Articles | Volume 20, issue 14
https://doi.org/10.5194/bg-20-2985-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2985-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump
School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, Australia
Mark Holzer
School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, Australia
Matthew A. Chamberlain
Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
Richard J. Matear
Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
Nathaniel L. Bindoff
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
François W. Primeau
Department of Earth System Science, University of California Irvine, Irvine, CA, USA
Related authors
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024, https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
Short summary
How do perpetually slower and warmer oceans sequester carbon? Compared to the preindustrial state, we find that biological productivity declines despite warming-stimulated growth because of a lower nutrient supply from depth. This throttles the biological carbon pump, which still sequesters more carbon because it takes longer to return to the surface. The deep ocean is isolated from the surface, allowing more carbon from the atmosphere to pass through the ocean without contributing to biology.
Benoît Pasquier, Sophia K. V. Hines, Hengdi Liang, Yingzhe Wu, Steven L. Goldstein, and Seth G. John
Geosci. Model Dev., 15, 4625–4656, https://doi.org/10.5194/gmd-15-4625-2022, https://doi.org/10.5194/gmd-15-4625-2022, 2022
Short summary
Short summary
Neodymium isotopes in seawater have the potential to provide key information about ocean circulation, both today and in the past. This can shed light on the underlying drivers of global climate, which will improve our ability to predict future climate change, but uncertainties in our understanding of neodymium cycling have limited use of this tracer. We present a new model of neodymium in the modern ocean that runs extremely fast, matches observations, and is freely available for development.
Pearse J. Buchanan, P. Jyoteeshkumar Reddy, Richard J. Matear, Matthew A. Chamberlain, Tyler Rohr, Dougal Squire, and Elizabeth H. Shadwick
Biogeosciences, 22, 5349–5385, https://doi.org/10.5194/bg-22-5349-2025, https://doi.org/10.5194/bg-22-5349-2025, 2025
Short summary
Short summary
We calibrate a new version of the World Ocean Model of Biogeochemistry and Trophic dynamics (WOMBAT-lite) using a surrogate machine learning approach. A Gaussian process surrogate trained on 512 simulations emulated tens of thousands, enabling global sensitivity analysis and Bayesian optimization of 26 parameters. We constrain 13 key parameters, improving fit to 8 datasets (chlorophyll a, air–sea CO₂ fluxes, nutrient limitation), and provide an optimal set for community use.
Bartholomé Duboc, Katrin J. Meissner, Laurie Menviel, Nicholas K. H. Yeung, Babette Hoogakker, Tilo Ziehn, and Matthew Chamberlain
Clim. Past, 21, 1093–1122, https://doi.org/10.5194/cp-21-1093-2025, https://doi.org/10.5194/cp-21-1093-2025, 2025
Short summary
Short summary
We use an earth system model to simulate ocean oxygen during two past warm periods, the Last Interglacial (∼ 129–115 ka) and Marine Isotope Stage (MIS) 9e (∼ 336–321 ka). The global ocean is overall less oxygenated compared to the preindustrial simulation. Large regions in the Mediterranean Sea are oxygen deprived in the Last Interglacial simulation, and to a lesser extent in the MIS 9e simulation, due to an intensification and expansion of the African monsoon and enhanced river runoff.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Andrew D. King, Tilo Ziehn, Matthew Chamberlain, Alexander R. Borowiak, Josephine R. Brown, Liam Cassidy, Andrea J. Dittus, Michael Grose, Nicola Maher, Seungmok Paik, Sarah E. Perkins-Kirkpatrick, and Aditya Sengupta
Earth Syst. Dynam., 15, 1353–1383, https://doi.org/10.5194/esd-15-1353-2024, https://doi.org/10.5194/esd-15-1353-2024, 2024
Short summary
Short summary
Governments are targeting net-zero emissions later this century with the aim of limiting global warming in line with the Paris Agreement. However, few studies explore the long-term consequences of reaching net-zero emissions and the effects of a delay in reaching net-zero. We use the Australian Earth system model to examine climate evolution under net-zero emissions. We find substantial changes which differ regionally, including continued Southern Ocean warming and Antarctic sea ice reduction.
