Articles | Volume 20, issue 10
https://doi.org/10.5194/bg-20-1925-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1925-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Warming accelerates belowground litter turnover in salt marshes – insights from a Tea Bag Index study
Key Laboratory of Land Resources Evaluation and Monitoring in
Southwest, Ministry of Education, Sichuan Normal University, Chengdu
610068, China
Institute of Plant Science and Microbiology, Universität Hamburg,
22609 Hamburg, Germany
Stefanie Nolte
School of Environmental Sciences, University of East Anglia, Norwich
NR47TJ, UK
Centre for Environment, Fisheries and Aquaculture Science, Pakefield
Rd, Lowestoft, NR330HT, UK
Kai Jensen
Institute of Plant Science and Microbiology, Universität Hamburg,
22609 Hamburg, Germany
Roy Rich
Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
Julian Mittmann-Goetsch
Institute of Plant Science and Microbiology, Universität Hamburg,
22609 Hamburg, Germany
Peter Mueller
CORRESPONDING AUTHOR
Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
Institute of Landscape Ecology, University of Münster, 48149
Münster, Germany
Related authors
Hao Tang, Susanne Liebner, Svenja Reents, Stefanie Nolte, Kai Jensen, Fabian Horn, and Peter Mueller
Biogeosciences, 18, 6133–6146, https://doi.org/10.5194/bg-18-6133-2021, https://doi.org/10.5194/bg-18-6133-2021, 2021
Short summary
Short summary
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning in a mesocosm experiment using two genotypes of a dominant salt-marsh grass characterized by differences in flooding sensitivity. Larger variability in microbial community structure, enzyme activity, and litter breakdown in soils with the more sensitive genotype supports our hypothesis that effects of climate change on soil microbial functioning can be controlled by plant intraspecific adaptations.
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021, https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Short summary
By conducting a flooding experiment with two genotypes of the salt-marsh grass Elymus athericus, we show considerable differences in biomass response to flooding within the same species. As biomass production plays a major role in sedimentation processes and thereby salt-marsh accretion, we emphasise the importance of taking intraspecific differences into account when evaluating ecosystem resilience to accelerated sea level rise.
Youssef Saadaoui, Christian Beer, Peter Mueller, Friederike Neiske, Joscha N. Becker, Annette Eschenbach, and Philipp Porada
EGUsphere, https://doi.org/10.5194/egusphere-2024-1756, https://doi.org/10.5194/egusphere-2024-1756, 2024
Short summary
Short summary
Estuarine marshes are vital for capturing carbon and benefiting the climate. Our research explored how plant-microbe interactions affect carbon cycling, focusing on traits like root oxygen loss. Using a model, we found that accounting for these trait variations significantly changes carbon balance estimates. This suggests that including plant diversity in ecosystem models improves predictions about carbon dynamics in estuarine marshes, highlighting their importance in climate regulation.
Suman Halder, Susanne K. M. Arens, Kai Jensen, Tais W. Dahl, and Philipp Porada
Geosci. Model Dev., 15, 2325–2343, https://doi.org/10.5194/gmd-15-2325-2022, https://doi.org/10.5194/gmd-15-2325-2022, 2022
Short summary
Short summary
A dynamic vegetation model, designed to estimate potential impacts of early vascular vegetation, namely, lycopsids, on the biogeochemical cycle at a local scale. Lycopsid Model (LYCOm) estimates the productivity and physiological properties of lycopsids across a broad climatic range along with natural selection, which is then utilized to adjudge their weathering potential. It lays the foundation for estimation of their impacts during their long evolutionary history starting from the Ordovician.
Hao Tang, Susanne Liebner, Svenja Reents, Stefanie Nolte, Kai Jensen, Fabian Horn, and Peter Mueller
Biogeosciences, 18, 6133–6146, https://doi.org/10.5194/bg-18-6133-2021, https://doi.org/10.5194/bg-18-6133-2021, 2021
Short summary
Short summary
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning in a mesocosm experiment using two genotypes of a dominant salt-marsh grass characterized by differences in flooding sensitivity. Larger variability in microbial community structure, enzyme activity, and litter breakdown in soils with the more sensitive genotype supports our hypothesis that effects of climate change on soil microbial functioning can be controlled by plant intraspecific adaptations.
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021, https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Short summary
By conducting a flooding experiment with two genotypes of the salt-marsh grass Elymus athericus, we show considerable differences in biomass response to flooding within the same species. As biomass production plays a major role in sedimentation processes and thereby salt-marsh accretion, we emphasise the importance of taking intraspecific differences into account when evaluating ecosystem resilience to accelerated sea level rise.
Cited articles
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and
Silliman, B. R.: The value of estuarine and coastal ecosystem services,
Ecol. Monogr., 81, 169–193, https://doi.org/10.1890/10-1510.1, 2011.
