Articles | Volume 20, issue 16
https://doi.org/10.5194/bg-20-3481-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3481-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Experiments of the efficacy of tree ring blue intensity as a climate proxy in central and western China
Yonghong Zheng
School of Resource and Environmental Sciences, Wuhan University, Wuhan
430079, China
School of Earth and Environmental Sciences, University of St. Andrews,
St. Andrews, KY16 9AL, UK
Huanfeng Shen
School of Resource and Environmental Sciences, Wuhan University, Wuhan
430079, China
Rory Abernethy
School of Earth and Environmental Sciences, University of St. Andrews,
St. Andrews, KY16 9AL, UK
School of Earth and Environmental Sciences, University of St. Andrews,
St. Andrews, KY16 9AL, UK
Related authors
No articles found.
Die Hu, Yuan Wang, Han Jing, Linwei Yue, Qiang Zhang, Lei Fan, Qiangqiang Yuan, Huanfeng Shen, and Liangpei Zhang
Earth Syst. Sci. Data, 17, 2849–2872, https://doi.org/10.5194/essd-17-2849-2025, https://doi.org/10.5194/essd-17-2849-2025, 2025
Short summary
Short summary
Existing L-band vegetation optical depth (L-VOD) products suffer from data gaps and coarse resolution of historical data. Therefore, it is necessary to integrate multi-temporal and multisource L-VOD products. Our study begins with the reconstruction of missing data and then develops a spatiotemporal fusion model to generate global daily seamless 9 km L-VOD products from 2010 to 2021, which are crucial for understanding the global carbon cycle.
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin J. Anchukaitis, Gabriele C. Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
Clim. Past, 21, 161–184, https://doi.org/10.5194/cp-21-161-2025, https://doi.org/10.5194/cp-21-161-2025, 2025
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years; however, climate model results and reconstructions of surface cooling using tree rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Xiaobin Guan, Zhihao Sun, Dong Chu, Guanglei Xie, Yuchen Wang, and Huanfeng Shen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-465, https://doi.org/10.5194/essd-2023-465, 2023
Manuscript not accepted for further review
Short summary
Short summary
Although there are various XCO2 products, they are all limited by the spatial resolution or spatiotemporal coverage. In this study, the first global 0.05° XCO2 product (GCXCO2) for 21 years is generated by combining the OCO-2 satellite observations and models simulations. The dynamic normalization strategy is applied to enhance the temporal expansibility of stacking learning model, and the product is superior than the model simulations showing similar characteristic with OCO-2 observations.
Yinghong Jing, Xinghua Li, and Huanfeng Shen
Earth Syst. Sci. Data, 14, 3137–3156, https://doi.org/10.5194/essd-14-3137-2022, https://doi.org/10.5194/essd-14-3137-2022, 2022
Short summary
Short summary
Snow variation is a vital factor in global climate change. Satellite-based approaches are effective for large-scale environmental monitoring. Nevertheless, the high cloud fraction seriously impedes the remote-sensed investigation. Therefore, a recent 20-year cloud-free snow cover collection in China is generated for the first time. This collection can serve as a basic dataset for hydrological and climatic modeling to explore various critical environmental issues.
Kristina Seftigen, Marina V. Fonti, Brian Luckman, Miloš Rydval, Petter Stridbeck, Georg von Arx, Rob Wilson, and Jesper Björklund
Clim. Past, 18, 1151–1168, https://doi.org/10.5194/cp-18-1151-2022, https://doi.org/10.5194/cp-18-1151-2022, 2022
Short summary
Short summary
New proxies and improvements in existing methodologies are needed to advance paleoclimate research. This study explored dendroanatomy, the analysis of wood anatomical parameters in dated tree rings, of Engelmann spruce from the Columbia Icefield area, Canada, as a proxy of past temperatures. Our new parameters compare favorably with state of the art proxy parameters from X-ray and visible light techniques, particularly with respect to the temporal stability of the temperature signal.