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024, https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
Short summary
How do perpetually slower and warmer oceans sequester carbon? Compared to the preindustrial state, we find that biological productivity declines despite warming-stimulated growth because of a lower nutrient supply from depth. This throttles the biological carbon pump, which still sequesters more carbon because it takes longer to return to the surface. The deep ocean is isolated from the surface, allowing more carbon from the atmosphere to pass through the ocean without contributing to biology.
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences, 21, 3053–3073, https://doi.org/10.5194/bg-21-3053-2024, https://doi.org/10.5194/bg-21-3053-2024, 2024
Short summary
Short summary
This paper explores the climate processes that drive increasing global average temperatures in zero-emission commitment (ZEC) simulations despite decreasing atmospheric CO2. ACCESS-ESM1.5 shows the Southern Ocean to continue to warm locally in all ZEC simulations. In ZEC simulations that start after the emission of more than 1000 Pg of carbon, the influence of the Southern Ocean increases the global temperature.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Benoît Pasquier, Sophia K. V. Hines, Hengdi Liang, Yingzhe Wu, Steven L. Goldstein, and Seth G. John
Geosci. Model Dev., 15, 4625–4656, https://doi.org/10.5194/gmd-15-4625-2022, https://doi.org/10.5194/gmd-15-4625-2022, 2022
Short summary
Short summary
Neodymium isotopes in seawater have the potential to provide key information about ocean circulation, both today and in the past. This can shed light on the underlying drivers of global climate, which will improve our ability to predict future climate change, but uncertainties in our understanding of neodymium cycling have limited use of this tracer. We present a new model of neodymium in the modern ocean that runs extremely fast, matches observations, and is freely available for development.
Dipayan Choudhury, Laurie Menviel, Katrin J. Meissner, Nicholas K. H. Yeung, Matthew Chamberlain, and Tilo Ziehn
Clim. Past, 18, 507–523, https://doi.org/10.5194/cp-18-507-2022, https://doi.org/10.5194/cp-18-507-2022, 2022
Short summary
Short summary
We investigate the effects of a warmer climate from the Earth's paleoclimate (last interglacial) on the marine carbon cycle of the Southern Ocean using a carbon-cycle-enabled state-of-the-art climate model. We find a 150 % increase in CO2 outgassing during this period, which results from competition between higher sea surface temperatures and weaker oceanic circulation. From this we unequivocally infer that the carbon uptake by the Southern Ocean will reduce under a future warming scenario.
Matthew A. Chamberlain, Peter R. Oke, Russell A. S. Fiedler, Helen M. Beggs, Gary B. Brassington, and Prasanth Divakaran
Earth Syst. Sci. Data, 13, 5663–5688, https://doi.org/10.5194/essd-13-5663-2021, https://doi.org/10.5194/essd-13-5663-2021, 2021
Short summary
Short summary
BRAN2020 is a dynamical reconstruction of the ocean, combining observations with a high-resolution global ocean model. BRAN2020 currently spans January 1993 to December 2019, assimilating in situ temperature and salinity, as well as satellite-based sea level and sea surface temperature. A new multiscale approach to data assimilation constrains the broad-scale ocean properties and turbulent mesoscale dynamics in two steps, showing closer agreement to observations than all previous versions.
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021, https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
Short summary
Ice algae are tiny plants like phytoplankton but they grow within sea ice. In polar regions, both phytoplankton and ice algae are the foundation of marine ecosystems and play an important role in taking up carbon dioxide in the atmosphere. However, state-of-the-art climate models typically do not include ice algae, and therefore their role in the climate system remains unclear. This project aims to address this knowledge gap by coordinating a set of experiments using sea-ice–ocean models.
