Articles | Volume 20, issue 9
https://doi.org/10.5194/bg-20-1773-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1773-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sea–air methane flux estimates derived from marine surface observations and instantaneous atmospheric measurements in the northern Labrador Sea and Baffin Bay
Department of Earth Sciences, St. Francis Xavier University,
Antigonish, B2G 2W5, Canada
Environmental Science Program, Memorial University of Newfoundland,
St. John's, A1B 3X7, Canada
David Risk
Department of Earth Sciences, St. Francis Xavier University,
Antigonish, B2G 2W5, Canada
Evelise Bourlon
Department of Earth Sciences, St. Francis Xavier University,
Antigonish, B2G 2W5, Canada
Kumiko Azetsu-Scott
Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth,
B2Y 4A2, Canada
Evan N. Edinger
Department of Geography, Memorial University of Newfoundland, St.
John's, A1B 3X9, Canada
Owen A. Sherwood
Department of Earth and Environmental Sciences, Dalhousie University,
Halifax, B3H 4R2, Canada
Related authors
Judith Vogt, Martijn M. T. A. Pallandt, Luana S. Basso, Abdullah Bolek, Kseniia Ivanova, Mark Schlutow, Gerardo Celis, McKenzie Kuhn, Marguerite Mauritz, Edward A. G. Schuur, Kyle Arndt, Anna-Maria Virkkala, Isabel Wargowsky, and Mathias Göckede
Earth Syst. Sci. Data, 17, 2553–2573, https://doi.org/10.5194/essd-17-2553-2025, https://doi.org/10.5194/essd-17-2553-2025, 2025
Short summary
Short summary
We present a meta-dataset of greenhouse gas observations in the Arctic and boreal regions, including information on sites where greenhouse gases have been measured using different measurement techniques. We provide a novel repository of metadata to facilitate synthesis efforts for regions undergoing rapid environmental change. The meta-dataset shows where measurements are missing and will be updated as new measurements are published.
Lisa G. T. Leist, Maxi Castrillejo, Kumiko Azetsu-Scott, Craig Lee, Jed Lenetsky, Marc Ringuette, Christof Vockenhuber, Habacuc Pérez-Tribouilier, and Núria Casacuberta
EGUsphere, https://doi.org/10.5194/egusphere-2025-4178, https://doi.org/10.5194/egusphere-2025-4178, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The Arctic and Atlantic Oceans are connected by narrow passages, and the exchange of waters affect global climate. Using artificial radionuclides from nuclear reprocessing discharges, we traced the origin of water masses from the Arctic to the Labrador Sea. Results show that waters from Canadian Arctic origin entering via Lancaster Sound are a key freshwater source to the Labrador Sea. These flows strongly influence the formation of deep waters in the Atlantic, vital for the global circulation.
Arnaud Laurent, Bin Wang, Dariia Atamanchuk, Subhadeep Rakshit, Kumiko Azetsu-Scott, Chris Algar, and Katja Fennel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3361, https://doi.org/10.5194/egusphere-2025-3361, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Surface ocean alkalinity enhancement, through the release of alkaline materials, is a technology that could increase the storage of anthropogenic carbon in the ocean. Halifax Harbour (Canada) is a current test site for operational alkalinity addition. Here, we present a model of Halifax Harbour that simulates alkalinity addition at various locations of the harbour and quantifies the resulting net CO2 uptake. The model can be relocated to study alkalinity addition in other coastal systems.
Judith Vogt, Martijn M. T. A. Pallandt, Luana S. Basso, Abdullah Bolek, Kseniia Ivanova, Mark Schlutow, Gerardo Celis, McKenzie Kuhn, Marguerite Mauritz, Edward A. G. Schuur, Kyle Arndt, Anna-Maria Virkkala, Isabel Wargowsky, and Mathias Göckede
Earth Syst. Sci. Data, 17, 2553–2573, https://doi.org/10.5194/essd-17-2553-2025, https://doi.org/10.5194/essd-17-2553-2025, 2025
Short summary
Short summary
We present a meta-dataset of greenhouse gas observations in the Arctic and boreal regions, including information on sites where greenhouse gases have been measured using different measurement techniques. We provide a novel repository of metadata to facilitate synthesis efforts for regions undergoing rapid environmental change. The meta-dataset shows where measurements are missing and will be updated as new measurements are published.