Benner, R., Maccubbin, A. E., and Hodson, R. E.: Anaerobic biodegradation of
the lignin and polysaccharide components of lignocellulose and synthetic
lignin by sediment microflora, Appl. Environ. Microbiol., 47, 998–1004,
https://doi.org/10.1128/aem.47.5.998-1004.1984, 1984.
Canarini, A., Kaiser, C., Merchant, A., Richter, A., and Wanek, W.: Root
exudation of primary metabolites: Mechanisms and their roles in plant
responses to environmental stimuli, Front. Plant Sci., 10, 157,
https://doi.org/10.3389/fpls.2019.00157, 2019.
Charles, H. and Dukes, J. S.: Effects of warming and altered precipitation
on plant and nutrient dynamics of a New England salt marsh, Ecol. Appl., 19,
1758–1773, https://doi.org/10.1890/08-0172.1, 2009.
Chmura, G. L.: What do we need to assess the sustainability of the tidal
salt marsh carbon sink?, Ocean Coast. Manag., 83, 25–31,
https://doi.org/10.1016/j.ocecoaman.2011.09.006, 2013.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.: The
Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant
litter decomposition with soil organic matter stabilization: Do labile plant
inputs form stable soil organic matter?, Glob. Change Biol., 19, 988–995,
https://doi.org/10.1111/gcb.12113, 2013.
Elumeeva, T. G., Onipchenko, V. G., Akhmetzhanova, A. A., Makarov, M. I., and
Keuskamp, J. A.: Stabilization versus decomposition in alpine ecosystems of
the Northwestern Caucasus: The results of a tea bag burial experiment, J.
Mt. Sci., 15, 1633–1641, https://doi.org/10.1007/s11629-018-4960-z, 2018.
Esselink, P., van Duin, W.E., Bunje, J., Cremer J., Folmer, E.O., Frikke, J., Glahn, M., de Groot, A. V., Hecker, N., Hellwig, U., Jensen, K., Körber, P., Petersen, J., and Stock, M.: Salt marshes, in: Wadden Sea Quality Status Report, edited by: Kloepper, S. et al., Common Wadden Sea Secretariat, Wilhelmshaven, Germany, https://qsr.waddensea-worldheritage.org/reports/salt-marshes (last access: 18 April 2023), 2017.
Fanin, N., Bezaud, S., Sarneel, J. M., Cecchini, S., Nicolas, M., and
Augusto, L.: Relative Importance of Climate, Soil and Plant Functional
Traits During the Early Decomposition Stage of Standardized Litter,
Ecosystems, 23, 1004–1018, https://doi.org/10.1007/s10021-019-00452-z, 2020.
Freeman, C., Ostle, N., and Kang, H.: An enzymic “latch” on a global carbon
store: A shortage of oxygen locks up carbon in peatlands by restraining a
single enzymes, Nature, 149, 409, https://doi.org/10.1038/35051650, 2001.
Hopple, A. M., Wilson, R. M., Kolton, M., Zalman, C. A., Chanton, J. P.,
Kostka, J., Hanson, P. J., Keller, J. K., and Bridgham, S. D.: Massive
peatland carbon banks vulnerable to rising temperatures, Nat. Commun., 11,
2373, https://doi.org/10.1038/s41467-020-16311-8, 2020.
Jenkinson, B. J.: Hydrology of sandy soils in northwest Indiana and iron oxide indicators to identify hydric soils, Purdue University, US, https://docs.lib.purdue.edu/dissertations/AAI3104964 (last access: 26 April 2023), 2002.
Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M., and Hefting, M. M.: Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems, Methods Ecol. Evol., 4, 1070–1075, https://doi.org/10.1111/2041-210X.12097, 2013.
Kirwan, M. L. and Blum, L. K.: Enhanced decomposition offsets enhanced
productivity and soil carbon accumulation in coastal wetlands responding to
climate change, Biogeosciences, 8, 987–993, https://doi.org/10.5194/bg-8-987-2011,
2011.
Kirwan, M. L. and Megonigal, J. P.: Tidal wetland stability in the face of
human impacts and sea-level rise, Nature, 504, 53–60,
https://doi.org/10.1038/nature12856, 2013.
Kirwan, M. L. and Mudd, S. M.: Response of salt-marsh carbon accumulation to
climate change, Nature, 489, 550–553, https://doi.org/10.1038/nature11440, 2012.
Kristensen, E., Ahmed, S. I., and Devol, A. H.: Aerobic and anaerobic
decomposition of organic matter in marine sediment: Which is fastest?,
Limnol. Oceanogr., 40, 1430–1437, https://doi.org/10.4319/lo.1995.40.8.1430, 1995.