Nicholas King-Hei Yeung, Laurie Menviel, Katrin J. Meissner, Andréa S. Taschetto, Tilo Ziehn, and Matthew Chamberlain
Clim. Past, 17, 869–885, https://doi.org/10.5194/cp-17-869-2021, https://doi.org/10.5194/cp-17-869-2021, 2021
Short summary
Short summary
The Last Interglacial period (LIG) is characterised by strong orbital forcing compared to the pre-industrial period (PI). This study compares the mean climate state of the LIG to the PI as simulated by the ACCESS-ESM1.5, with a focus on the southern hemispheric monsoons, which are shown to be consistently weakened. This is associated with cooler terrestrial conditions in austral summer due to decreased insolation, and greater pressure and subsidence over land from Hadley cell strengthening.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Wei-Lei Wang, Guisheng Song, François Primeau, Eric S. Saltzman, Thomas G. Bell, and J. Keith Moore
Biogeosciences, 17, 5335–5354, https://doi.org/10.5194/bg-17-5335-2020, https://doi.org/10.5194/bg-17-5335-2020, 2020
Short summary
Short summary
Dimethyl sulfide, a volatile compound produced as a byproduct of marine phytoplankton activity, can be emitted to the atmosphere via gas exchange. In the atmosphere, DMS is oxidized to cloud condensation nuclei, thus contributing to cloud formation. Therefore, oceanic DMS plays an important role in regulating the planet's climate by influencing the radiation budget. In this study, we use an artificial neural network model to update the global DMS climatology and estimate the sea-to-air flux.
Cited articles
Bach, L. T., Riebesell, U., Sett, S., Febiri, S., Rzepka, P., and Schulz,
K. G.: An Approach for Particle Sinking Velocity Measurements in the
3–400 µm Size Range and Considerations on the Effect of Temperature on
Sinking Rates, Mar. Biol., 159, 1853–1864,
https://doi.org/10.1007/s00227-012-1945-2, 2012. a
Bardin, A., Primeau, F. W., and Lindsay, K.: An offline implicit solver for
simulating prebomb radiocarbon, Ocean Model., 73, 45–58,
https://doi.org/10.1016/j.ocemod.2013.09.008, 2014. a
Bi, D., Dix, M., Marsland, S., O'Farrell, S., Rashid, H., Uotila, P., Hirst,
T., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N.,
Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R.,
Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S.,
Hill, R., Harris, C., and Puri, K.: The ACCESS Coupled Model: Description,
Control Climate and Evaluation, Austr. Meteorol. Oceanogr.
J., 63, 41–64, https://doi.org/10.22499/2.6301.004, 2013a. a, b
Bi, D., Dix, M., Marsland, S., O'Farrell, S., Sullivan, A., Bodman, R., Law,
R., Harman, I., Srbinovsky, J., Rashid, H. A., Dobrohotoff, P., Mackallah,
C., Yan, H., Hirst, A., Savita, A., Dias, F. B., Woodhouse, M., Fiedler, R.,
and Heerdegen, A.: Configuration and Spin-up of ACCESS-CM2, the New
Generation Australian Community Climate and Earth System Simulator
Coupled Model, J. South. Hem. Earth Syst. Sci., 70,
225–251, https://doi.org/10.1071/ES19040, 2020. a
Bissinger, J. E., Montagnes, D. J. S., Harples, J., and Atkinson, D.:
Predicting marine phytoplankton maximum growth rates from temperature:
Improving on the Eppley curve using quantile regression, Limnol.
Oceanogr., 53, 487–493, https://doi.org/10.4319/lo.2008.53.2.0487, 2008. a
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M.,
Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and
Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century:
projections with CMIP5 models, Biogeosciences, 10, 6225–6245,
https://doi.org/10.5194/bg-10-6225-2013, 2013. a
Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control
particle export and flux attenuation in the twilight zone of the open ocean,
Limnol. Oceanogr., 54, 1210–1232, https://doi.org/10.4319/lo.2009.54.4.1210,
2009. a
Chamberlain, M. A., Matear, R. J., Holzer, M., Bi, D., and Marsland, S. J.:
Transport matrices from standard ocean-model output and quantifying
circulation response to climate change, Ocean Model., 135, 1–13,
https://doi.org/10.1016/j.ocemod.2019.01.005, 2019. a, b, c, d
Cocco, V., Joos, F., Steinacher, M., Frölicher, T. L., Bopp, L., Dunne, J.,
Gehlen, M., Heinze, C., Orr, J., Oschlies, A., Schneider, B., Segschneider,
J., and Tjiputra, J.: Oxygen and indicators of stress for marine life in
multi-model global warming projections, Biogeosciences, 10, 1849–1868,
https://doi.org/10.5194/bg-10-1849-2013, 2013. a
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and
Iudicone, D.: Mixed layer depth over the global ocean: An examination of
profile data and a profile-based climatology, J. Geophys.