Y. Tao, W. Huang, W. Gan, and H. Shen
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 209–215, https://doi.org/10.5194/isprs-annals-V-3-2022-209-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-209-2022, 2022
Rob Wilson, Kathy Allen, Patrick Baker, Gretel Boswijk, Brendan Buckley, Edward Cook, Rosanne D'Arrigo, Dan Druckenbrod, Anthony Fowler, Margaux Grandjean, Paul Krusic, and Jonathan Palmer
Biogeosciences, 18, 6393–6421, https://doi.org/10.5194/bg-18-6393-2021, https://doi.org/10.5194/bg-18-6393-2021, 2021
Short summary
Short summary
We explore blue intensity (BI) – a low-cost method for measuring ring density – to enhance palaeoclimatology in Australasia. Calibration experiments, using several conifer species from Tasmania and New Zealand, model 50–80 % of the summer temperature variance. The implications of these results have profound consequences for high-resolution paleoclimatology in Australasia, as the speed and cheapness of BI generation could lead to a step change in our understanding of past climate in the region.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Xiaobin Guan, Huanfeng Shen, Yuchen Wang, Dong Chu, Xinghua Li, Linwei Yue, Xinxin Liu, and Liangpei Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-156, https://doi.org/10.5194/essd-2021-156, 2021
Preprint withdrawn
Short summary
Short summary
This study generated the first global 1-km continuous NDVI product (STFLNDVI) for 4-decades by fusing multi-source satellite products. Simulated and real-data assessments confirmed the satisfactory and stable accuracy of STFLNDVI regarding spatial details and temporal variations. STFLNDVI is an ideal solution to the trade-off between spatial resolution and time coverage in current NDVI products, which of great significance for long-term regional and global vegetation and climate change studies.
Cited articles
Anchukaitis, K. J., Wilson, R., Briffa, K. R., Büntgen, U., Cook, E. R.,
D'Arrigo, R., Davi, N., Esper, J., Frank, D., and Gunnarson, B.: Last
millennium Northern Hemisphere summer temperatures from tree rings: Part II,
spatially resolved reconstructions, Quaternary Sci. Rev., 163, 1–22,
https://doi.org/10.1016/j.quascirev.2017.02.020, 2017.
Babst, F., Frank, D., Büntgen, U., Nievergelt, D., and Esper, J.: Effect
of sample preparation and scanning resolution on the Blue Reflectance of
Picea abies, Trace Proc., 7, 188–195, https://doi.org/10.2312/GFZ.b103-09038, 2009.
Begović, K., Rydval, M., Mikac, S., Čupić, S., Svobodova, K.,
Mikoláš, M., Kozak, D., Kameniar, O., Frankovič, M., and Pavlin,
J.: Climate-growth relationships of Norway Spruce and silver fir in primary
forests of the Croatian Dinaric mountains, Agr. Forest Meteorol., 288,
108000, https://doi.org/10.1016/j.agrformet.2020.108000, 2020.
Björklund, J., Gunnarson, B. E., Seftigen, K., Zhang, P., and
Linderholm, H. W.: Using adjusted blue intensity data to attain high-quality
summer temperature information: a case study from Central Scandinavia,
Holocene, 25, 547–556, https://doi.org/10.1177/0959683614562434, 2015.
Björklund, J., von Arx, G., Nievergelt, D., Wilson, R., Van den Bulcke,
J., Günther, B., Loader, N., Rydval, M., Fonti, P., and Scharnweber, T.:
Scientific merits and analytical challenges of tree-ring densitometry, Rev.
Geophys., 57, 1224–1264, https://doi.org/10.1029/2019RG000642, 2019.
Blake, S. A., Palmer, J. G., Björklund, J., Harper, J. B., and Turney,
C. S.: Palaeoclimate potential of New Zealand Manoao colensoi (silver pine)
tree rings using Blue-Intensity (BI), Dendrochronologia, 60, 125664,
https://doi.org/10.1016/j.dendro.2020.125664, 2020.
Brookhouse, M. and Graham, R.: Application of the minimum blue-intensity
technique to a Southern-Hemisphere conifer, Tree Ring Res., 72, 103–107,
https://doi.org/10.3959/1536-1098-72.02.103, 2016.
Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Jones, P. D., Shiyatov,
S. G., and Vaganov, E. A.: Tree-ring width and density data around the
Northern Hemisphere: Part 1, local and regional climate signals, Holocene,
12, 737–757, https://doi.org/10.1191/0959683602hl587rp, 2002.