Shao-Min Chen, Thibaud Dezutter, David Cote, Catherine Lalande, Evan Edinger, and Owen A. Sherwood
Biogeosciences, 22, 2517–2540, https://doi.org/10.5194/bg-22-2517-2025, https://doi.org/10.5194/bg-22-2517-2025, 2025
Short summary
Short summary
The origins and composition of sinking organic matter are still understudied for the oceans, especially in ice-covered areas. We use amino acid stable isotopes combined with particle flux and plankton taxonomy to investigate the sources and composition of exported organic matter from a sediment-trap-derived time series of sinking particles in the northwestern Labrador Sea. We found that sea-ice algae and fecal pellets may be important contributors to the sinking fluxes of carbon and nitrogen.
Afshan Khaleghi, Mathias Göckede, Nicholas Nickerson, and David Risk
EGUsphere, https://doi.org/10.5194/egusphere-2025-644, https://doi.org/10.5194/egusphere-2025-644, 2025
Short summary
Short summary
Methane is a key greenhouse gas, and identifying its sources is crucial for reducing emissions. This study enhances methane detection at oil and gas sites by combining sensor data with advanced modeling tools. Tests in real-world and simulated conditions showed high accuracy, particularly in favorable atmospheric conditions. These findings improve methane monitoring and support better emission detection in Continuous Emission Monitoring systems.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Hannah Sharpe, Michel Gosselin, Catherine Lalande, Alexandre Normandeau, Jean-Carlos Montero-Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, and Audrey Limoges
Biogeosciences, 20, 4981–5001, https://doi.org/10.5194/bg-20-4981-2023, https://doi.org/10.5194/bg-20-4981-2023, 2023
Short summary
Short summary
We studied the impact of submarine canyon processes within the Pointe-des-Monts system on biogenic matter export and phytoplankton assemblages. Using data from three oceanographic moorings, we show that the canyon experienced two low-amplitude sediment remobilization events in 2020–2021 that led to enhanced particle fluxes in the deep-water column layer > 2.6 km offshore. Sinking phytoplankton fluxes were lower near the canyon compared to background values from the lower St. Lawrence Estuary.
Daniel Wesley, Scott Dallimore, Roger MacLeod, Torsten Sachs, and David Risk
The Cryosphere, 17, 5283–5297, https://doi.org/10.5194/tc-17-5283-2023, https://doi.org/10.5194/tc-17-5283-2023, 2023
Short summary
Short summary
The Mackenzie River delta (MRD) is an ecosystem with high rates of methane production from biologic and geologic sources, but little research has been done to determine how often geologic or biogenic methane is emitted to the atmosphere. Stable carbon isotope analysis was used to identify the source of CH4 at several sites. Stable carbon isotope (δ13C-CH4) signatures ranged from −42 to −88 ‰ δ13C-CH4, indicating that CH4 emission in the MRD is caused by biologic and geologic sources.
Olivia Gibb, Frédéric Cyr, Kumiko Azetsu-Scott, Joël Chassé, Darlene Childs, Carrie-Ellen Gabriel, Peter S. Galbraith, Gary Maillet, Pierre Pepin, Stephen Punshon, and Michel Starr
Earth Syst. Sci. Data, 15, 4127–4162, https://doi.org/10.5194/essd-15-4127-2023, https://doi.org/10.5194/essd-15-4127-2023, 2023
Short summary
Short summary
The ocean absorbs large quantities of carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels. This, in turn, causes ocean acidification, which poses a major threat to global ocean ecosystems. In this study, we compiled 9 years (2014–2022) of ocean carbonate data (i.e., ocean acidification parameters) collected in Atlantic Canada as part of the Atlantic Zone Monitoring Program.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Owen A. Sherwood, Samuel H. Davin, Nadine Lehmann, Carolyn Buchwald, Evan N. Edinger, Moritz F. Lehmann, and Markus Kienast
Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021, https://doi.org/10.5194/bg-18-4491-2021, 2021
Short summary
Short summary
Pacific water flowing eastward through the Canadian Arctic plays an important role in redistributing nutrients to the northwest Atlantic Ocean. Using samples collected from northern Baffin Bay to the southern Labrador Shelf, we show that stable isotopic ratios in seawater nitrate reflect the fraction of Pacific to Atlantic water. These results provide a new framework for interpreting patterns of nitrogen isotopic variability recorded in modern and archival organic materials in the region.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Tech. Memo NESDIS NGDC-24. National Geophysical Data Center, NOAA [data set], https://doi.org/10.7289/V5C8276M, 2009.
