016/0198-0149(81)90122-9, 1981.
Neill, C., Johnson, K. M., Lewis, E., and Wallace, D. W. R.: Accurate
headspace analysis of fCO2 in discrete water samples using batch
equilibration, Limnol. Oceanogr., 42, 1774–1783,
https://doi.org/10.4319/lo.1997.42.8.1774, 1997.
Nielsen, T., Laier, T., Kuijpers, A., Rasmussen, T. L., Mikkelsen, N. E.,
and Nørgård-Pedersen, N.: Fluid flow and methane occurrences in the
Disko Bugt area offshore West Greenland: indications for gas hydrates?,
Geo-Mar. Lett., 34, 511–523, https://doi.org/10.1007/s00367-014-0382-2,
2014.
Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D.,
Michel, S. E., Myhre, C. L., Platt, S. M., Allen, G., Bousquet, P.,
Brownlow, R., Cain, M., France, J. L., Hermansen, O., Hossaini, R., Jones,
A. E., Levin, I., Manning, A. C., Myhre, G., Pyle, J. A., Vaughn, B. H.,
Warwick, N. J., and White, J. W. C.: Very Strong Atmospheric Methane Growth
in the 4 Years 2014–2017: Implications for the Paris Agreement, Global
Biogeochem. Cy., 33, 318–342, https://doi.org/10.1029/2018GB006009,
2019.
NOAA National Geophysical Data Center: ETOPO1 1 Arc-Minute Global Relief Model, NOAA National Centers for Environmental Information, 2009.
Normandeau, A., MacKillop, K., Macquarrie, M., Richards, C., Bourgault, D.,
Campbell, D. C., Maselli, V., Philibert, G., and Clarke, J. H.: Submarine
landslides triggered by iceberg collision with the seafloor, Nat. Geosci.,
14, 599–605, https://doi.org/10.1038/s41561-021-00767-4, 2021.
Paull, C. K., Brewer, P. G., Ussler, W., Peltzer, E. T., Rehder, G., and
Clague, D.: An experiment demonstrating that marine slumping is a mechanism
to transfer methane from seafloor gas-hydrate deposits into the upper ocean
and atmosphere, Geo-Mar. Lett., 22, 198–203,
https://doi.org/10.1007/s00367-002-0113-y, 2002.
Pearce, J. L., Beringer, J., Nicholls, N., Hyndman, R. J., and Tapper, N.
J.: Quantifying the influence of local meteorology on air quality using
generalized additive models, Atmos. Environ., 45, 1328–1336,
https://doi.org/10.1016/j.atmosenv.2010.11.051, 2011.
Platt, S. M., Eckhardt, S., Ferré, B., Fisher, R. E., Hermansen, O., Jansson, P., Lowry, D., Nisbet, E. G., Pisso, I., Schmidbauer, N., Silyakova, A., Stohl, A., Svendby, T. M., Vadakkepuliyambatta, S., Mienert, J., and Lund Myhre, C.: Methane at Svalbard and over the European Arctic Ocean, Atmos. Chem. Phys., 18, 17207–17224, https://doi.org/10.5194/acp-18-17207-2018, 2018.
Punshon, S., Azetsu-Scott, K., and Lee, C. M.: On the distribution of
dissolved methane in Davis Strait, North Atlantic Ocean, Mar. Chem., 161,
20–25, https://doi.org/10.1016/j.marchem.2014.02.004, 2014.
Punshon, S., Azetsu-Scott, K., Sherwood, O., and Edinger, E. N.: Bottom
water methane sources along the high latitude eastern Canadian continental
shelf and their effects on the marine carbonate system, Mar. Chem., 212,
83–95, https://doi.org/10.1016/j.marchem.2019.04.004, 2019.
Reeburgh, W. S.: Oceanic Methane Biogeochemistry, Chem. Rev., 107, 486–513,
https://doi.org/10.1021/cr050362v, 2007.
Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications
and Display sYstem: READY, Environ. Model. Softw., 95, 210–228,
https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Saunois, M., Jackson, R. B., Bousquet, P., Poulter, B., and Canadell, J. G.:
The growing role of methane in anthropogenic climate change, Environ. Res.
Lett., 11, 120207, https://doi.org/10.1088/1748-9326/11/12/120207, 2016.
Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of
Data by Simplified Least Squares Procedures, Anal. Chem., 36, 1627–1639,
https://doi.org/10.1021/ac60214a047, 1964.
Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D., and
Gustafsson, Ö.: Extensive Methane Venting to the Atmosphere from
Sediments of the East Siberian Arctic Shelf, Science, 327, 1246–1250,
https://doi.org/10.1126/science.1182221, 2010.
