Articles | Volume 20, issue 14
https://doi.org/10.5194/bg-20-3027-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3027-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ultradian rhythms in shell composition of photosymbiotic and non-photosymbiotic mollusks
Dept. of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Analytical, Environmental and Geochemistry group (AMGC), Vrije
Universiteit Brussel, Brussels, Belgium
Daniel Killam
Clean Water Program, San Francisco Estuary Institute, Richmond, CA, USA
Lukas Fröhlich
Institute of Geosciences, University of Mainz, Mainz, Germany
Lennart de Nooijer
Dept. of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), Texel, the Netherlands
Wim Boer
Dept. of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), Texel, the Netherlands
Bernd R. Schöne
Institute of Geosciences, University of Mainz, Mainz, Germany
Julien Thébault
Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
Gert-Jan Reichart
Dept. of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), Texel, the Netherlands
Dept. of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Related authors
Rute Coimbra, Niels de Winter, Maria Ríos, Rui Bernardino, Darío Estraviz-López, Priscila Lohmann, Roberta Martino, Aurora Grandal-d'Anglade, Fernando Rocha, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-1770, https://doi.org/10.5194/egusphere-2025-1770, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
To understand human impact on climate and biodiversity, we studied fossil teeth of Gomphotherium from Miocene Portugal. Chemical patterns, like those in modern elephants, show seasonal diet changes and geophagy during dry periods. This suggests dry seasons shaped animal behavior and ecosystems, offering insights into how land life responded to past warming—and how it might react to future climate change.
Niels J. de Winter, Najat al Fudhaili, Iris Arndt, Philippe Claeys, René Fraaije, Steven Goderis, John Jagt, Matthias López Correa, Axel Munnecke, Jarosław Stolarski, and Martin Ziegler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2308, https://doi.org/10.5194/egusphere-2025-2308, 2025
Short summary
Short summary
To test the tolerance of past shallow marine ecosystems to extreme climates, we collected and compiled stable and clumped isotope data from rudist bivalves that lived in tropical shallow marine waters in present-day Oman during the Campanian (75 million years ago). Our dataset shows that these animals were able to withstand exceptionally warm temperatures, exceeding 40 °C, during hot summers. Our finding highlights how seasonal climate extremes impact marine biodiversity.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Niels J. de Winter
Geosci. Model Dev., 15, 1247–1267, https://doi.org/10.5194/gmd-15-1247-2022, https://doi.org/10.5194/gmd-15-1247-2022, 2022
Short summary
Short summary
ShellChron is a tool for determining the relative age of samples in carbonate (climate) archives based on the seasonal variability in temperature and salinity or precipitation recorded in stable oxygen isotope measurements. The model allows dating of fossil archives within a year, which is important for climate reconstructions on the sub-seasonal to decadal scale. In this paper, I introduce ShellChron and test it on a range of real and virtual datasets to demonstrate its use.
Niels J. de Winter, Tobias Agterhuis, and Martin Ziegler
Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, https://doi.org/10.5194/cp-17-1315-2021, 2021
Short summary
Short summary
Climate researchers often need to compromise in their sampling between increasing the number of measurements to obtain higher time resolution and combining measurements to improve the reliability of climate reconstructions. In this study, we test several methods for achieving the optimal balance between these competing interests by simulating seasonality reconstructions using stable and clumped isotopes. Our results inform sampling strategies for climate reconstructions in general.
Louise Delaigue, Gert-Jan Reichart, Li Qiu, Eric P. Achterberg, Yasmina Ourradi, Chris Galley, André Mutzberg, and Matthew P. Humphreys
Biogeosciences, 22, 5103–5121, https://doi.org/10.5194/bg-22-5103-2025, https://doi.org/10.5194/bg-22-5103-2025, 2025
Short summary
Short summary
Our study analysed pH in ocean surface waters to understand how it fluctuates with changes in temperature, salinity, and biological activities. We found that temperature mainly controls daily pH variations, but biological processes also play a role, especially in affecting CO2 levels between the ocean and atmosphere. Our research shows how these factors together maintain the balance of ocean chemistry, which is crucial for predicting changes in marine environments.
Yannick F. Bats, Klaas G. J. Nierop, Alice Stuart-Lee, Joost Frieling, Linda van Roij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 22, 4689–4704, https://doi.org/10.5194/bg-22-4689-2025, https://doi.org/10.5194/bg-22-4689-2025, 2025
Short summary
Short summary
In this study, we analyzed the molecular and stable carbon isotopic composition (δ13C) of pollen and spores (sporomorphs) that underwent chemical treatments that simulate diagenesis during fossilization. We show that the successive removal of sugars and lipids results in the depletion of 13C in the residual sporomorph, leaving rich aromatic compounds. This residual aromatic-rich structure likely represents diagenetically resistant sporopollenin, implying that diagenesis results in the depletion of 13C in pollen.
Evert de Froe, Christian Mohn, Karline Soetaert, Anna-Selma van der Kaaden, Gert-Jan Reichart, Laurence H. De Clippele, Sandra R. Maier, and Dick van Oevelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3385, https://doi.org/10.5194/egusphere-2025-3385, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Cold-water corals are important reef-building animals in the deep sea, and are found all over the world. So far, researchers have been mapping and predicting where cold-water corals can be found using video transects and statistics. This study provides the first process-based model in which corals are predicted based on ocean currents and food particle movement. The renewal of food by tidal currents close to the seafloor and corals proved essential in predicting where they can grow or not.
Rute Coimbra, Niels de Winter, Maria Ríos, Rui Bernardino, Darío Estraviz-López, Priscila Lohmann, Roberta Martino, Aurora Grandal-d'Anglade, Fernando Rocha, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-1770, https://doi.org/10.5194/egusphere-2025-1770, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
To understand human impact on climate and biodiversity, we studied fossil teeth of Gomphotherium from Miocene Portugal. Chemical patterns, like those in modern elephants, show seasonal diet changes and geophagy during dry periods. This suggests dry seasons shaped animal behavior and ecosystems, offering insights into how land life responded to past warming—and how it might react to future climate change.
Anna Cutmore, Nicole Bale, Rick Hennekam, Bingjie Yang, Darci Rush, Gert-Jan Reichart, Ellen C. Hopmans, and Stefan Schouten
Clim. Past, 21, 957–971, https://doi.org/10.5194/cp-21-957-2025, https://doi.org/10.5194/cp-21-957-2025, 2025
Short summary
Short summary
As human activities lower marine oxygen levels, understanding the impact on the marine nitrogen cycle is vital. The Black Sea, which became oxygen-deprived 9600 years ago, offers key insights. By studying organic compounds linked to nitrogen cycle processes, we found that, 7200 years ago, the Black Sea's nitrogen cycle significantly altered due to severe deoxygenation. This suggests that continued marine oxygen decline could similarly alter the marine nitrogen cycle, affecting vital ecosystems.
Niels J. de Winter, Najat al Fudhaili, Iris Arndt, Philippe Claeys, René Fraaije, Steven Goderis, John Jagt, Matthias López Correa, Axel Munnecke, Jarosław Stolarski, and Martin Ziegler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2308, https://doi.org/10.5194/egusphere-2025-2308, 2025
Short summary
Short summary
To test the tolerance of past shallow marine ecosystems to extreme climates, we collected and compiled stable and clumped isotope data from rudist bivalves that lived in tropical shallow marine waters in present-day Oman during the Campanian (75 million years ago). Our dataset shows that these animals were able to withstand exceptionally warm temperatures, exceeding 40 °C, during hot summers. Our finding highlights how seasonal climate extremes impact marine biodiversity.
Guilhem Türk, Christoph J. Gey, Bernd R. Schöne, Marius G. Floriancic, James W. Kirchner, Loic Leonard, Laurent Gourdol, Richard Keim, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2025-1530, https://doi.org/10.5194/egusphere-2025-1530, 2025
Short summary
Short summary
How landscape features affect water storage and release in catchments remains poorly understood. Here we used water stable isotopes in 12 streams to assess the fraction of precipitation reaching streamflow in less than 2 weeks. More recent precipitation was found when streamflow was high and the fraction was linked to the geology (i.e. high when impermeable, low when permeable). Such information is key for better anticipating streamflow responses to a changing climate.