Amundsen Science Data Collection: CCGS Amundsen Navigation (NAV) data
recorded during the annual science expeditions in the Canadian Arctic., Can.
Cryospheric Inf. Netw. CCIN Waterloo Can., Complete data Version 1, PolarData [data set],
https://doi.org/10.5884/12447, 2021a.
Amundsen Science Data Collection: AVOS Meteorological Data collected by the
CCGS Amundsen in the Canadian Arctic, Can. Cryospheric Inf. Netw. CCIN
Waterloo Can., Processed data, PolarData [data set], https://doi.org/10.5884/12518, 2021b.
Amundsen Science Data Collection: CTD-Rosette data collected by the CCGS
Amundsen in the Canadian Arctic, Can. Cryospheric Inf. Netw. CCIN Waterloo
Can., Processed data Version 1, PolarData [data set], https://doi.org/10.5884/12713, 2021c.
Amundsen Science Data Collection: TSG data collected by the CCGS Amundsen in
the Canadian Arctic, Can. Cryospheric Inf. Netw. CCIN Waterloo Can.,
Processed data Version 3, PolarData [data set], https://doi.org/10.5884/12715, 2021d.
Amundsen Science Data Collection: Amundsen Science field station lists, Can.
Cryospheric Inf. Netw. CCIN Waterloo Can., PolarData [data set], https://doi.org/10.5884/13248, 2021e.
Azetsu-Scott, K., Petrie, B., Yeats, P., and Lee, C.: Composition and fluxes
of freshwater through Davis Strait using multiple chemical tracers, J.
Geophys. Res.-Oceans, 117, C12011, https://doi.org/10.1029/2012JC008172, 2012.
Berchet, A., Pison, I., Crill, P. M., Thornton, B., Bousquet, P., Thonat, T., Hocking, T., Thanwerdas, J., Paris, J.-D., and Saunois, M.: Using ship-borne observations of methane isotopic ratio in the Arctic Ocean to understand methane sources in the Arctic, Atmos. Chem. Phys., 20, 3987–3998, https://doi.org/10.5194/acp-20-3987-2020, 2020.
Boles, J. R., Clark, J. F., Leifer, I., and Washburn, L.: Temporal variation
in natural methane seep rate due to tides, Coal Oil Point area, California,
J. Geophys. Res.-Oceans, 106, 27077–27086,
https://doi.org/10.1029/2000JC000774, 2001.
Bonaglia, S., Rütting, T., Kononets, M., Stigebrandt, A., Santos, I. R.,
and Hall, P. O. J.: High methane emissions from an anoxic fjord driven by
mixing and oxygenation, Limnol. Oceanogr. Lett., 7, 392–400,
https://doi.org/10.1002/lol2.10259, 2022.
Bryden, H. L.: New polynomials for thermal expansion, adiabatic temperature
gradient and potential temperature of sea water, Deep-Sea Res. Oceanogr.
Abstr., 20, 401–408, https://doi.org/10.1016/0011-7471(73)90063-6, 1973.
Budkewitsch, P., Pavlic, G., Oakey, G., Jauer, C., and Decker, V.:
Reconnaissance mapping of suspect oil seep occurrences in Baffin Bay and
Davis Strait using satellite radar: preliminary results, Geol. Surv. Can.,
7068, https://doi.org/10.4095/292280, 2013.
Castro-Morales, K., Canning, A., Arzberger, S., Overholt, W. A., Küsel, K., Kolle, O., Göckede, M., Zimov, N., and Körtzinger, A.: Highest methane concentrations in an Arctic river linked to local terrestrial inputs, Biogeosciences, 19, 5059–5077, https://doi.org/10.5194/bg-19-5059-2022, 2022.