Buckley, B. M., Hansen, K. G., Griffin, K. L., Schmiege, S., Oelkers, R.,
D'Arrigo, R. D., Stahle, D. K., Davi, N., Nguyen, T. Q. T., and Le, C. N.:
Blue intensity from a tropical conifer's annual rings for climate
reconstruction: an ecophysiological perspective, Dendrochronologia, 50,
10–22, https://doi.org/10.1016/j.dendro.2018.04.003, 2018.
Campbell, R., McCarroll, D., Loader, N. J., Grudd, H., Robertson, I., and
Jalkanen, R.: Blue intensity in Pinus sylvestris tree-rings: developing a new palaeoclimate
proxy, Holocene, 17, 821–828, https://doi.org/10.1177/0959683607080523,
2007.
Campbell, R., McCarroll, D., Robertson, I., Loader, N. J., Grudd, H., and
Gunnarson, B.: Blue intensity in Pinus sylvestris tree rings: a manual for a new
palaeoclimate proxy, Tree Ring Res., 67, 127–134,
https://doi.org/10.3959/2010-13.1, 2011.
Cao, X., Fang, K., Chen, P., Zhang, P., Björklund, J., Pumijumnong, N.,
and Guo, Z.: Microdensitometric records from humid subtropical China show
distinct climate signals in earlywood and latewood, Dendrochronologia, 64,
125764, https://doi.org/10.1016/j.dendro.2020.125764, 2020.
Cao, X., Hu, H., Kao, P. k., Buckley, B. M., Dong, Z., Chen, X., Zhou, F.,
and Fang, K.: Improved spring temperature reconstruction using earlywood
blue intensity in southeastern China, Int. J. Climatol., 42, 6204–6220,
https://doi.org/10.1002/joc.7585, 2022.
Davi, N. K., Rao, M. P., Wilson, R., Andreu-Hayles, L., Oelkers, R.,
D'Arrigo, R., Nachin, B., Buckley, B., Pederson, N., and Leland, C.:
Accelerated recent warming and temperature variability over the past eight
centuries in the Central Asian Altai from blue intensity in tree rings,
Geophys. Res. Lett., 48, e2021GL092933,
https://doi.org/10.1029/2021GL092933, 2021.
Dolgova, E.: June–September temperature reconstruction in the Northern
Caucasus based on blue intensity data, Dendrochronologia, 39, 17–23,
https://doi.org/10.1016/j.dendro.2016.03.002, 2016.
Fuentes, M., Salo, R., Björklund, J., Seftigen, K., Zhang, P.,
Gunnarson, B., Aravena, J.-C., and Linderholm, H. W.: A 970-year-long summer
temperature reconstruction from Rogen, west-central Sweden, based on blue
intensity from tree rings, Holocene, 28, 254–266,
https://doi.org/10.1177/0959683617721322, 2018.
Grissino-Mayer, H. D.: Evaluating crossdating accuracy: a manual and
tutorial for the computer program COFECHA, Tree Ring Res., 57, 205–221,
http://hdl.handle.net/10150/251654 (last access: 1 June 2022), 2001.
Harley, G. L., Heeter, K. J., Maxwell, J. T., Rayback, S. A., Maxwell, R.
S., Reinemann, T. E., and Taylor, A. H.: Towards broad-scale temperature
reconstructions for Eastern North America using blue light intensity from
tree rings, Int. J. Climatol., 41, E3142–E3159,
https://doi.org/10.1002/joc.6910, 2021.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci.
Data, 7, 1–18, https://doi.org/10.6084/m9.figshare.11980500, 2020.
He, M., Yang, B., Bräuning, A., Rossi, S., Ljungqvist, F. C., Shishov,
V., Grießinger, J., Wang, J., Liu, J., and Qin, C.: Recent advances in
dendroclimatology in China, Earth-Sci. Rev., 194, 521–535,
https://doi.org/10.1016/j.earscirev.2019.02.012, 2019.
Heeter, K. J., Harley, G. L., Maxwell, J. T., McGee, J. H., and Matheus, T.
J.: Late summer temperature variability for the Southern Rocky Mountains
(USA) since 1735 CE: applying blue light intensity to low-latitude Picea
engelmannii Parry ex Engelm, Climatic Change, 162, 965–988, https://doi.org/10.1007/s10584-020-02772-9,
2020.