Langley, J. A. and Megonigal, J. P.: Ecosystem response to elevated CO2
levels limited by nitrogen-induced plant species shift, Nature, 466, 96–99,
https://doi.org/10.1038/nature09176, 2010.
Lin, Y., Campbell, A. N., Bhattacharyya, A., DiDonato, N., Thompson, A. M.,
Tfaily, M. M., Nico, P. S., Silver, W. L., and Pett-Ridge, J.: Differential
effects of redox conditions on the decomposition of litter and soil organic
matter, Biogeochemistry, 154, 1–15, https://doi.org/10.1007/s10533-021-00790-y, 2021.
Lind, L., Harbicht, A., Bergman, E., Edwartz, J., and Eckstein, R. L.:
Effects of initial leaching for estimates of mass loss and microbial
decomposition – Call for an increased nuance, Ecol. Evol., 12, e9181,
https://doi.org/10.1002/ece3.9118, 2022.
Lützow, M. V., Kögel-Knabner, I., Ekschmitt, K., Matzner, E.,
Guggenberger, G., Marschner, B., and Flessa, H.: Stabilization of organic
matter in temperate soils: Mechanisms and their relevance under different
soil conditions – A review, Eur. J. Soil Sci., 57, 426–445,
https://doi.org/10.1111/j.1365-2389.2006.00809.x, 2006.
Marley, A. C. R. G., Smeaton, C., and Austin, W. E. N.: An Assessment of the
Tea Bag Index Method as a Proxy for Organic Matter Decomposition in
Intertidal Environments, J. Geophys. Res.-Biogeo., 124, 2991–3004,
https://doi.org/10.1029/2018JG004957, 2019.
McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C.
M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for
blue carbon: Toward an improved understanding of the role of vegetated
coastal habitats in sequestering CO2, Front. Ecol. Environ., 9, 552–560,
https://doi.org/10.1890/110004, 2011.
Mori, T., Nakamura, R., and Aoyagi, R.: Risk of misinterpreting the Tea Bag
Index: Field observations and a random simulation, Ecol. Res., 37, 381–389,
https://doi.org/10.1111/1440-1703.12304, 2022.
Mueller, P., Schile-Beers, L. M., Mozdzer, T. J., Chmura, G. L., Dinter, T.,
Kuzyakov, Y., De Groot, A. V., Esselink, P., Smit, C., D'Alpaos, A.,
Ibáñez, C., Lazarus, M., Neumeier, U., Johnson, B. J., Baldwin, A.
H., Yarwood, S. A., Montemayor, D. I., Yang, Z., Wu, J., Jensen, K., and
Nolte, S.: Global-change effects on early-stage decomposition processes in
tidal wetlands-implications from a global survey using standardized litter,
Biogeosciences, 15, 3189–3202, https://doi.org/10.5194/bg-15-3189-2018, 2018.
Mueller, P., Mozdzer, T. J., Langley, J. A., Aoki, L. R., Noyce, G. L., and
Megonigal, J. P.: Plant species determine tidal wetland methane response to
sea level rise, Nat. Commun., 11, 5154, https://doi.org/10.1038/s41467-020-18763-4,
2020a.
Mueller, P., Granse, D., Nolte, S., Weingartner, M., Hoth, S., and Jensen, K.: Unrecognized controls on microbial functioning in Blue Carbon ecosystems: The role of mineral enzyme stabilization and allochthonous substrate supply, Ecol. Evol., 10 , 998–1011, https://doi.org/10.1002/ece3.5962, 2020b.
Mueller P., Kutzbach L., Mozdzer T.J., Jespersen E., Barber D., and Eller F.: Minerogenic salt marshes can function as important inorganic carbon stores, Limnol. Oceanogr., 68, 942–952, https://doi.org/10.1002/lno.12322, 2023.
Noyce, G. L., Kirwan, M. L., Rich, R. L., and Megonigal, J. P.: Asynchronous
nitrogen supply and demand produce nonlinear plant allocation responses to
warming and elevated CO2, P. Natl. Acad. Sci. USA, 116,
21623–21628, https://doi.org/10.1073/pnas.1904990116, 2019.
Ochoa-Hueso, R., Borer, E. T., Seabloom, E. W., Hobbie, S. E., Risch, A. C., Collins, S. L., Alberti, J., Bahamonde, H. A., Brown, C. S., Caldeira, M. C., Daleo, P., Dickman, C. R., Ebeling, A., Eisenhauer, N., Esch, E. H., Eskelinen, A., Fernández, V., Güsewell, S., Gutierrez-Larruga, B., Hofmockel, K., Laungani, R., Lind, E., López, A., McCulley, R. L., Moore, J. L., Peri, P. L., Power, S. A., Price, J. N., Prober, S. M., Roscher, C., Sarneel, J. M., Schütz, M., Siebert, J., Standish, R. J., Velasco Ayuso, S., Virtanen, R., Wardle, G. M., Wiehl, G., Yahdjian, L., and Zamin, T.: Microbial processing of plant remains is co-limited by multiple nutrients in global grasslands, Glob. Chang. Biol., 26, 4572–4582, https://doi.org/10.1111/gcb.15146, 2020.