Cramm, M. A., Neves, B. de M., Manning, C. C. M., Oldenburg, T. B. P.,
Archambault, P., Chakraborty, A., Cyr-Parent, A., Edinger, E. N., Jaggi, A.,
Mort, A., Tortell, P., and Hubert, C. R. J.: Characterization of marine
microbial communities around an Arctic seabed hydrocarbon seep at Scott
Inlet, Baffin Bay, Sci. Total Environ., 762, 143961,
https://doi.org/10.1016/j.scitotenv.2020.143961, 2021.
Damm, E., Rudels, B., Schauer, U., Mau, S., and Dieckmann, G.: Methane
excess in Arctic surface water- triggered by sea ice formation and melting,
Sci. Rep., 5, 16179, https://doi.org/10.1038/srep16179, 2015.
Damm, E., Ericson, Y., and Falck, E.: Waterside convection and
stratification control methane spreading in supersaturated Arctic fjords
(Spitsbergen), Cont. Shelf Res., 224, 104473,
https://doi.org/10.1016/j.csr.2021.104473, 2021.
Dlugokencky, E. J.: Atmospheric Methane Dry Air Mole Fractions (1983–2015)
and Atmospheric Carbon Dioxide Dry Air Mole Fractions (1968–2015) from the
NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, original
data files, NOAA Bremerhav. [data set], http://hdl.handle.net/10013/epic.51033.d001,
2016.
Dlugokencky, E. J.: Trends in Atmospheric Methane, NOAA/GML,
https://gml.noaa.gov/ccgg/trends_ch4/ (last access: 25 November 2022), 2022.
Dlugokencky, E. J., Crotwell, A. M., Mund, J. W., Crotwell, M. J., and
Thoning, K. W.: Atmospheric Methane Dry Air Mole Fractions from the NOAA GML
Carbon Cycle Cooperative Global Air Sampling Network, 1983–2020, Version
2021-07-30, NOAA [data set], https://doi.org/10.15138/VNCZ-M766, 2021.
Dølven, K. O., Ferré, B., Silyakova, A., Jansson, P., Linke, P., and Moser, M.: Autonomous methane seep site monitoring offshore western Svalbard: hourly to seasonal variability and associated oceanographic parameters, Ocean Sci., 18, 233–254, https://doi.org/10.5194/os-18-233-2022, 2022.
Fenwick, L., Capelle, D., Damm, E., Zimmermann, S., Williams, W. J., Vagle,
S., and Tortell, P. D.: Methane and nitrous oxide distributions across the
North American Arctic Ocean during summer, 2015, J. Geophys. Res.-Oceans,
122, 390–412, https://doi.org/10.1002/2016JC012493, 2017.
Fisher, R. E., Sriskantharajah, S., Lowry, D., Lanoisellé, M., Fowler,
C. M. R., James, R. H., Hermansen, O., Lund Myhre, C., Stohl, A., Greinert,
J., Nisbet-Jones, P. B. R., Mienert, J., and Nisbet, E. G.: Arctic methane
sources: Isotopic evidence for atmospheric inputs, Geophys. Res. Lett., 38,
https://doi.org/10.1029/2011GL049319, 2011.
Fofonoff, N. P. and Millard Jr, R. C.: Algorithms for the computation of fundamental properties of seawater, Paris, France, UNESCO, 53 pp. (UNESCO Technical Papers in Marine Sciences; 44), https://doi.org/10.25607/OBP-1450, 1983.
Fratantoni, P. S. and Pickart, R. S.: The Western North Atlantic Shelfbreak
Current System in Summer, J. Phys. Oceanogr., 37, 2509–2533,
https://doi.org/10.1175/JPO3123.1, 2007.
Fröb, F., Olsen, A., Våge, K., Moore, G. W. K., Yashayaev, I.,
Jeansson, E., and Rajasakaren, B.: Irminger Sea deep convection injects
oxygen and anthropogenic carbon to the ocean interior, Nat. Commun., 7,
13244, https://doi.org/10.1038/ncomms13244, 2016.
Gautier, D. L., Bird, K. J., Charpentier, R. R., Grantz, A., Houseknecht, D.
W., Klett, T. R., Moore, T. E., Pitman, J. K., Schenk, C. J., Schuenemeyer,
J. H., Sørensen, K., Tennyson, M. E., Valin, Z. C., and Wandrey, C. J.:
Oil and gas resource potential north of the Arctic Circle, Arct. Petr. Geol.,
35, 151, https://doi.org/10.1144/M35.9, 2011.