Peter Kraal, Kristin A. Ungerhofer, Darci Rush, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2025-1870, https://doi.org/10.5194/egusphere-2025-1870, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Element cycles in oxygen-depleted areas such as upwelling areas inform future deoxygenation scenarios. The Benguela upwelling system shows strong decoupling of nitrogen and phosphorus cycling due to seasonal shelf anoxia. Anaerobic processes result in pelagic nitrogen loss as N2. At the same time, sediments are rich in fish-derived and bacterial phosphorus, with high fluxes of excess phosphate, altering deep-water nitrogen:phosphorus ratios. Such alterations can affect ocean functioning.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
Clim. Past, 21, 679–704, https://doi.org/10.5194/cp-21-679-2025, https://doi.org/10.5194/cp-21-679-2025, 2025
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2 history during the last glacial-to-interglacial transition. Using various geochemical tracers on archives from both subsurface and surface waters reveals enhanced storage of carbon at depth during the Last Glacial Maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Guilhem Türk, Christoph Johannes Gey, Bernd Reinhard Schöne, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2024-4169, https://doi.org/10.5194/egusphere-2024-4169, 2025
Short summary
Short summary
Past stream flow dynamics can be assessed using the stable isotopes of oxygen (O16/O18) in streams and precipitation from various proxy sources. Here, we show how they are retrieved in precipitation for ~150 years using temperature records and an atmospheric circulation classification scheme. Our robust and assumption-lean approach compares to model performances in the literature, demonstrating atmospheric controls of the temperature influence on precipitation O16/O18 compositions.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Guangnan Wu, Klaas G. J. Nierop, Bingjie Yang, Stefan Schouten, Gert-Jan Reichart, and Peter Kraal
EGUsphere, https://doi.org/10.5194/egusphere-2024-3192, https://doi.org/10.5194/egusphere-2024-3192, 2024
Short summary
Short summary
Estuaries store and process large amounts of carbon, making them vital to the global carbon cycle. In the Port of Rotterdam, we studied the source of organic matter (OM) in sediments and how it influences OM breakdown. We found that marine OM degrades faster than land OM, and human activities like dredging can accelerate this by exposing sediments to oxygen. Our findings highlight the impact of human activities on carbon storage in estuaries, which is key for managing estuarine carbon dynamics.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Laura Pacho, Lennart de Nooijer, and Gert-Jan Reichart
Biogeosciences, 20, 4043–4056, https://doi.org/10.5194/bg-20-4043-2023, https://doi.org/10.5194/bg-20-4043-2023, 2023
Short summary
Short summary
We analyzed Mg / Ca and other El / Ca (Na / Ca, B / Ca, Sr / Ca and Ba / Ca) in Nodosariata. Their calcite chemistry is markedly different to that of the other calcifying orders of foraminifera. We show a relation between the species average Mg / Ca and its sensitivity to changes in temperature. Differences were reflected in both the Mg incorporation and the sensitivities of Mg / Ca to temperature.
Valentin Siebert, Brivaëla Moriceau, Lukas Fröhlich, Bernd R. Schöne, Erwan Amice, Beatriz Beker, Kevin Bihannic, Isabelle Bihannic, Gaspard Delebecq, Jérémy Devesa, Morgane Gallinari, Yoan Germain, Émilie Grossteffan, Klaus Peter Jochum, Thierry Le Bec, Manon Le Goff, Céline Liorzou, Aude Leynaert, Claudie Marec, Marc Picheral, Peggy Rimmelin-Maury, Marie-Laure Rouget, Matthieu Waeles, and Julien Thébault
Earth Syst. Sci. Data, 15, 3263–3281, https://doi.org/10.5194/essd-15-3263-2023, https://doi.org/10.5194/essd-15-3263-2023, 2023
Short summary
Short summary
This article presents an overview of the results of biological, chemical and physical parameters measured at high temporal resolution (sampling once and twice per week) during environmental monitoring that took place in 2021 in the Bay of Brest. We strongly believe that this dataset could be very useful for other scientists performing sclerochronological investigations, studying biogeochemical cycles or conducting various ecological research projects.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Andrew L. A. Johnson, Annemarie M. Valentine, Bernd R. Schöne, Melanie J. Leng, and Stijn Goolaerts
Clim. Past, 18, 1203–1229, https://doi.org/10.5194/cp-18-1203-2022, https://doi.org/10.5194/cp-18-1203-2022, 2022
Short summary
Short summary
Determining seasonal temperatures demands proxies that record the highest and lowest temperatures over the annual cycle. Many record neither, but oxygen isotope profiles from shells in principle record both. Oxygen isotope data from late Pliocene bivalve molluscs of the southern North Sea basin show that the seasonal temperature range was at times much higher than previously estimated and higher than now. This suggests reduced oceanic heat supply, in contrast to some previous interpretations.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Niels J. de Winter
Geosci. Model Dev., 15, 1247–1267, https://doi.org/10.5194/gmd-15-1247-2022, https://doi.org/10.5194/gmd-15-1247-2022, 2022
Short summary
Short summary
ShellChron is a tool for determining the relative age of samples in carbonate (climate) archives based on the seasonal variability in temperature and salinity or precipitation recorded in stable oxygen isotope measurements. The model allows dating of fossil archives within a year, which is important for climate reconstructions on the sub-seasonal to decadal scale. In this paper, I introduce ShellChron and test it on a range of real and virtual datasets to demonstrate its use.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Indah Ardiningsih, Kyyas Seyitmuhammedov, Sylvia G. Sander, Claudine H. Stirling, Gert-Jan Reichart, Kevin R. Arrigo, Loes J. A. Gerringa, and Rob Middag
Biogeosciences, 18, 4587–4601, https://doi.org/10.5194/bg-18-4587-2021, https://doi.org/10.5194/bg-18-4587-2021, 2021
Short summary
Short summary
Organic Fe speciation is investigated along a natural gradient of the western Antarctic Peninsula from an ice-covered shelf to the open ocean. The two major fronts in the region affect the distribution of ligands. The excess ligands not bound to dissolved Fe (DFe) comprised up to 80 % of the total ligand concentrations, implying the potential to solubilize additional Fe input. The ligands on the shelf can increase the DFe residence time and fuel local primary production upon ice melt.
Niels J. de Winter, Tobias Agterhuis, and Martin Ziegler
Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, https://doi.org/10.5194/cp-17-1315-2021, 2021
Short summary
Short summary
Climate researchers often need to compromise in their sampling between increasing the number of measurements to obtain higher time resolution and combining measurements to improve the reliability of climate reconstructions. In this study, we test several methods for achieving the optimal balance between these competing interests by simulating seasonality reconstructions using stable and clumped isotopes. Our results inform sampling strategies for climate reconstructions in general.
Ove H. Meisel, Joshua F. Dean, Jorien E. Vonk, Lukas Wacker, Gert-Jan Reichart, and Han Dolman
Biogeosciences, 18, 2241–2258, https://doi.org/10.5194/bg-18-2241-2021, https://doi.org/10.5194/bg-18-2241-2021, 2021
Short summary
Short summary
Arctic permafrost lakes form thaw bulbs of unfrozen soil (taliks) beneath them where carbon degradation and greenhouse gas production are increased. We analyzed the stable carbon isotopes of Alaskan talik sediments and their porewater dissolved organic carbon and found that the top layers of these taliks are likely more actively degraded than the deeper layers. This in turn implies that these top layers are likely also more potent greenhouse gas producers than the underlying deeper layers.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Siham de Goeyse, Alice E. Webb, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 393–401, https://doi.org/10.5194/bg-18-393-2021, https://doi.org/10.5194/bg-18-393-2021, 2021
Short summary
Short summary
Foraminifera are calcifying organisms that play a role in the marine inorganic-carbon cycle and are widely used to reconstruct paleoclimates. However, the fundamental process by which they calcify remains essentially unknown. Here we use inhibitors to show that an enzyme is speeding up the conversion between bicarbonate and CO2. This helps the foraminifera acquire sufficient carbon for calcification and might aid their tolerance to elevated CO2 level.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
Cited articles
Agbaje, O. B. A., Wirth, R., Morales, L. F. G., Shirai, K., Kosnik, M., Watanabe, T., and Jacob, D. E.: Architecture of crossed-lamellar bivalve shells: the southern giant clam (Tridacna derasa, Röding, 1798), R. Soc. Open Sci., 4, 170622, https://doi.org/10.1098/rsos.170622, 2017.