Heeter, K. J., Harley, G. L., Maxwell, J. T., Wilson, R. J., Abatzoglou, J.
T., Rayback, S. A., Rochner, M. L., and Kitchens, K. A.: Summer temperature
variability since 1730 CE across the low-to-mid latitudes of western North
America from a tree ring blue intensity network, Quaternary Sci. Rev., 267,
107064, https://doi.org/10.1016/j.quascirev.2021.107064, 2021.
Helama, S., Arentoft, B. W., Collin-Haubensak, O., Hyslop, M. D.,
Brandstrup, C. K., Mäkelä, H. M., Tian, Q., and Wilson, R.:
Dendroclimatic signals deduced from riparian versus upland forest interior
pines in North Karelia, Finland, Ecol. Res., 28, 1019–1028,
https://doi.org/10.1007/s11284-013-1084-3, 2013.
Kaczka, R. J. and Wilson, R.: I-BIND: International Blue intensity network
development working group, Dendrochronologia, 68, 125859,
https://doi.org/10.1016/j.dendro.2021.125859, 2021.
Kaczka, R. J., Spyt, B., Janecka, K., Beil, I., Büntgen, U.,
Scharnweber, T., Nievergelt, D., and Wilmking, M.: Different maximum
latewood density and blue intensity measurements techniques reveal similar
results, Dendrochronologia, 49, 94–101,
https://doi.org/10.1016/j.dendro.2018.03.005, 2018.
Levanič, T.: ATRICS – A new system for image acquisition in
dendrochronology, Tree Ring Res., 63, 117–122,
https://doi.org/10.3959/1536-1098-63.2.117, 2007.
Lücke, L. J., Hegerl, G. C., Schurer, A. P., and Wilson, R. J. J. O. C.:
Effects of memory biases on variability of temperature reconstructions, J. Climate, 32,
8713–8731, https://doi.org/10.1175/JCLI-D-19-0184.1, 2019.
Maxwell, R. S. and Larsson, L.-A.: Measuring tree-ring widths using the
CooRecorder software application, Dendrochronologia, 67, 125841,
https://doi.org/10.1016/j.dendro.2021.125841, 2021.
McCarroll, D., Pettigrew, E., Luckman, A., Guibal, F., and Edouard, J.-L.: Blue reflectance provides a surrogate for
latewood density of high-latitude pine tree rings, Arct. Antarct. Alp. Res.,
34, 450–453, https://doi.org/10.1080/15230430.2002.12003516, 2002.
Melvin, T. M., Briffa, K. R., Nicolussi, K., and Grabner, M.:
Time-varying-response smoothing, Dendrochronologia, 25, 65–69,
https://doi.org/10.1016/j.dendro.2007.01.004, 2007.
O'Connor, J. A., Henley, B. J., Brookhouse, M. T., and Allen, K. J.: Ring-width and blue-light chronologies of Podocarpus lawrencei from southeastern mainland Australia reveal a regional climate signal, Clim. Past, 18, 2567–2581, https://doi.org/10.5194/cp-18-2567-2022, 2022.
R Core Team: R: a language and environment for statistical computing, R foundation for statistical computing, Vienna [software], https://www.r-project.org (last access: 17 August 2023), 2022.
Reid, E. and Wilson, R.: Delta blue intensity vs. maximum density: A case
study using Pinus uncinata in the Pyrenees, Dendrochronologia, 61, 125706,
https://doi.org/10.1016/j.dendro.2020.125706, 2020.
Rydval, M., Larsson, L.-Å., McGlynn, L., Gunnarson, B. E., Loader, N.
J., Young, G. H., and Wilson, R.: Blue intensity for dendroclimatology:
should we have the blues? Experiments from Scotland, Dendrochronologia, 32,
191–204, https://doi.org/10.1016/j.dendro.2014.04.003, 2014.
Sarkar, D.: Lattice: multivariate data visualization with R, Springer, New York, ISBN 978-0-387-75968-5, 2008.