Shakhova, N., Semiletov, I., Leifer, I., Sergienko, V., Salyuk, A., Kosmach,
D., Chernykh, D., Stubbs, C., Nicolsky, D., Tumskoy, V., and Gustafsson,
Ö.: Ebullition and storm-induced methane release from the East Siberian
Arctic Shelf, Nat. Geosci., 7, 64–70, https://doi.org/10.1038/ngeo2007,
2014.
Sherwood, O. A., Davin, S. H., Lehmann, N., Buchwald, C., Edinger, E. N., Lehmann, M. F., and Kienast, M.: Stable isotope ratios in seawater nitrate reflect the influence of Pacific water along the northwest Atlantic margin, Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021, 2021.
Silyakova, A., Jansson, P., Serov, P., Ferré, B., Pavlov, A. K.,
Hattermann, T., Graves, C. A., Platt, S. M., Myhre, C. L., Gründger, F.,
and Niemann, H.: Physical controls of dynamics of methane venting from a
shallow seep area west of Svalbard, Cont. Shelf Res., 194, 104030,
https://doi.org/10.1016/j.csr.2019.104030, 2020.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling
System, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Stramma, L., Kieke, D., Rhein, M., Schott, F., Yashayaev, I., and
Koltermann, K. P.: Deep water changes at the western boundary of the
subpolar North Atlantic during 1996 to 2001, Deep-Sea Res. Pt. Oceanogr.
Res. Pap., 51, 1033–1056, https://doi.org/10.1016/j.dsr.2004.04.001, 2004.
Tang, C. C. L., Ross, C. K., Yao, T., Petrie, B., DeTracey, B. M., and
Dunlap, E.: The circulation, water masses and sea-ice of Baffin Bay, Prog.
Oceanogr., 63, 183–228, https://doi.org/10.1016/j.pocean.2004.09.005, 2004.
Thonat, T., Saunois, M., Bousquet, P., Pison, I., Tan, Z., Zhuang, Q., Crill, P. M., Thornton, B. F., Bastviken, D., Dlugokencky, E. J., Zimov, N., Laurila, T., Hatakka, J., Hermansen, O., and Worthy, D. E. J.: Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements, Atmos. Chem. Phys., 17, 8371–8394, https://doi.org/10.5194/acp-17-8371-2017, 2017.
Thornton, B. F., Geibel, M. C., Crill, P. M., Humborg, C., and Mörth,
C.-M.: Methane fluxes from the sea to the atmosphere across the Siberian
shelf seas, Geophys. Res. Lett., 43, 5869–5877,
https://doi.org/10.1002/2016GL068977, 2016.
Thornton, B. F., Prytherch, J., Andersson, K., Brooks, I. M., Salisbury, D.,
Tjernström, M., and Crill, P. M.: Shipborne eddy covariance observations
of methane fluxes constrain Arctic sea emissions, Sci. Adv., 6, eaay7934,
https://doi.org/10.1126/sciadv.aay7934, 2020.
Vogt, J., Risk, D., Azetsu-Scott, K.,
Edinger, E. N., and Sherwood, O. A.: Methane flux estimates from continuous
atmospheric measurements and surface-water observations in the northern
Labrador Sea and Baffin Bay, V6, Borealis
[data set], https://doi.org/10.5683/SP3/6IUECA, 2022.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362,
https://doi.org/10.4319/lom.2014.12.351, 2014.
Wiesenburg, D. A. and Guinasso Jr., N. L.: Equilibrium Solubilities of
Methane, Carbon Monoxide, and Hydrogen in Water and Sea Water, J. Chem. Eng.
Data, 24, 356–360, https://doi.org/10.1021/je60083a006, 1979.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal
likelihood estimation of semiparametric generalized linear models, J. R.
Stat. Soc., 73, 3–36, 2011.
Wu, Y. S., Hannah, C. G., Petrie, B., Pettipas, R., Peterson, I.,
Prinsenberg, S., Lee, C., and Moritz, R.: Ocean current and sea ice
statistics for Davis Strait, Fisheries and Oceans Canada, https://publications.gc.ca/site/eng/9.620515/publication.html (last access: 9 May 2023), 2013.
Zhao, Y., Booge, D., Marandino, C. A., Schlundt, C., Bracher, A., Atlas, E. L., Williams, J., and Bange, H. W.: Dimethylated sulfur compounds in the Peruvian upwelling system, Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, 2022.
Short summary
The release of the greenhouse gas methane from Arctic submarine sources could exacerbate climate change in a positive feedback. Continuous monitoring of atmospheric methane levels over a 5100 km voyage in the western margin of the Labrador Sea and Baffin Bay revealed above-global averages likely affected by both onshore and offshore methane sources. Instantaneous sea–air methane fluxes were near zero at all measured stations, including a persistent cold-seep location.
The release of the greenhouse gas methane from Arctic submarine sources could exacerbate climate...
Altmetrics
Final-revised paper
Preprint