Al-Aasm, I. S. and Veizer, J.: Diagenetic stabilization of aragonite and
low-Mg calcite, I. Trace elements in rudists, J. Sediment. Res., 56,
138–152, 1986a.
Al-Aasm, I. S. and Veizer, J.: Diagenetic stabilization of aragonite and
low-Mg calcite, II. Stable isotopes in rudists, J. Sediment. Res., 56, 763–770, 1986b.
Al-Najjar, T., Badran, M. I., Richter, C., Meyerhoefer, M., and Sommer, U.:
Seasonal dynamics of phytoplankton in the Gulf of Aqaba, Red Sea,
Hydrobiologia, 579, 69–83, https://doi.org/10.1007/s10750-006-0365-z, 2007.
Al-Taani, A. A., Rashdan, M., and Khashashneh, S.: Atmospheric dry
deposition of mineral dust to the Gulf of Aqaba, Red Sea: Rate and trace
elements, Mar. Pollut. Bull., 92, 252–258,
https://doi.org/10.1016/j.marpolbul.2014.11.047, 2015.
Anand, P. and Elderfield, H.: Variability of Mg Ca and Sr Ca between and within the planktonic foraminifers Globigerina bulloides and Globorotalia truncatulinoides, Geochem. Geophy. Geosy., 6, Q11D15,
https://doi.org/10.1029/2004GC000811, 2005.
Armstrong, E. J., Roa, J. N., Stillman, J. H., and Tresguerres, M.: Symbiont
photosynthesis in giant clams is promoted by V-type H+-ATPase from host
cells, J. Exp. Biol., 221, jeb177220, https://doi.org/10.1242/jeb.177220, 2018.
Ballesta-Artero, I., Witbaard, R., Carroll, M. L., and van der Meer, J.:
Environmental factors regulating gaping activity of the bivalve Arctica
islandica in Northern Norway, Mar. Biol., 164, 116, https://doi.org/10.1007/s00227-017-3144-7, 2017.
Barats, A., Amouroux, D., Pécheyran, C., Chauvaud, L., and Donard, O. F.
X.: High-Frequency Archives of Manganese Inputs To Coastal Waters (Bay of
Seine, France) Resolved by the LA-ICP-MS Analysis of Calcitic Growth Layers
along Scallop Shells (Pecten maximus), Environ. Sci. Technol., 42, 86–92,
https://doi.org/10.1021/es0701210, 2008.
Barats, A., Amouroux, D., Chauvaud, L., Pécheyran, C., Lorrain, A., Thébault, J., Church, T. M., and Donard, O. F. X.: High frequency Barium profiles in shells of the Great Scallop Pecten maximus: a methodical long-term and multi-site survey in Western Europe, Biogeosciences, 6, 157–170, https://doi.org/10.5194/bg-6-157-2009, 2009.
Batenburg, S. J., Reichart, G.-J., Jilbert, T., Janse, M., Wesselingh, F.
P., and Renema, W.: Interannual climate variability in the Miocene: High
resolution trace element and stable isotope ratios in giant clams,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 306, 75–81, 2011.
Black, B. A.: Climate-driven synchrony across tree, bivalve, and rockfish
growth-increment chronologies of the northeast Pacific, Mar. Ecol. Prog.
Ser., 378, 37–46, 2009.
Boo, M. V., Chew, S. F., and Ip, Y. K.: The colorful mantle of the giant
clam Tridacna squamosa expresses a homolog of electrogenic sodium:
Bicarbonate cotransporter 2 that mediates the supply of inorganic carbon to
photosynthesizing symbionts, PloS One, 16, e0258519,
https://doi.org/10.1371/journal.pone.0258519, 2021.
Bougeois, L., De Rafélis, M., Reichart, G.-J., De Nooijer, L. J.,
Nicollin, F., and Dupont-Nivet, G.: A high resolution study of trace
elements and stable isotopes in oyster shells to estimate Central Asian
Middle Eocene seasonality, Chem. Geol., 363, 200–212, 2014.
Carlson, D. F., Fredj, E., and Gildor, H.: The annual cycle of vertical
mixing and restratification in the Northern Gulf of Eilat/Aqaba (Red Sea)
based on high temporal and vertical resolution observations, Deep-Sea Res., 84, 1–17, https://doi.org/10.1016/j.dsr.2013.10.004, 2014.
Carré, M., Bentaleb, I., Bruguier, O., Ordinola, E., Barrett, N. T., and
Fontugne, M.: Calcification rate influence on trace element concentrations
in aragonitic bivalve shells: Evidences and mechanisms, Geochim. Cosmochim.
Acta, 70, 4906–4920, https://doi.org/10.1016/j.gca.2006.07.019, 2006.
Chauvaud, L., Lorrain, A., Dunbar, R. B., Paulet, Y.-M., Thouzeau, G., Jean,
F., Guarini, J.-M., and Mucciarone, D.: Shell of the Great Scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes, Geochem.
Geophy. Geosy., 6, Q08001, https://doi.org/10.1029/2004GC000890, 2005.
Checa, A. G., Esteban-Delgado, F. J., and Rodríguez-Navarro, A. B.:
Crystallographic structure of the foliated calcite of bivalves, J. Struct.
Biol., 157, 393–402, 2007.
Chew, S. F., Koh, C. Z., Hiong, K. C., Choo, C. Y., Wong, W. P., Neo, M. L.,
and Ip, Y. K.: Light-enhanced expression of Carbonic Anhydrase 4-like
supports shell formation in the fluted giant clam Tridacna squamosa, Gene,
683, 101–112, 2019.
Cochran, J. K., Kallenberg, K., Landman, N. H., Harries, P. J., Weinreb, D.,
Turekian, K. K., Beck, A. J., and Cobban, W. A.: Effect of diagenesis on the
Sr, O, and C isotope composition of late Cretaceous mollusks from the
Western Interior Seaway of North America, Am. J. Sci., 310, 69–88,
https://doi.org/10.2475/02.2010.01, 2010.
Cohen, A. L., Owens, K. E., Layne, G. D., and Shimizu, N.: The Effect of
Algal Symbionts on the Accuracy of Sr Ca Paleotemperatures from Coral,
Science, 296, 331–333, https://doi.org/10.1126/science.1069330, 2002.
Coimbra, J., Machado, J., Fernandes, P. L., Ferreira, H. G., and Ferreira,
K. G.: Electrophysiology of the Mantle of Anodonta Cygnea, J. Exp. Biol.,
140, 65–88, https://doi.org/10.1242/jeb.140.1.65, 1988.
Coimbra, R., Huck, S., de Winter, N. J., Heimhofer, U., and Claeys, P.:
Improving the detection of shell alteration: Implications for
sclerochronology, Palaeogeogr. Palaeoclimatol. Palaeoecol., 559, 109968,
https://doi.org/10.1016/j.palaeo.2020.109968, 2020.
Comboul, M., Emile-Geay, J., Evans, M. N., Mirnateghi, N., Cobb, K. M., and Thompson, D. M.: A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives, Clim. Past, 10, 825–841, https://doi.org/10.5194/cp-10-825-2014, 2014.
Crippa, G., Griesshaber, E., Checa, A. G., Harper, E. M., Roda, M. S., and
Schmahl, W. W.: Orientation patterns of aragonitic crossed-lamellar, fibrous
prismatic and myostracal microstructures of modern Glycymeris shells, J.