Gregersen, U. and Bidstrup, T.: Structures and hydrocarbon prospectivity in
the northern Davis Strait area, offshore West Greenland, Petrol. Geosci., 14,
151–166, https://doi.org/10.1144/1354-079308-752, 2008.
Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., and Hill,
P.: Measurements of air-sea gas exchange at high wind speeds in the Southern
Ocean: Implications for global parameterizations, Geophys. Res. Lett., 33, L16611,
https://doi.org/10.1029/2006GL026817, 2006.
Hou, K. and Xu, X.: Evaluation of the Influence between Local Meteorology
and Air Quality in Beijing Using Generalized Additive Models, Atmosphere,
13, 24, https://doi.org/10.3390/atmos13010024, 2022.
Hsu, S. A., Meindl, E. A., and Gilhousen, D. B.: Determining the Power-Law
Wind-Profile Exponent under Near-Neutral Stability Conditions at Sea, J.
Appl. Meteorol. Clim., 33, 757–765,
https://doi.org/10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2, 1994.
Jähne, B., Heinz, G., and Dietrich, W.: Measurement of the diffusion
coefficients of sparingly soluble gases in water, J. Geophys. Res.-Oceans,
92, 10767–10776, https://doi.org/10.1029/JC092iC10p10767, 1987.
James, R. H., Bousquet, P., Bussmann, I., Haeckel, M., Kipfer, R., Leifer,
I., Niemann, H., Ostrovsky, I., Piskozub, J., Rehder, G., Treude, T.,
Vielstädte, L., and Greinert, J.: Effects of climate change on methane
emissions from seafloor sediments in the Arctic Ocean: A review, Limnol.
Oceanogr., 61, S283–S299, https://doi.org/10.1002/lno.10307, 2016.
Jauer, C. D. and Budkewitsch, P.: Old marine seismic and new satellite radar
data: Petroleum exploration of north west Labrador Sea, Canada, Mar. Petrol.
Geol., 27, 1379–1394, https://doi.org/10.1016/j.marpetgeo.2010.03.003,
2010.
Karl, D. M., Beversdorf, L., Björkman, K. M., Church, M. J., Martinez,
A., and Delong, E. F.: Aerobic production of methane in the sea, Nat.
Geosci., 1, 473–478, https://doi.org/10.1038/ngeo234, 2008.
Kvenvolden, K. A.: Methane hydrate – A major reservoir of carbon in the
shallow geosphere?, Chem. Geol., 71, 41–51,
https://doi.org/10.1016/0009-2541(88)90104-0, 1988.
Lan, X., Basu, S., Schwietzke, S., Bruhwiler, L. M. P., Dlugokencky, E. J.,
Michel, S. E., Sherwood, O. A., Tans, P. P., Thoning, K., Etiope, G.,
Zhuang, Q., Liu, L., Oh, Y., Miller, J. B., Pétron, G., Vaughn, B. H.,
and Crippa, M.: Improved Constraints on Global Methane Emissions and Sinks
Using δ13C-CH4, Global Biogeochem. Cy., 35, e2021GB007000,
https://doi.org/10.1029/2021GB007000, 2021.
Law, C. S., Nodder, S. D., Mountjoy, J. J., Marriner, A., Orpin, A.,
Pilditch, C. A., Franz, P., and Thompson, K.: Geological, hydrodynamic and
biogeochemical variability of a New Zealand deep-water methane cold seep
during an integrated three-year time-series study, Mar. Geol., 272,
189–208, https://doi.org/10.1016/j.margeo.2009.06.018, 2010.
Leifer, I. and Boles, J.: Measurement of marine hydrocarbon seep flow
through fractured rock and unconsolidated sediment, Mar. Petrol. Geol., 22,
551–568, https://doi.org/10.1016/j.marpetgeo.2004.10.026, 2005.
Leonte, M., Kessler, J. D., Kellermann, M. Y., Arrington, E. C., Valentine,
D. L., and Sylva, S. P.: Rapid rates of aerobic methane oxidation at the
feather edge of gas hydrate stability in the waters of Hudson Canyon, US
Atlantic Margin, Geochim. Cosmochim. Ac., 204, 375–387,
https://doi.org/10.1016/j.gca.2017.01.009, 2017.