Res.-Ocean., 109, C12003, https://doi.org/10.1029/2004JC002378, 2004. a
DeVries, T.: The oceanic anthropogenic CO2 sink: Storage,
air-sea fluxes, and transports over the industrial era, Global
Biogeochem. Cy., 28, 631–647, https://doi.org/10.1002/2013GB004739, 2014. a, b
DeVries, T. and Holzer, M.: Radiocarbon and Helium Isotope Constraints on Deep
Ocean Ventilation and Mantle-3He Sources, J.
Geophys. Res.-Ocean., 124, 3036–3057, https://doi.org/10.1029/2018JC014716,
2019. a, b, c, d
DeVries, T., Primeau, F. W., and Deutsch, C.: The Sequestration Efficiency of
the Biological Pump, Geophys. Res. Lett., 39, L13601,
https://doi.org/10.1029/2012GL051963, 2012. a, b
Dinauer, A., Laufkötter, C., Doney, S. C., and Joos, F.: What Controls the
Large-Scale Efficiency of Carbon Transfer Through the Ocean's Mesopelagic
Zone? Insights From a New, Mechanistic Model (MSPACMAM), Global
Biogeochem. Cy., 36, e2021GB007131, https://doi.org/10.1029/2021GB007131,
e2021GB007131 2021GB007131, 2022. a, b
Eppley, R. W.: Temperature and Phytoplankton Growth in the Sea, Fish. Bull, 70,
1063–1085, 1972. a
Galbraith, E. D., Gnanadesikan, A., Dunne, J. P., and Hiscock, M. R.: Regional
Impacts of Iron-Light Colimitation in a Global Biogeochemical Model,
Biogeosciences, 7, 1043–1064, https://doi.org/10.5194/bg-7-1043-2010, 2010. a
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D.,
and Reagan, J. R.: World Ocean Atlas 2018, NOAA Atlas NESDIS 84, Vol. 4:
Dissolved Inorganic Nutrients (phosphate, nitrate and nitrate + nitrite,
silicate), 35 pp., 2019. a, b
Henson, S. A., Laufkötter, C., Leung, S., Giering, S. L. C., Palevsky,
H. I., and Cavan, E. L.: Uncertain Response of Ocean Biological Carbon Export
in a Changing World, Nat. Geosci., 15, 248–254,
https://doi.org/10.1038/s41561-022-00927-0, 2022. a
Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J. K.: Southern Ocean
bottom water characteristics in CMIP5 models, Geophys. Res. Lett.,
40, 1409–1414, https://doi.org/10.1002/grl.50287, 2013. a
Holzer, M.: The Fate of Oxygen in the Ocean and Its Sensitivity to Local
Changes in Biological Production, J. Geophys. Res.-Ocean.,
127, e2022JC018802, https://doi.org/10.1029/2022JC018802,
2022. a, b, c
Holzer, M. and DeVries, T.: Source-labeled anthropogenic carbon reveals a large
shift of preindustrial carbon from the ocean to the atmosphere, Global
Biogeochem. Cy., 36, e2022GB007405, https://doi.org/10.1029/2022GB007405, 2022. a
Holzer, M. and Primeau, F. W.: Global teleconnections in the oceanic phosphorus
cycle: patterns, paths, and timescales, J. Geophys. Res.-Ocean., 118, 1775–1796, https://doi.org/10.1002/jgrc.20072, 2013. a, b
Holzer, M., Primeau, F. W., DeVries, T., and Matear, R.: The Southern Ocean
silicon trap: Data-constrained estimates of regenerated silicic acid,
trapping efficiencies, and global transport paths, J. Geophys.
Res.-Ocean., 119, 313–331, https://doi.org/10.1002/2013JC009356, 2014. a, b
Holzer, M., Chamberlain, M. A., and Matear, R. J.: Climate-Driven Changes in
the Ocean's Ventilation Pathways and Time Scales Diagnosed From Transport
Matrices, J. Geophys. Res.-Ocean., 125, e2020JC016414,
https://doi.org/10.1029/2020JC016414, 2020. a, b, c
Holzer, M., DeVries, T., and de Lavergne, C.: Diffusion Controls the
Ventilation of a Pacific Shadow Zone above Abyssal Overturning, Nat.