Struct. Biol., 212, 107653, https://doi.org/10.1016/j.jsb.2020.107653, 2020.
Dauphin, Y., Cuif, J., Doucet, J., Salomé, M., Susini, J., and Williams,
C.: In situ mapping of growth lines in the calcitic prismatic layers of
mollusc shells using X-ray absorption near-edge structure (XANES)
spectroscopy at the sulphur K-edge, Mar. Biol., 142, 299–304, 2003.
Day, C. C. and Henderson, G. M.: Controls on trace-element partitioning in
cave-analogue calcite, Geochim. Cosmochim. Acta, 120, 612–627,
https://doi.org/10.1016/j.gca.2013.05.044, 2013.
DeCarlo, T. M. and Cohen, A. L.: Dissepiments, density bands and signatures
of thermal stress in Porites skeletons, Coral Reefs, 36, 749–761,
https://doi.org/10.1007/s00338-017-1566-9, 2017.
Dehairs, F., Baeyens, W., and Van Gansbeke, D.: Tight coupling between
enrichment of iron and manganese in North Sea suspended matter and
sedimentary redox processes: Evidence for seasonal variability, Estuar.
Coast. Shelf Sci., 29, 457–471, https://doi.org/10.1016/0272-7714(89)90080-2, 1989.
de Winter, N. J.: nielsjdewinter/TE_circadian: First beta (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.6603175, 2022.
de Winter, N. J.: Supplementary information for: “Ultradian rhythms in
shell compositions of photosymbiotic and non-photosymbiotic mollusks”, Zenodo [data set], https://doi.org/10.5281/zenodo.8058451, 2023.
de Winter, N. J. and Claeys, P.: Micro X-ray fluorescence (μXRF) line
scanning on Cretaceous rudist bivalves: A new method for reproducible trace
element profiles in bivalve calcite, Sedimentology, 64, 231–251,
https://doi.org/10.1111/sed.12299, 2017.
de Winter, N. J., Goderis, S., Dehairs, F., Jagt, J. W., Fraaije, R. H., Van
Malderen, S. J., Vanhaecke, F., and Claeys, P.: Tropical seasonality in the
late Campanian (late Cretaceous): Comparison between multiproxy records from
three bivalve taxa from Oman, Palaeogeogr. Palaeoclimatol. Palaeoecol., 485,
740–760, 2017.
de Winter, N. J., Vellekoop, J., Vorsselmans, R., Golreihan, A., Soete, J., Petersen, S. V., Meyer, K. W., Casadio, S., Speijer, R. P., and Claeys, P.: An assessment of latest Cretaceous Pycnodonte vesicularis (Lamarck, 1806) shells as records for palaeoseasonality: a multi-proxy investigation, Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, 2018.
de Winter, N. J., Goderis, S., Malderen, S. J. M. V., Sinnesael, M.,
Vansteenberge, S., Snoeck, C., Belza, J., Vanhaecke, F., and Claeys, P.:
Subdaily-Scale Chemical Variability in a Torreites Sanchezi Rudist Shell:
Implications for Rudist Paleobiology and the Cretaceous Day-Night Cycle,
Paleoceanogr. Paleoclimatology, 35, e2019PA003723,
https://doi.org/10.1029/2019PA003723, 2020.
de Winter, N. J., Müller, I. A., Kocken, I. J., Thibault, N., Ullmann,
C. V., Farnsworth, A., Lunt, D. J., Claeys, P., and Ziegler, M.: Absolute
seasonal temperature estimates from clumped isotopes in bivalve shells
suggest warm and variable greenhouse climate, Commun. Earth Environ., 2,
1–8, https://doi.org/10.1038/s43247-021-00193-9, 2021a.
de Winter, N. J., Agterhuis, T., and Ziegler, M.: Optimizing sampling strategies in high-resolution paleoclimate records, Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, 2021b.
de Winter, N. J., Witbaard, R., Kocken, I. J., Müller, I. A., Guo, J.,
Goudsmit, B., and Ziegler, M.: Temperature Dependence of Clumped Isotopes
(Δ47) in Aragonite, Geophys. Res. Lett., 49, e2022GL099479,
https://doi.org/10.1029/2022GL099479, 2022.
de Winter, N. J., van Sikkeleras, S., Goudsmit-Harzevoort, B., Boer, W., de Nooijer, L., Reichart, G.-J., Claeys, P., and Witbaard, R.: Tracing timing of growth in cultured molluscs using strontium spiking, Frontiers in Marine Science, 10, 1157929, https://doi.org/10.3389/fmars.2023.1157929, 2023.
Dunbar, R. B. and Wellington, G. M.: Stable isotopes in a branching coral
monitor seasonal temperature variation, Nature, 293, 453–455, 1981.
Eggins, S., De Deckker, P., and Marshall, J.: Mg Ca variation in planktonic
foraminifera tests: implications for reconstructing palaeo-seawater
temperature and habitat migration, Earth Planet. Sc. Lett., 212, 291–306,
https://doi.org/10.1016/S0012-821X(03)00283-8, 2003.
Elliot, M., Welsh, K., Chilcott, C., McCulloch, M., Chappell, J., and
Ayling, B.: Profiles of trace elements and stable isotopes derived from
giant long-lived Tridacna gigas bivalves: potential applications in
paleoclimate studies, Palaeogeogr. Palaeoclimatol. Palaeoecol., 280,
132–142, 2009.
Freitas, P. S., Clarke, L. J., Kennedy, H., and Richardson, C. A.: Ion microprobe assessment of the heterogeneity of Mg Ca, Sr Ca and Mn Ca ratios in Pecten maximus and Mytilus edulis (bivalvia) shell calcite precipitated at constant temperature, Biogeosciences, 6, 1209–1227, https://doi.org/10.5194/bg-6-1209-2009, 2009.
Fröhlich, L., Siebert, V., Walliser, E. O., Thébault, J., Jochum, K.
P., Chauvaud, L., and Schöne, B. R.: Ba Ca profiles in shells of Pecten maximus – A proxy for specific primary producers rather than bulk
phytoplankton, Chem. Geol., 593, 120743, https://doi.org/10.1016/j.chemgeo.2022.120743, 2022.
Gannon, M. E., Pérez-Huerta, A., Aharon, P., and Street, S. C.: A
biomineralization study of the Indo-Pacific giant clam Tridacna gigas, Coral
Reefs, 36, 503–517, https://doi.org/10.1007/s00338-016-1538-5, 2017.
García-March, J. R., Sanchís Solsona, M. Á., and
García-Carrascosa, A. M.: Shell gaping behaviour of Pinna nobilis L.,
1758: circadian and circalunar rhythms revealed by in situ monitoring, Mar.
Biol., 153, 689–698, https://doi.org/10.1007/s00227-007-0842-6, 2008.
Gilbert, P. U., Bergmann, K. D., Myers, C. E., Marcus, M. A., DeVol, R. T.,
Sun, C.-Y., Blonsky, A. Z., Tamre, E., Zhao, J., and Karan, E. A.: Nacre
tablet thickness records formation temperature in modern and fossil shells,
Earth Planet. Sc. Lett., 460, 281–292, 2017.
Gillikin, D. P., Lorrain, A., Navez, J., Taylor, J. W., André, L.,
Keppens, E., Baeyens, W., and Dehairs, F.: Strong biological controls on
Sr Ca ratios in aragonitic marine bivalve shells, Geochem. Geophy.
Geosy., 6, Q05009, https://doi.org/10.1029/2004GC000874, 2005.
Gillikin, D. P., Lorrain, A., Paulet, Y.-M., André, L., and Dehairs, F.:
Synchronous barium peaks in high-resolution profiles of calcite and
aragonite marine bivalve shells, Geo-Mar. Lett., 28, 351–358, 2008.