Levy, E. M. and MacIean, B.: Natural Hydrocarbon Seepage At Scott Inlet and
Buchan Gulf, Baffin Island Shelf: 1980 Update, Geol. Surv. Can., 81-1A,
401–403, https://doi.org/10.4095/109550, 1981.
Li, Y., Xie, H., Scarratt, M., Damm, E., Bourgault, D., Galbraith, P. S.,
and Wallace, D. W. R.: Dissolved methane in the water column of the Saguenay
Fjord, Mar. Chem., 230, 103926,
https://doi.org/10.1016/j.marchem.2021.103926, 2021.
Loncarevic, B. D. and Falconer, R. K. H.: An oil slick occurrence off Baffin
Island, Rep. Act. Part Geol. Surv. Can. Pap., 523–524, 77-1A, https://doi.org/10.4095/102743, 1977.
Manning, C. C. M. and Nicholson, D. P.: dnicholson/gas_toolbox: MATLAB code for calculating gas fluxes, Zenodo [code],
https://doi.org/10.5281/zenodo.6126685, 2022.
Manning, C. C. M., Zheng, Z., Fenwick, L., McCulloch, R. D., Damm, E.,
Izett, R. W., Williams, W. J., Zimmermann, S., Vagle, S., and Tortell, P.
D.: Interannual Variability in Methane and Nitrous Oxide Concentrations and
Sea-Air Fluxes Across the North American Arctic Ocean (2015–2019), Global
Biogeochem. Cy., 36, e2021GB007185, https://doi.org/10.1029/2021GB007185,
2022.
Mau, S., Blees, J., Helmke, E., Niemann, H., and Damm, E.: Vertical distribution of methane oxidation and methanotrophic response to elevated methane concentrations in stratified waters of the Arctic fjord Storfjorden (Svalbard, Norway), Biogeosciences, 10, 6267–6278, https://doi.org/10.5194/bg-10-6267-2013, 2013.
Mau, S., Römer, M., Torres, M. E., Bussmann, I., Pape, T., Damm, E.,
Geprägs, P., Wintersteller, P., Hsu, C.-W., Loher, M., and Bohrmann, G.:
Widespread methane seepage along the continental margin off Svalbard – from
Bjørnøya to Kongsfjorden, Sci. Rep., 7, 42997,
https://doi.org/10.1038/srep42997, 2017.
McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E., and Wüest,
A.: Fate of rising methane bubbles in stratified waters: How much methane
reaches the atmosphere?, J. Geophys. Res.-Oceans, 111, C09007,
https://doi.org/10.1029/2005JC003183, 2006.
Melling, H., Gratton, Y., and Ingram, G.: Ocean circulation within the North
Water polynya of Baffin Bay, Atmos. Ocean, 39, 301–325,
https://doi.org/10.1080/07055900.2001.9649683, 2001.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A.,
Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert,
M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Chapter 3:
Polar regions, in: IPCC Special Report on the Ocean and Cryosphere in a
Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York,
USA, 203–320, https://doi.org/10.1017/9781009157964.005, 2019.
Millero, F. J. and Poisson, A.: International one-atmosphere equation of
state of seawater, Deep-Sea Res. Pt. Oceanogr. Res. Pap., 28, 625–629,
https://doi.org/10.1016/0198-0149(81)90122-9, 1981.
Neill, C., Johnson, K. M., Lewis, E., and Wallace, D. W. R.: Accurate
headspace analysis of fCO2 in discrete water samples using batch
equilibration, Limnol. Oceanogr., 42, 1774–1783,
https://doi.org/10.4319/lo.1997.42.8.1774, 1997.
Nielsen, T., Laier, T., Kuijpers, A., Rasmussen, T. L., Mikkelsen, N. E.,
and Nørgård-Pedersen, N.: Fluid flow and methane occurrences in the
Disko Bugt area offshore West Greenland: indications for gas hydrates?,
Geo-Mar. Lett., 34, 511–523, https://doi.org/10.1007/s00367-014-0382-2,
2014.
Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D.,
Michel, S. E., Myhre, C. L., Platt, S. M., Allen, G., Bousquet, P.,
Brownlow, R., Cain, M., France, J. L., Hermansen, O., Hossaini, R., Jones,
A. E., Levin, I., Manning, A. C., Myhre, G., Pyle, J. A., Vaughn, B. H.,
Warwick, N. J., and White, J. W. C.: Very Strong Atmospheric Methane Growth
in the 4 Years 2014–2017: Implications for the Paris Agreement, Global
Biogeochem. Cy., 33, 318–342, https://doi.org/10.1029/2018GB006009,
2019.
NOAA National Geophysical Data Center: ETOPO1 1 Arc-Minute Global Relief Model, NOAA National Centers for Environmental Information, 2009.
Normandeau, A., MacKillop, K., Macquarrie, M., Richards, C., Bourgault, D.,
Campbell, D. C., Maselli, V., Philibert, G., and Clarke, J. H.: Submarine
landslides triggered by iceberg collision with the seafloor, Nat. Geosci.,
14, 599–605, https://doi.org/10.1038/s41561-021-00767-4, 2021.
Paull, C. K., Brewer, P. G., Ussler, W., Peltzer, E. T., Rehder, G., and
Clague, D.: An experiment demonstrating that marine slumping is a mechanism
to transfer methane from seafloor gas-hydrate deposits into the upper ocean
and atmosphere, Geo-Mar. Lett., 22, 198–203,
https://doi.org/10.1007/s00367-002-0113-y, 2002.
Pearce, J. L., Beringer, J., Nicholls, N., Hyndman, R. J., and Tapper, N.
J.: Quantifying the influence of local meteorology on air quality using
generalized additive models, Atmos. Environ., 45, 1328–1336,
https://doi.org/10.1016/j.atmosenv.2010.11.051, 2011.
Platt, S. M., Eckhardt, S., Ferré, B., Fisher, R. E., Hermansen, O., Jansson, P., Lowry, D., Nisbet, E. G., Pisso, I., Schmidbauer, N., Silyakova, A., Stohl, A., Svendby, T. M., Vadakkepuliyambatta, S., Mienert, J., and Lund Myhre, C.: Methane at Svalbard and over the European Arctic Ocean, Atmos. Chem. Phys., 18, 17207–17224, https://doi.org/10.5194/acp-18-17207-2018, 2018.
Punshon, S., Azetsu-Scott, K., and Lee, C. M.: On the distribution of
dissolved methane in Davis Strait, North Atlantic Ocean, Mar. Chem., 161,
20–25, https://doi.org/10.1016/j.marchem.2014.02.004, 2014.
Punshon, S., Azetsu-Scott, K., Sherwood, O., and Edinger, E. N.: Bottom
water methane sources along the high latitude eastern Canadian continental
shelf and their effects on the marine carbonate system, Mar. Chem., 212,
83–95, https://doi.org/10.1016/j.marchem.2019.04.004, 2019.
Reeburgh, W. S.: Oceanic Methane Biogeochemistry, Chem. Rev., 107, 486–513,
https://doi.org/10.1021/cr050362v, 2007.
Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications
and Display sYstem: READY, Environ. Model. Softw., 95, 210–228,
https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Saunois, M., Jackson, R. B., Bousquet, P., Poulter, B., and Canadell, J. G.:
The growing role of methane in anthropogenic climate change, Environ. Res.
Lett., 11, 120207, https://doi.org/10.1088/1748-9326/11/12/120207, 2016.
Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of
Data by Simplified Least Squares Procedures, Anal. Chem., 36, 1627–1639,
https://doi.org/10.1021/ac60214a047, 1964.
Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D., and
Gustafsson, Ö.: Extensive Methane Venting to the Atmosphere from
Sediments of the East Siberian Arctic Shelf, Science, 327, 1246–1250,
https://doi.org/10.1126/science.1182221, 2010.
Shakhova, N., Semiletov, I., Leifer, I., Sergienko, V., Salyuk, A., Kosmach,
D., Chernykh, D., Stubbs, C., Nicolsky, D., Tumskoy, V., and Gustafsson,
Ö.: Ebullition and storm-induced methane release from the East Siberian
Arctic Shelf, Nat. Geosci., 7, 64–70, https://doi.org/10.1038/ngeo2007,
2014.
Sherwood, O. A., Davin, S. H., Lehmann, N., Buchwald, C., Edinger, E. N., Lehmann, M. F., and Kienast, M.: Stable isotope ratios in seawater nitrate reflect the influence of Pacific water along the northwest Atlantic margin, Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021, 2021.