Commun., 12, 4348, https://doi.org/10.1038/s41467-021-24648-x,
2021a. a
IOC, SCOR, and IAPSO: The international thermodynamic equation of seawater –
2010: Calculation and use of thermodynamic properties, 56, Intergovernmental
Oceanographic Commission, Manuals and Guides, UNESCO, 2010. a
Ito, T. and Follows, M. J.: Preformed phosphate, soft tissue pump and
atmospheric CO2, J. Mar. Res., 63, 813–839,
https://doi.org/10.1357/0022240054663231, 2005. a, b, c
Jin, X., Gruber, N., Dunne, J. P., Sarmiento, J. L., and Armstrong, R. A.:
Diagnosing the contribution of phytoplankton functional groups to the
production and export of particulate organic carbon, CaCO3,
and opal from global nutrient and alkalinity distributions, Global
Biogeochem. Cy., 20, GB2015, https://doi.org/10.1029/2005GB002532, 2006. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W.,
Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, Bull. Am. Meteorol. Soc., 77, 437–472,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. a
Kelley, C. T.: Solving Nonlinear Equations with Newton's Method, Chap. 1,
Introduction, Society for Industrial and Applied Mathematics (SIAM), 1–25, https://doi.org/10.1137/1.9780898718898.ch1, 2003. a
Key, R., Olsen, A., Van Heuven, S., Lauvset, S., Velo, A., Lin, X., Schirnick,
C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterstrom, S., Steinfeldt, R.,
Jeansson, E., Ishi, M., Perez, F., and Suzuki, T.: Global Ocean Data Analysis
Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, ND-P093,
https://doi.org/10.3334/CDIAC/OTG.NDP093_GLODAPV2, 2015. a
Khatiwala, S., Visbeck, M., and Cane, M. A.: Accelerated simulation of passive
tracers in ocean circulation models, Ocean Model., 9, 51–69,
https://doi.org/10.1016/j.ocemod.2004.04.002, 2005. a
Kriest, I. and Oschlies, A.: MOPS-1.0: Towards a model for the regulation
of the global oceanic nitrogen budget by marine biogeochemical processes,
Geosci. Model Dev., 8, 2929–2957,
https://doi.org/10.5194/gmd-8-2929-2015, 2015. a, b, c
Kriest, I., Kähler, P., Koeve, W., Kvale, K., Sauerland, V., and Oschlies,
A.: One size fits all? Calibrating an ocean biogeochemistry model for
different circulations, Biogeosciences, 17, 3057–3082,
https://doi.org/10.5194/bg-17-3057-2020, 2020. a, b, c
Kwon, E. Y. and Primeau, F. W.: Optimization and sensitivity study of a
biogeochemistry ocean model using an implicit solver and in situ phosphate
data, Global Biogeochem. Cy., 20, GB4009, https://doi.org/10.1029/2005GB002631, 2006. a
Kwon, E. Y., Holzer, M., Timmermann, A., and Primeau, F.: Estimating
three-dimensional carbon-to-phosphorus stoichiometry of exported marine
organic matter, Global Biogeochem. Cy., 36, e2021GB007154,
https://doi.org/10.1029/2021GB007154, 2022. a, b, c, d
Laufkötter, C., John, J. G., Stock, C. A., and Dunne, J. P.: Temperature and
oxygen dependence of the remineralization of organic matter, Global
Biogeochem. Cy., 31, 1038–1050, https://doi.org/10.1002/2017GB005643, 2017. a, b
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and Watelet, S.: A new global interior ocean mapped climatology: the GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, 2016. a, b
Letscher, R. T. and Moore, J. K.: Preferential remineralization of dissolved
organic phosphorus and non-Redfield DOM dynamics in the global ocean: Impacts
on marine productivity, nitrogen fixation, and carbon export, Global
Bigeochem. Cy., 29, 325–340, https://doi.org/10.1002/2014gb004904, 2015. a
Letscher, R. T., Moore, J. K., Teng, Y.-C., and Primeau, F.: Variable C : N : P