Goodwin, D. H., Paul, P., and Wissink, C. L.: MoGroFunGen: A numerical model
for reconstructing intra-annual growth rates of bivalve molluscs,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 276, 47–55,
https://doi.org/10.1016/j.palaeo.2009.02.026, 2009.
Guillaume Olivier, M., Leroux, E., Rabineau, M., Le Hir, P., Granjeon, D.,
Chataigner, T., Beudin, A., and Muller, H.: Numerical modelling of a
Macrotidal Bay over the last 9000 years: An interdisciplinary methodology
to understand the influence of sea-level variations on tidal currents in the
Bay of Brest, Cont. Shelf Res., 231, 104595,
https://doi.org/10.1016/j.csr.2021.104595, 2021.
Guillong, M., Meier, D. L., Allan, M. M., Heinrich, C. A., and Yardley, B.
W. D.: SILLS: A Matlab-based program for the reduction of laser ablation
ICP–MS data of homogenous materials and inclusions, Mineral. Assoc. Can.
Short Course, 40, 328–333, 2008.
Hagiwara, S. and Byerly, L.: Calcium channel, Annu. Rev. Neurosci., 4,
69–125, 1981.
Hallmann, N., Schöne, B. R., Strom, A., and Fiebig, J.: An intractable
climate archive – Sclerochronological and shell oxygen isotope analyses of
the Pacific geoduck, Panopea abrupta (bivalve mollusk) from Protection
Island (Washington State, USA), Palaeogeogr. Palaeoclimatol. Palaeoecol.,
269, 115–126, 2008.
Hily, C., Potin, P., and Floc'h, J.-Y.: Structure of subtidal algal
assemblages on soft-bottom sediments: fauna/flora interactions and role of
disburbances in the Bay of Brest, France, Mar. Ecol. Prog. Ser., 85,
115–130, 1992.
Höche, N., Peharda, M., Walliser, E. O., and Schöne, B. R.:
Morphological variations of crossed-lamellar ultrastructures of Glycymeris
bimaculata (Bivalvia) serve as a marine temperature proxy, Estuar. Coast.
Shelf Sci., 237, 106658, https://doi.org/10.1016/j.ecss.2020.106658, 2020.
Höche, N., Walliser, E. O., de Winter, N. J., Witbaard, R., and
Schöne, B. R.: Temperature-induced microstructural changes in shells of
laboratory-grown Arctica islandica (Bivalvia), PloS One, 16, e0247968, https://doi.org/10.1371/journal.pone.0247968, 2021.
Huyghe, D., de Rafelis, M., Ropert, M., Mouchi, V., Emmanuel, L., Renard,
M., and Lartaud, F.: New insights into oyster high-resolution hinge growth
patterns, Mar. Biol., 166, 48, https://doi.org/10.1007/s00227-019-3496-2, 2019.
Huyghe, D., Daëron, M., de Rafelis, M., Blamart, D., Sébilo, M.,
Paulet, Y.-M., and Lartaud, F.: Clumped isotopes in modern marine bivalves,
Geochim. Cosmochim. Acta, 316, 41–58, https://doi.org/10.1016/j.gca.2021.09.019, 2021.
Iluz, D., Dishon, G., Capuzzo, E., Meeder, E., Astoreca, R., Montecino, V.,
Znachor, P., Ediger, D., and Marra, J.: Short-term variability in primary
productivity during a wind-driven diatom bloom in the Gulf of Eilat (Aqaba),
Aquat. Microb. Ecol., 56, 205–215, https://doi.org/10.3354/ame01321, 2009.
Inoue, M., Nakamura, T., Tanaka, Y., Suzuki, A., Yokoyama, Y., Kawahata, H.,
Sakai, K., and Gussone, N.: A simple role of coral-algal symbiosis in coral
calcification based on multiple geochemical tracers, Geochim. Cosmochim.
Acta, 235, 76–88, https://doi.org/10.1016/j.gca.2018.05.016, 2018.
Ip, Y. K. and Chew, S. F.: Light-Dependent Phenomena and Related Molecular
Mechanisms in Giant Clam-Dinoflagellate Associations: A Review, Front. Mar.
Sci., 8, 627722, https://doi.org/10.3389/fmars.2021.627722, 2021.
Ip, Y. K., Loong, A. M., Hiong, K. C., Wong, W. P., Chew, S. F., Reddy, K.,
Sivaloganathan, B., and Ballantyne, J. S.: Light induces an increase in the
pH of and a decrease in the ammonia concentration in the extrapallial fluid
of the giant clam Tridacna squamosa, Physiol. Biochem. Zool., 79, 656–664,
2006.
Ip, Y. K., Koh, C. Z., Hiong, K. C., Choo, C. Y., Boo, M. V., Wong, W. P.,
Neo, M. L., and Chew, S. F.: Carbonic anhydrase 2-like in the giant clam,
Tridacna squamosa: characterization, localization, response to light, and
possible role in the transport of inorganic carbon from the host to its
symbionts, Physiol. Rep., 5, e13494, https://doi.org/10.14814/phy2.13494, 2017.
Ivany, L. C.: Reconstructing paleoseasonality from accretionary skeletal
carbonates – challenges and opportunities, Paleontol. Soc. Pap., 18,
133–166, 2012.
Ivany, L. C. and Judd, E. J.: Deciphering Temperature Seasonality in Earth's
Ancient Oceans, Annu. Rev. Earth Planet. Sci., 50, 123–152,
https://doi.org/10.1146/annurev-earth-032320-095156, 2022.
Jablonski, D., Roy, K., Valentine, J. W., Price, R. M., and Anderson, P. S.:
The Impact of the Pull of the Recent on the History of Marine Diversity,
Science, 300, 1133–1135, https://doi.org/10.1126/science.1083246, 2003.
Jablonski, D., Huang, S., Roy, K., and Valentine, J. W.: Shaping the
latitudinal diversity gradient: new perspectives from a synthesis of
paleobiology and biogeography, Am. Nat., 189, 1–12, 2017.
Jochum, K. P., Willbold, M., Raczek, I., Stoll, B., and Herwig, K.: Chemical
Characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G,
GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and
LA-ICP-MS, Geostand. Geoanal. Res., 29, 285–302,
https://doi.org/10.1111/j.1751-908X.2005.tb00901.x, 2005.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob,
D. E., Stracke, A., Birbaum, K., and Frick, D. A.: Determination of
reference values for NIST SRM 610–617 glasses following ISO guidelines,
Geostand. Geoanal. Res., 35, 397–429, 2011.
Jones, D. S.: Sclerochronology: reading the record of the molluscan shell:
annual growth increments in the shells of bivalve molluscs record marine
climatic changes and reveal surprising longevity, Am. Sci., 71, 384–391,
1983.
Jones, D. S. and Quitmyer, I. R.: Marking Time with Bivalve Shells: Oxygen
Isotopes and Season of Annual Increment Formation, Palaios, 11, 340–346,
https://doi.org/10.2307/3515244, 1996.
Judd, E. J., Wilkinson, B. H., and Ivany, L. C.: The life and time of clams:
Derivation of intra-annual growth rates from high-resolution oxygen isotope
profiles, Palaeogeogr. Palaeoclimatol. Palaeoecol., 490, 70–83, 2018.
Killam, D., Thomas, R., Al-Najjar, T., and Clapham, M.: Interspecific and
Intrashell Stable Isotope Variation Among the Red Sea Giant Clams, Geochem.
Geophy. Geosy., 21, e2019GC008669, https://doi.org/10.1029/2019GC008669, 2020.
Killam, D., Al-Najjar, T., and Clapham, M.: Giant clam growth in the Gulf of
Aqaba is accelerated compared to fossil populations, Proc. R. Soc. B Biol.
Sci., 288, 20210991, https://doi.org/10.1098/rspb.2021.0991, 2021.
Killam, D., Thompson, D., Morgan, K., and Russell, M.: Giant clams as
open-source, scalable reef environmental biomonitors, Plos one, 18,
e0278752, https://doi.org/10.1371/journal.pone.0278752, 2023.