Silyakova, A., Jansson, P., Serov, P., Ferré, B., Pavlov, A. K.,
Hattermann, T., Graves, C. A., Platt, S. M., Myhre, C. L., Gründger, F.,
and Niemann, H.: Physical controls of dynamics of methane venting from a
shallow seep area west of Svalbard, Cont. Shelf Res., 194, 104030,
https://doi.org/10.1016/j.csr.2019.104030, 2020.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling
System, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Stramma, L., Kieke, D., Rhein, M., Schott, F., Yashayaev, I., and
Koltermann, K. P.: Deep water changes at the western boundary of the
subpolar North Atlantic during 1996 to 2001, Deep-Sea Res. Pt. Oceanogr.
Res. Pap., 51, 1033–1056, https://doi.org/10.1016/j.dsr.2004.04.001, 2004.
Tang, C. C. L., Ross, C. K., Yao, T., Petrie, B., DeTracey, B. M., and
Dunlap, E.: The circulation, water masses and sea-ice of Baffin Bay, Prog.
Oceanogr., 63, 183–228, https://doi.org/10.1016/j.pocean.2004.09.005, 2004.
Thonat, T., Saunois, M., Bousquet, P., Pison, I., Tan, Z., Zhuang, Q., Crill, P. M., Thornton, B. F., Bastviken, D., Dlugokencky, E. J., Zimov, N., Laurila, T., Hatakka, J., Hermansen, O., and Worthy, D. E. J.: Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements, Atmos. Chem. Phys., 17, 8371–8394, https://doi.org/10.5194/acp-17-8371-2017, 2017.
Thornton, B. F., Geibel, M. C., Crill, P. M., Humborg, C., and Mörth,
C.-M.: Methane fluxes from the sea to the atmosphere across the Siberian
shelf seas, Geophys. Res. Lett., 43, 5869–5877,
https://doi.org/10.1002/2016GL068977, 2016.
Thornton, B. F., Prytherch, J., Andersson, K., Brooks, I. M., Salisbury, D.,
Tjernström, M., and Crill, P. M.: Shipborne eddy covariance observations
of methane fluxes constrain Arctic sea emissions, Sci. Adv., 6, eaay7934,
https://doi.org/10.1126/sciadv.aay7934, 2020.
Vogt, J., Risk, D., Azetsu-Scott, K.,
Edinger, E. N., and Sherwood, O. A.: Methane flux estimates from continuous
atmospheric measurements and surface-water observations in the northern
Labrador Sea and Baffin Bay, V6, Borealis
[data set], https://doi.org/10.5683/SP3/6IUECA, 2022.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362,
https://doi.org/10.4319/lom.2014.12.351, 2014.
Wiesenburg, D. A. and Guinasso Jr., N. L.: Equilibrium Solubilities of
Methane, Carbon Monoxide, and Hydrogen in Water and Sea Water, J. Chem. Eng.
Data, 24, 356–360, https://doi.org/10.1021/je60083a006, 1979.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal
likelihood estimation of semiparametric generalized linear models, J. R.
Stat. Soc., 73, 3–36, 2011.
Wu, Y. S., Hannah, C. G., Petrie, B., Pettipas, R., Peterson, I.,
Prinsenberg, S., Lee, C., and Moritz, R.: Ocean current and sea ice
statistics for Davis Strait, Fisheries and Oceans Canada, https://publications.gc.ca/site/eng/9.620515/publication.html (last access: 9 May 2023), 2013.
Zhao, Y., Booge, D., Marandino, C. A., Schlundt, C., Bracher, A., Atlas, E. L., Williams, J., and Bange, H. W.: Dimethylated sulfur compounds in the Peruvian upwelling system, Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, 2022.
Short summary
The release of the greenhouse gas methane from Arctic submarine sources could exacerbate climate change in a positive feedback. Continuous monitoring of atmospheric methane levels over a 5100 km voyage in the western margin of the Labrador Sea and Baffin Bay revealed above-global averages likely affected by both onshore and offshore methane sources. Instantaneous sea–air methane fluxes were near zero at all measured stations, including a persistent cold-seep location.
The release of the greenhouse gas methane from Arctic submarine sources could exacerbate climate...
Altmetrics
Final-revised paper
Preprint