Peterson, J., Kers, B., and Stock, M.: TMAP-typology of coastal vegetation in the Wadden Sea area, Common Wadden Sea Secretariat (CWSS), Wilhelmshaven, Germany, https://www.waddensea-secretariat.org (last access: 26 April 2023), 2014.
Prescott, C. E.: Litter decomposition: What controls it and how can we alter
it to sequester more carbon in forest soils?, Biogeochemistry, 101,
133–149, https://doi.org/10.1007/s10533-010-9439-0, 2010.
Rabenhorst, M. C.: Using synthesized iron oxides as an indicator of
reduction in soils, Methods Biogeochem. Wetl., 10, 723–740,
https://doi.org/10.2136/sssabookser10.c37, 2015.
Rich, R., Mueller, P., Fuss, M., Gonçalves, S., Ostertag, E., Reents, S., Tang, H., Tashjian, A., Thomsen, S., Jensen, K., and Nolte, S.: Design and assessment of a novel approach for ecosystem warming experiments in high-energy tidal wetlands, J. Geophys. Res.-Biogeo., in review, 2023.
Sarneel, J. M. J. and Veen, G. F. C.: Legacy effects of altered flooding
regimes on decomposition in a boreal floodplain, Plant Soil, 421, 57–66,
https://doi.org/10.1007/s11104-017-3382-y, 2017.
Sarneel, J. M., Sundqvist, M. K., Molau, U., Björkman, M. P., and
Alatalo, J. M.: Decompositon rate and stabilization across six tundra
vegetation types exposed to 20 years of warming, Sci. Total Environ., 724,
138304, https://doi.org/10.1016/j.scitotenv.2020.138304, 2020.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.
A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.:
Persistence of soil organic matter as an ecosystem property, Nature, 478,
49–56, https://doi.org/10.1038/nature10386, 2011.
Sogin, E. M., Michellod, D., Gruber-Vodicka, H. R., Bourceau, P., Geier, B.,
Meier, D. V., Seidel, M., Ahmerkamp, S., Schorn, S., D'Angelo, G.,
Procaccini, G., Dubilier, N., and Liebeke, M.: Sugars dominate the seagrass
rhizosphere, Nat. Ecol. Evol., 6, 866–877, https://doi.org/10.1038/s41559-022-01740-z,
2022.
Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A., and Hopkinson, C.
S.: Global-change controls on soil-carbon accumulation and loss in coastal
vegetated ecosystems, Nat. Geosci., 12, 685–692,
https://doi.org/10.1038/s41561-019-0435-2, 2019.
Tang, H., Nolte, S., Jensen, K., Yang, Z., Wu, J., and Mueller, P.: Grazing
mediates soil microbial activity and litter decomposition in salt marshes,
Sci. Total Environ., 720, 137559, https://doi.org/10.1016/j.scitotenv.2020.137559, 2020.
Tang, H., Liebner, S., Reents, S., Nolte, S., Jensen, K., Horn, F., and
Mueller, P.: Plant genotype controls wetland soil microbial functioning in
response to sea-level rise, Biogeosciences, 18, 6133–6146,
https://doi.org/10.5194/bg-18-6133-2021, 2021.
Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C.
W., Pfeifer-Meister, L., Medvedeff, C., Mcfarlane, K. J., Kostka, J. E.,
Kolton, M., Kolka, R. K., Kluber, L. A., Keller, J. K., Guilderson, T. P.,
Griffiths, N. A., Chanton, J. P., Bridgham, S. D., and Hanson, P. J.:
Stability of peatland carbon to rising temperatures, Nat. Commun., 7, 13723,
https://doi.org/10.1038/ncomms13723, 2016.
Zhang, D., Hui, D., Luo, Y., and Zhou, G.: Rates of litter decomposition in
terrestrial ecosystems: global patterns and controlling factors, J. Plant
Ecol., 1, 85–93, https://doi.org/10.1093/jpe/rtn002, 2008.
Short summary
In order to gain the first mechanistic insight into warming effects and litter breakdown dynamics across whole-soil profiles, we used a unique field warming experiment and standardized plant litter to investigate the degree to which rising soil temperatures can accelerate belowground litter breakdown in coastal wetland ecosystems. We found warming strongly increases the initial rate of labile litter decomposition but has less consistent effects on the stabilization of this material.
In order to gain the first mechanistic insight into warming effects and litter breakdown...
Altmetrics
Final-revised paper
Preprint