Killam, D. E. and Clapham, M. E.: Identifying the ticks of bivalve shell
clocks: Seasonal growth in relation to temperature and food supply, Palaios,
33, 228–236, https://doi.org/10.2110/palo.2017.072, 2018.
Klein, R. T., Lohmann, K. C., and Thayer, C. W.: Bivalve skeletons record
sea-surface temperature and δ18O via Mg Ca and 18O 16O ratios, Geology, 24, 415–418, 1996.
Komagoe, T., Watanabe, T., Shirai, K., Yamazaki, A., and Uematu, M.:
Geochemical and Microstructural Signals in Giant Clam Tridacna maxima
Recorded Typhoon Events at Okinotori Island, Japan, J. Geophys. Res.-Biogeo., 123, 1460–1474, https://doi.org/10.1029/2017JG004082, 2018.
Kontoyannis, C. G. and Vagenas, N. V.: Calcium carbonate phase analysis
using XRD and FT-Raman spectroscopy, Analyst, 125, 251–255,
https://doi.org/10.1039/A908609I, 2000.
Ku, H. H.: Notes on the use of propagation of error formulas, J. Res. Natl.
Bur. Stand., 70, 263–273, 1966.
Lazareth, C. E., Vander Putten, E., André, L., and Dehairs, F.:
High-resolution trace element profiles in shells of the mangrove bivalve
Isognomon ephippium: a record of environmental spatio-temporal variations?,
Estuar. Coast. Shelf Sci., 57, 1103–1114, 2003.
Lazareth, C. E., Guzman, N., Poitrasson, F., Candaudap, F., and Ortlieb, L.:
Nyctemeral variations of magnesium intake in the calcitic layer of a Chilean
mollusk shell (Concholepas concholepas, Gastropoda), Geochim. Cosmochim.
Acta, 71, 5369–5383, 2007.
Lazier, A. V., Smith, J. E., Risk, M. J., and Schwarcz, H. P.: The skeletal
structure of Desmophyllum cristagalli: the use of deep-water corals in
sclerochronology, Lethaia, 32, 119–130, 1999.
Lin, I., Liu, W. T., Wu, C.-C., Wong, G. T. F., Hu, C., Chen, Z., Liang,
W.-D., Yang, Y., and Liu, K.-K.: New evidence for enhanced ocean primary
production triggered by tropical cyclone, Geophys. Res. Lett., 30, 1718,
https://doi.org/10.1029/2003GL017141, 2003.
Lorrain, A., Gillikin, D. P., Paulet, Y.-M., Chauvaud, L., Le Mercier, A.,
Navez, J., and André, L.: Strong kinetic effects on Sr Ca ratios in the calcitic bivalve Pecten maximus, Geology, 33, 965–968, 2005.
Lough, J. M.: Climate records from corals, WIREs Clim. Change, 1, 318–331,
https://doi.org/10.1002/wcc.39, 2010.
Madkour, H. A.: Distribution and relationships of heavy metals in the giant
clam (Tridacna maxima) and associated sediments from different sites in the
Egyptian Red Sea Coast, Egypt. J. Aquat. Res., 31, 45–59, 2005.
Mahé, K., Bellamy, E., Lartaud, F., and de Rafélis, M.: Calcein and
manganese experiments for marking the shell of the common cockle
(Cerastoderma edule): tidal rhythm validation of increments formation,
Aquat. Living Resour., 23, 239–245, https://doi.org/10.1051/alr/2010025,
2010.
Manasrah, R., Abu-Hilal, A., and Rasheed, M.: Physical and Chemical
Properties of Seawater in the Gulf of Aqaba and Red Sea, in: Oceanographic
and Biological Aspects of the Red Sea, edited by: Rasul, N. M. A. and
Stewart, I. C. F., Springer International Publishing, Cham, 41–73,
https://doi.org/10.1007/978-3-319-99417-8_3, 2019.
Marin, F. and Luquet, G.: Molluscan shell proteins, C. R. Palevol.,
3, 469–492, https://doi.org/10.1016/j.crpv.2004.07.009, 2004.
Mat, A. M., Sarrazin, J., Markov, G. V., Apremont, V., Dubreuil, C.,
Eché, C., Fabioux, C., Klopp, C., Sarradin, P.-M., Tanguy, A., Huvet,
A., and Matabos, M.: Biological rhythms in the deep-sea hydrothermal mussel
Bathymodiolus azoricus, Nat. Commun., 11, 3454,
https://doi.org/10.1038/s41467-020-17284-4, 2020.
Meibom, A., Stage, M., Wooden, J., Constantz, B. R., Dunbar, R. B., Owen,
A., Grumet, N., Bacon, C. R., and Chamberlain, C. P.: Monthly
Strontium/Calcium oscillations in symbiotic coral aragonite: Biological
effects limiting the precision of the paleotemperature proxy, Geophys. Res.
Lett., 30, 1418, https://doi.org/10.1029/2002GL016864, 2003.
Meyers, S. R.: Seeing red in cyclic stratigraphy: Spectral noise estimation
for astrochronology, Paleoceanography, 27, PA3228, https://doi.org/10.1029/2012PA002307, 2012.
Meyers, S. R.: Astrochron: An R package for astrochronology, The Comprehensive R Archive Network, http://cran.r-project.org/package=astrochron (last access: 19 July 2023), 2014.
Mohammed, T. A. A., Mohamed, M. H., Zamzamy, R. M., and Mahmoud, M. A. M.:
Growth rates of the giant clam Tridacna maxima (Röding, 1798) reared in
cages in the Egyptian Red Sea, Egypt. J. Aquat. Res., 45, 67–73,
https://doi.org/10.1016/j.ejar.2019.02.003, 2019.
Munro, J. L.: Estimation of the parameters of the von Bertalanffy growth
equation from recapture data at variable time intervals, ICES J. Mar. Sci.,
40, 199–200, https://doi.org/10.1093/icesjms/40.2.199, 1982.
Nassar, M. Z., Mohamed, H. R., Khiray, H. M., and Rashedy, S. H.: Seasonal
fluctuations of phytoplankton community and physico-chemical parameters of
the north western part of the Red Sea, Egypt, Egypt. J. Aquat. Res., 40,
395–403, https://doi.org/10.1016/j.ejar.2014.11.002, 2014.
Nedoncelle, K., Lartaud, F., de Rafelis, M., Boulila, S., and Le Bris, N.: A
new method for high-resolution bivalve growth rate studies in hydrothermal
environments, Mar. Biol., 160, 1427–1439,
https://doi.org/10.1007/s00227-013-2195-7, 2013.
Onuma, N., Masuda, F., Hirano, M., and Wada, K.: Crystal structure control
on trace element partition in molluscan shell formation, Geochem. J., 13,
187–189, 1979.
Pandolfi, J. M. and Kiessling, W.: Gaining insights from past reefs to
inform understanding of coral reef response to global climate change, Curr.
Opin. Environ. Sustain., 7, 52–58, https://doi.org/10.1016/j.cosust.2013.11.020, 2014.
Pannella, G.: Tidal growth patterns in recent and fossil mollusc bivalve
shells: a tool for the reconstruction of paleotides, Naturwissenschaften,
63, 539–543, 1976.
Petersen, S. V., Tabor, C. R., Lohmann, K. C., Poulsen, C. J., Meyer, K. W.,
Carpenter, S. J., Erickson, J. M., Matsunaga, K. K., Smith, S. Y., and
Sheldon, N. D.: Temperature and salinity of the Late Cretaceous western
interior seaway, Geology, 44, 903–906, 2016.
Poitevin, P., Chauvaud, L., Pécheyran, C., Lazure, P., Jolivet, A., and
Thébault, J.: Does trace element composition of bivalve shells record
utra-high frequency environmental variations?, Mar. Environ. Res., 158,
104943, https://doi.org/10.1016/j.marenvres.2020.104943, 2020.