stoichiometry of dissolved organic matter cycling in the Community Earth
System Model, Biogeosciences, 12, 209–221, https://doi.org/10.5194/bg-12-209-2015,
2015. a
Letscher, R. T., Primeau, F. W., and Moore, J. K.: Nutrient budgets in the
subtropical ocean gyres dominated by lateral transport, Nat. Geosci.,
9, 815–816, https://doi.org/10.1038/NGEO2812, 2016. a
Lewis, E. R. and Wallace, D. W. R.: Program Developed for CO2
System Calculations, ORNL/CDIAC-105, Carbon Dioxide Information Analysis
Center [data set], Oak Ridge National Laboratory, Oak Ridge, TN,
https://doi.org/10.15485/1464255, 1998. a
Logan, B. E. and Hunt, J. R.: Advantages to microbes of growth in permeable
aggregates in marine systems, Limnol. Oceanogr., 32, 1034–1048,
https://doi.org/10.4319/lo.1987.32.5.1034, 1987. a
Marinov, I., Gnanadesikan, A., Toggweiler, J. R., and Sarmiento, J. L.: The
Southern Ocean biogeochemical divide, Nature, 441, 964–967,
https://doi.org/10.1038/nature04883, 2006. a, b
Marinov, I., Gnanadesikan, A., Sarmiento, J. L., Toggweiler, J. R., Follows,
M., and Mignone, B. K.: Impact of oceanic circulation on biological carbon
storage in the ocean and atmospheric pCO2, Global Biogeochem. Cy., 22, GB3007,
https://doi.org/10.1029/2007GB002958, 2008. a
Marsland, S., Bi, D., Uotila, P., Fiedler, R., Griffies, S., Lorbacher, K.,
O'Farrell, S., Sullivan, A., Uhe, P., Zhou, X., and Hirst, A.: Configuration
and spin-up of ACCESS-CM2, the new generation Australian Community Climate
and Earth System Simulator Coupled Model, Austr. Meteorol.
Oceanogr. J., 63, 101–119, https://doi.org/10.22499/2.6301.007, 2013. a
Matear, R. J. and Holloway, G.: Modeling the inorganic phosphorus cycle of the
North Pacific using an adjoint data assimilation model to assess the role of
dissolved organic phosphorus, Global Biogeochem. Cy., 9, 101–119,
https://doi.org/10.1029/94GB03104, 1995. a
Matsumoto, K., Rickaby, R. E., and Tanioka, T.: Carbon export buffering and
CO2 drawdown by flexible phytoplankton C : N : P under
glacial conditions, Paleoceanogr. Paleocl., 35, e2019PA003823,
https://doi.org/10.1029/2019PA003823, 2020. a
Murnane, R. J., Sarmiento, J. L., and Le Quéré, C.: Spatial distribution of
air-sea CO2 fluxes and the interhemispheric transport of
carbon by the oceans, Global Biogeochem. Cy., 13, 287–305,
https://doi.org/10.1029/1998GB900009, 1999. a, b
Najjar, R. G. and Orr, J. C.: Biotic-HOWTO, internal OCMIP report, HOWTO
(Protocol) Documents, 5, LSCE/CEA Saclay, Gif-sur-Yvette, France,
1999. a
Najjar, R. G., Sarmiento, J. L., and Toggweiler, J. R.: Downward transport and
fate of organic matter in the ocean: Simulations with a general circulation
model, Global Biogeochem. Cy., 6, 45–76, https://doi.org/10.1029/91GB02718,
1992. a
Najjar, R. G., Jin, X., Louanchi, F., Aumont, O., Caldeira, K., Doney, S. C.,
Dutay, J.-C., Follows, M., Gruber, N., Joos, F., Lindsay, K., Maier-Reimer,
E., Matear, R. J., Matsumoto, K., Monfray, P., Mouchet, A., Orr, J. C.,
Plattner, G.-K., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Weirig,
M.-F., Yamanaka, Y., and Yool, A.: Impact of circulation on export
production, dissolved organic matter, and dissolved oxygen in the ocean:
Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project
(OCMIP-2), Global Biogeochem. Cy., 21, GB3007, https://doi.org/10.1029/2006GB002857,
2007. a
Pasquier, B.: Code and data for Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.8067684, 2023. a
Pasquier, B. and Holzer, M.: The plumbing of the global biological pump:
Efficiency control through leaks, pathways, and time scales, J.