Polsenaere, P., Deflandre, B., Thouzeau, G., Rigaud, S., Cox, T., Amice, E.,
Bec, T. L., Bihannic, I., and Maire, O.: Comparison of benthic oxygen
exchange measured by aquatic Eddy Covariance and Benthic Chambers in two
contrasting coastal biotopes (Bay of Brest, France), Reg. Stud. Mar. Sci.,
43, 101668, https://doi.org/10.1016/j.rsma.2021.101668, 2021.
Popov, S. V.: Formation of bivalve shells and their microstructure,
Paleontol. J., 48, 1519–1531, https://doi.org/10.1134/S003103011414010X, 2014.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, https://www.r-project.org/ (last access: 19 July 2023), 2013.
Richard, M.: Analyse de la composition élémentaire de Pecten maximus
par HR-ICP-MS Element 2: développements méthodologiques et
interprétations écologiques, PhD Thesis, Université de Bretagne
occidentale-Brest, https://www.theses.fr/2009BRES2031 (last access: 19 July 2023), 2009.
Richardson, C. A., Crisp, D. J., Runham, N. W., and Gruffydd, L. D.: The use
of tidal growth bands in the shell of Cerastoderma edule to measure seasonal growth rates under cool temperate and sub-arctic
conditions, J. Mar. Biol. Assoc. UK, 60, 977–989,
https://doi.org/10.1017/S002531540004203X, 1980.
Richter, C., Roa-Quiaoit, H., Jantzen, C., Al-Zibdah, M., and Kochzius, M.:
Collapse of a new living species of giant clam in the Red Sea, Curr. Biol.,
18, 1349–1354, 2008.
Roa-Quiaoit, H.: Ecology and culture of giant clams (Tridacnidae) in the
Jordanian sector of the Gulf of Aqaba, Red Sea, Universität Bremen, https://elib.suub.uni-bremen.de/diss/docs/E-Diss1340_PHDROAQ.pdf (last access: 19 July 2023), 2005.
Roberts, E. M., Bowers, D. G., and Davies, A. J.: Tidal modulation of seabed
light and its implications for benthic algae, Limnol. Oceanogr., 63,
91–106, https://doi.org/10.1002/lno.10616, 2018.
Robson, A. A., Chauvaud, L., Wilson, R. P., and Halsey, L. G.: Small
actions, big costs: the behavioural energetics of a commercially important
invertebrate, J. R. Soc. Interface, 9, 1486–1498,
https://doi.org/10.1098/rsif.2011.0713, 2012.
Rodland, D. L., Schöne, B. R., Helama, S., Nielsen, J. K., and Baier,
S.: A clockwork mollusc: Ultradian rhythms in bivalve activity revealed by
digital photography, J. Exp. Mar. Biol. Ecol., 334, 316–323,
https://doi.org/10.1016/j.jembe.2006.02.012, 2006.
Sano, Y., Kobayashi, S., Shirai, K., Takahata, N., Matsumoto, K., Watanabe,
T., Sowa, K., and Iwai, K.: Past daily light cycle recorded in the
strontium/calcium ratios of giant clam shells, Nat. Commun., 3, 761,
https://doi.org/10.1038/ncomms1763, 2012.
Sather, W. A. and McCleskey, E. W.: Permeation and selectivity in calcium
channels, Annu. Rev. Physiol., 65, 133–159, 2003.
Savitzky, A. and Golay, M. J.: Smoothing and differentiation of data by
simplified least squares procedures, Anal. Chem., 36, 1627–1639, 1964.
Schöne, B. R. and Giere, O.: Growth increments and stable isotope
variation in shells of the deep-sea hydrothermal vent bivalve mollusk
Bathymodiolus brevior from the North Fiji Basin, Pacific Ocean, Deep-Sea
Res., 52, 1896–1910, 2005.
Schöne, B. R. and Gillikin, D. P.: Unraveling environmental histories
from skeletal diaries – Advances in sclerochronology, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 373, 1–5, https://doi.org/10.1016/j.palaeo.2012.11.026, 2013.
Schöne, B. R., Castro, A. D. F., Fiebig, J., Houk, S. D., Oschmann, W.,
and Kröncke, I.: Sea surface water temperatures over the period
1884–1983 reconstructed from oxygen isotope ratios of a bivalve mollusk
shell (Arctica islandica, southern North Sea), Palaeogeogr. Palaeoclimatol.
Palaeoecol., 212, 215–232, 2004.
Schöne, B. R., Fiebig, J., Pfeiffer, M., Gleß, R., Hickson, J.,
Johnson, A. L., Dreyer, W., and Oschmann, W.: Climate records from a
bivalved Methuselah (Arctica islandica, Mollusca; Iceland), Palaeogeogr.
Palaeoclimatol. Palaeoecol., 228, 130–148, 2005a.
Schöne, B. R., Houk, S. D., Castro, A. D. F., Fiebig, J., Oschmann, W.,
Kröncke, I., Dreyer, W., and Gosselck, F.: Daily growth rates in shells
of Arctica islandica: assessing sub-seasonal environmental controls on a
long-lived bivalve mollusk, Palaios, 20, 78–92, 2005b.
Schöne, B. R., Dunca, E., Fiebig, J., and Pfeiffer, M.: Mutvei's
solution: An ideal agent for resolving microgrowth structures of biogenic
carbonates, Palaeogeogr. Palaeoclimatol. Palaeoecol., 228, 149–166,
https://doi.org/10.1016/j.palaeo.2005.03.054, 2005c.
Schöne, B. R., Zhang, Z., Jacob, D., Gillikin, D. P., Tütken, T.,
Garbe-Schönberg, D., and Soldati, A.: Effect of organic matrices on the
determination of the trace element chemistry (Mg, Sr, Mg Ca, Sr Ca) of aragonitic bivalve shells (Arctica islandica) – Comparison of ICP-OES and LA-ICP-MS data, Geochem. J., 44, 23–37, 2010.
Schwartzmann, C., Durrieu, G., Sow, M., Ciret, P., Lazareth, C. E., and
Massabuau, J.-C.: In situ giant clam growth rate behavior in relation to
temperature: A one-year coupled study of high-frequency noninvasive
valvometry and sclerochronology, Limnol. Oceanogr., 56, 1940–1951,
https://doi.org/10.4319/lo.2011.56.5.1940, 2011.
Service Hydrographique et Océanographique de la Marine – Géoportail:
https://www.geoportail.gouv.fr/, last access: 28 June 2022.
Sinclair, D. J., Kinsley, L. P. J., and McCulloch, M. T.: High resolution
analysis of trace elements in corals by laser ablation ICP-MS, Geochim.
Cosmochim. Acta, 62, 1889–1901, https://doi.org/10.1016/S0016-7037(98)00112-4, 1998.
Soldati, A. L., Jacob, D. E., Glatzel, P., Swarbrick, J. C., and Geck, J.:
Element substitution by living organisms: the case of manganese in mollusc
shell aragonite, Sci. Rep., 6, 1–9, 2016.
Soo, P. and Todd, P. A.: The behaviour of giant clams (Bivalvia: Cardiidae:
Tridacninae), Mar. Biol., 161, 2699–2717,
https://doi.org/10.1007/s00227-014-2545-0, 2014.
Surge, D., Lohmann, K. C., and Dettman, D. L.: Controls on isotopic
chemistry of the American oyster, Crassostrea virginica: implications for
growth patterns, Palaeogeogr. Palaeoclimatol. Palaeoecol., 172, 283–296,
2001.
Takesue, R. K., Bacon, C. R., and Thompson, J. K.: Influences of organic
matter and calcification rate on trace elements in aragonitic estuarine
bivalve shells, Geochim. Cosmochim. Acta, 72, 5431–5445, 2008.
Tanaka, K., Okaniwa, N., Miyaji, T., Murakami-Sugihara, N., Zhao, L.,
Tanabe, K., Schöne, B. R., and Shirai, K.: Microscale magnesium
distribution in shell of the Mediterranean mussel Mytilus galloprovincialis:
An example of multiple factors controlling Mg Ca in biogenic calcite, Chem. Geol., 511, 521–532, https://doi.org/10.1016/j.chemgeo.2018.10.025, 2019.