Geophys. Res.-Ocean., 121, 6367–6388, https://doi.org/10.1002/2016JC011821,
2016. a, b
Pasquier, B. and Holzer, M.: The number of past and future regenerations of
iron in the ocean and its intrinsic fertilization efficiency, Biogeosciences,
15, 7177–7203, https://doi.org/10.5194/bg-15-7177-2018, 2018. a
Primeau, F. W.: Characterizing Transport between the Surface Mixed Layer and
the Ocean Interior with a Forward and Adjoint Global Ocean Transport Model,
J. Phys. Oceanogr., 35, 545–564, https://doi.org/10.1175/JPO2699.1,
2005. a
Sarmiento, J. L., Dunne, J. P., Gnanadesikan, A., Key, R. M., Matsumoto, K.,
and Slater, R.: A new estimate of the
CaCO3 : Corg ratio, Global Biogeochem. Cy.,
16, 1107, https://doi.org/10.1029/2002GB001919, 2002. a
Séférian, R., Gehlen, M., Bopp, L., Resplandy, L., Orr, J. C., Marti, O.,
Dunne, J. P., Christian, J. R., Doney, S. C., Ilyina, T., Lindsay, K.,
Halloran, P. R., Heinze, C., Segschneider, J., Tjiputra, J., Aumont, O., and
Romanou, A.: Inconsistent strategies to spin up models in CMIP5:
implications for ocean biogeochemical model performance assessment,
Geosci. Model Dev., 9, 1827–1851,
https://doi.org/10.5194/gmd-9-1827-2016, 2016. a
Sharqawy, M. H., Lienhard, J. H., and Zubair, S. M.: Thermophysical properties
of seawater: a review of existing correlations and data, Desalin.
Water Treat., 16, 354–380, 2010. a
Tanioka, T. and Matsumoto, K.: Buffering of ocean export production by flexible
elemental stoichiometry of particulate organic matter, Global Bigeochem.
Cy., 31, 1528–1542, https://doi.org/10.1002/2017GB005670, 2017.
a
Taucher, J., Bach, L. T., Riebesell, U., and Oschlies, A.: The viscosity effect
on marine particle flux: A climate relevant feedback mechanism, Global
Biogeochem. Cy., 28, 415–422, https://doi.org/10.1002/2013GB004728, 2014. a, b, c
Teng, Y.-C., Primeau, F. W., Moore, J. K., Lomas, M. W., and Martiny, A. C.:
Global-Scale Variations of the Ratios of Carbon to Phosphorus in Exported
Marine Organic Matter, Nat. Geosci., 7, 895–898,
https://doi.org/10.1038/ngeo2303, 2014. a, b
van Heuven, S., Pierrot, D., Rae, J., Lewis, E., and Wallace, D.: CO2SYS
v1.1, MATLAB program developed for CO2 system
calculations, ORNL/CDIAC-105b. Carbon Dioxide Information Analysis Center,
Oak Ridge National Laboratory, US DoE, Oak Ridge, TN, https://doi.org/10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1, 2011. a
Wang, W.-L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent
Estimates of Marine Nitrogen Fixation, Nature, 566, 205–211,
https://doi.org/10.1038/s41586-019-0911-2, 2019. a
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean
revisited, Limnol. Oceanogr.-Method., 12, 351–362,
https://doi.org/10.4319/lom.2014.12.351, 2014. a
Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and Dickson,
A. G.: Total alkalinity: The explicit conservative expression and its
application to biogeochemical processes, Mar. Chem., 106, 287–300,
https://doi.org/10.1016/j.marchem.2007.01.006, 2007. a
Short summary
Modeling the ocean's carbon and oxygen cycles accurately is challenging. Parameter optimization improves the fit to observed tracers but can introduce artifacts in the biological pump. Organic-matter production and subsurface remineralization rates adjust to compensate for circulation biases, changing the pathways and timescales with which nutrients return to the surface. Circulation biases can thus strongly alter the system’s response to ecological change, even when parameters are optimized.
Modeling the ocean's carbon and oxygen cycles accurately is challenging. Parameter optimization...
Altmetrics
Final-revised paper
Preprint