Taylor, J. D. and Layman, M.: The mechanical properties of bivalve
(Mollusca) shell structures, Palaeontology, 15, 73–87, 1972.
Thébault, J., Chauvaud, L., L'Helguen, S., Clavier, J., Barats, A.,
Jacquet, Sé., PÉcheyran, C., and Amouroux, D.: Barium and molybdenum
records in bivalve shells: Geochemical proxies for phytoplankton dynamics in
coastal environments?, Limnol. Oceanogr., 54, 1002–1014,
https://doi.org/10.4319/lo.2009.54.3.1002, 2009.
Thébault, J., Jolivet, A., Waeles, M., Tabouret, H., Sabarot, S.,
Pécheyran, C., Leynaert, A., Jochum, K. P., Schöne, B. R.,
Fröhlich, L., Siebert, V., Amice, E., and Chauvaud, L.: Scallop shells
as geochemical archives of phytoplankton-related ecological processes in a
temperate coastal ecosystem, Limnol. Oceanogr., 67, 187–202,
https://doi.org/10.1002/lno.11985, 2022.
Thomson, D. J.: Spectrum estimation and harmonic analysis, Proc. IEEE, 70,
1055–1096, 1982.
Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng,
R., Ford, H. L., Hönisch, B., Inglis, G. N., Petersen, S. V., Sagoo, N.,
Tabor, C. R., Thirumalai, K., Zhu, J., Burls, N. J., Foster, G. L.,
Goddéris, Y., Huber, B. T., Ivany, L. C., Turner, S. K., Lunt, D. J.,
McElwain, J. C., Mills, B. J. W., Otto-Bliesner, B. L., Ridgwell, A., and
Zhang, Y. G.: Past climates inform our future, Science, 370, eaay3701,
https://doi.org/10.1126/science.aay3701, 2020.
Tran, D., Nadau, A., Durrieu, G., Ciret, P., Parisot, J.-P., and Massabuau,
J.-C.: Field chronobiology of a molluscan bivalve: how the moon and sun
cycles interact to drive oyster activity rhythms, Chronobiol. Int., 28,
307–317, 2011.
Tran, D., Perrigault, M., Ciret, P., and Payton, L.: Bivalve mollusc
circadian clock genes can run at tidal frequency, P. R. Soc. B Biol.
Sci., 287, 20192440, https://doi.org/10.1098/rspb.2019.2440, 2020.
Vander Putten, E., Dehairs, F., Keppens, E., and Baeyens, W.: High
resolution distribution of trace elements in the calcite shell layer of
modern Mytilus edulis: Environmental and biological controls, Geochim.
Cosmochim. Acta, 64, 997–1011, 2000.
van Dijk, I., de Nooijer, L. J., Boer, W., and Reichart, G.-J.: Sulfur in
foraminiferal calcite as a potential proxy for seawater carbonate ion
concentration, Earth Planet. Sc. Lett., 470, 64–72, 2017.
Vermeij, G. J.: The evolution of molluscan photosymbioses: a critical
appraisal, Biol. J. Linn. Soc., 109, 497–511, 2013.
Von Bertalanffy, L.: Quantitative laws in metabolism and growth, Q. Rev.
Biol., 32, 217–231, 1957.
Warter, V. and Müller, W.: Daily growth and tidal rhythms in Miocene and
modern giant clams revealed via ultra-high resolution LA-ICPMS analysis – A
novel methodological approach towards improved sclerochemistry, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 465, 362–375, 2017.
Warter, V., Müller, W., Wesselingh, F. P., Todd, J. A., and Renema, W.:
Late Miocene Seasonal To Subdecadal Climate Variability In The Indo-West
Pacific (East Kalimantan, Indonesia) Preserved In Giant Clams, Palaios, 30,
66–82, https://doi.org/10.2110/palo.2013.061, 2015.
Warter, V., Erez, J., and Müller, W.: Environmental and physiological
controls on daily trace element incorporation in Tridacna crocea from
combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 496, 32–47,
https://doi.org/10.1016/j.palaeo.2017.12.038, 2018.
Wassenburg, J. A., Scholz, D., Jochum, K. P., Cheng, H., Oster, J.,
Immenhauser, A., Richter, D. K., Häger, T., Jamieson, R. A., Baldini, J.
U. L., Hoffmann, D., and Breitenbach, S. F. M.: Determination of aragonite
trace element distribution coefficients from speleothem calcite–aragonite
transitions, Geochim. Cosmochim. Ac., 190, 347–367,
https://doi.org/10.1016/j.gca.2016.06.036, 2016.
Wichern, N. M. A., de Winter, N. J., Johnson, A. L. A., Goolaerts, S., Wesselingh, F., Hamers, M. F., Kaskes, P., Claeys, P., and Ziegler, M.: The fossil bivalve Angulus benedeni benedeni: a potential seasonally resolved stable-isotope-based climate archive to investigate Pliocene temperatures in the southern North Sea basin, Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, 2023.
Wilson, S. A., Koenig, A. E., and Orklid, R.: Development of microanalytical
reference material (MACS-3) for LA-ICP-MS analysis of carbonate samples,
Geochim. Cosmochim. Acta Suppl., 72, A1025, https://ui.adsabs.harvard.edu/abs/2008GeCAS..72R1025W/abstract (last access: 19 July 2023), 2008.
Wisshak, M., Correa, M. L., Gofas, S., Salas, C., Taviani, M., Jakobsen, J.,
and Freiwald, A.: Shell architecture, element composition, and stable
isotope signature of the giant deep-sea oyster Neopycnodonte zibrowii sp. n.
from the NE Atlantic, Deep-Sea Res., 56, 374–407, 2009.
Witbaard, R., Jenness, M. I., Van Der Borg, K., and Ganssen, G.:
Verification of annual growth increments in Arctica islandica L. from the
North Sea by means of oxygen and carbon isotopes, Neth. J. Sea Res., 33,
91–101, https://doi.org/10.1016/0077-7579(94)90054-X, 1994.
Xing, Q., Zhang, L., Li, Y., Zhu, X., Li, Y., Guo, H., Bao, Z., and Wang,
S.: Development of Novel Cardiac Indices and Assessment of Factors Affecting
Cardiac Activity in a Bivalve Mollusc Chlamys farreri, Front. Physiol., 10, 293, https://doi.org/10.3389/fphys.2019.00293, 2019.
Yan, H., Shao, D., Wang, Y., and Sun, L.: Sr Ca profile of long-lived
Tridacna gigas bivalves from South China Sea: A new high-resolution SST
proxy, Geochim. Cosmochim. Acta, 112, 52–65,
https://doi.org/10.1016/j.gca.2013.03.007, 2013.
Yan, H., Liu, C., An, Z., Yang, W., Yang, Y., Huang, P., Qiu, S., Zhou, P.,
Zhao, N., Fei, H., Ma, X., Shi, G., Dodson, J., Hao, J., Yu, K., Wei, G.,
Yang, Y., Jin, Z., and Zhou, W.: Extreme weather events recorded by daily to
hourly resolution biogeochemical proxies of marine giant clam shells, P.
Natl. Acad. Sci. USA, 117, 7038–7043, https://doi.org/10.1073/pnas.1916784117,
2020.
Yoshimura, T., Suzuki, A., Tamenori, Y., and Kawahata, H.: Micro-X-ray
fluorescence-based comparison of skeletal structure and P, Mg, Sr, O and Fe
in a fossil of the cold-water coral Desmophyllum sp., NW Pacific, Geo-Mar.
Lett., 34, 1–9, 2014.
Zhao, L., Schöne, B. R., and Mertz-Kraus, R.: Controls on strontium and
barium incorporation into freshwater bivalve shells (Corbicula fluminea),
Palaeogeogr. Palaeoclimatol. Palaeoecol., 465, 386–394,
https://doi.org/10.1016/j.palaeo.2015.11.040, 2017.
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a...
Altmetrics
Final-revised paper
Preprint