Seftigen, K., Fuentes, M., Ljungqvist, F. C., and Björklund, J.: Using
Blue Intensity from drought-sensitive Pinus sylvestris in Fennoscandia to improve
reconstruction of past hydroclimate variability, Clim. Dynam., 55, 579–594,
https://doi.org/10.1007/s00382-020-05287-2, 2020.
Sheppard, P. R., Graumlich, L. J., and Conkey, L. E. J. T. H.:
Reflected-light image analysis of conifer tree rings for reconstructing
climate, Holocene, 6, 62–68, https://doi.org/10.1177/095968369600600107,
1996.
Wang, F., Arseneault, D., Boucher, É., Galipaud Gloaguen, G., Deharte,
A., Yu, S., and Trou-kechout, N.: Temperature sensitivity of blue intensity,
maximum latewood density, and ring width data of living black spruce trees
in the eastern Canadian taiga, Dendrochronologia, 64, 125771,
https://doi.org/10.1016/j.dendro.2020.125771, 2020.
Wiles, G. C., Charlton, J., Wilson, R. J., D'Arrigo, R. D., Buma, B.,
Krapek, J., Gaglioti, B. V., Wiesenberg, N., and Oelkers, R.: Yellow-cedar
blue intensity tree-ring chronologies as records of climate in Juneau,
Alaska, USA, Can. J. Forest Res., 49, 1483–1492,
https://doi.org/10.1139/cjfr-2018-0525, 2019.
Wilson, R. and Elling, W.: Temporal instability in tree-growth/climate
response in the Lower Bavarian Forest region: implications for
dendroclimatic reconstruction, Trees, 18, 19–28,
https://doi.org/10.1007/s00468-003-0273-z, 2004.
Wilson, R., Loader, N., Rydval, M., Patton, H., Frith, A., Mills, C., Crone,
A., Edwards, C., Larsson, L., and Gunnarson, B. E.: Reconstructing Holocene
climate from tree rings: The potential for a long chronology from the
Scottish Highlands, Holocene, 22, 3–11,
https://doi.org/10.1177/0959683611405237, 2012.
Wilson, R., Rao, R., Rydval, M., Wood, C., Larsson, L.-Å., and Luckman,
B. H.: Blue Intensity for dendroclimatology: The BC blues: A case study from
British Columbia, Canada, Holocene, 24, 1428–1438,
https://doi.org/10.1177/0959683614544051, 2014.
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E.,
D'arrigo, R., Davi, N., Esper, J., Frank, D., and Gunnarson, B.: Last
millennium northern hemisphere summer temperatures from tree rings: Part I:
The long term context, Quaternay Sci. Rev., 134, 1–18,
https://doi.org/10.1016/j.quascirev.2015.12.005, 2016.
Wilson, R., Anchukaitis, K., Andreu-Hayles, L., Cook, E., D'Arrigo, R.,
Davi, N., Haberbauer, L., Krusic, P., Luckman, B., and Morimoto, D.:
Improved dendroclimatic calibration using blue intensity in the southern
Yukon, Holocene, 29, 1817–1830, https://doi.org/10.1177/0959683619862037,
2019.
Wilson, R., Allen, K., Baker, P., Boswijk, G., Buckley, B., Cook, E., D'Arrigo, R., Druckenbrod, D., Fowler, A., Grandjean, M., Krusic, P., and Palmer, J.: Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand, Biogeosciences, 18, 6393–6421, https://doi.org/10.5194/bg-18-6393-2021, 2021.
Wilson, R. J., Esper, J., and Luckman, B. H.: Utilising historical tree-ring
data for dendroclimatology: a case study from the Bavarian Forest, Germany,
Dendrochronologia, 21, 53–68, https://doi.org/10.1078/1125-7865-00041, 2004.
Yanosky, T. M. and Robinove, C. J.: Digital image measurement of the area
and anatomical structure of tree rings, Can. J. Bot., 64, 2896–2902,
https://doi.org/10.1139/b86-382, 1986.
Zeileis, A. and Grothendieck, G.: Zoo: S3 infrastructure for regular and irregular time series, J. Stat. Softw., 14, 1–27, https://doi.org/10.18637/jss.v014.i06, 2005.
Zheng, Y., Shao, X., Lu, F., and Li, Y.: February–May temperature
reconstruction based on tree-ring widths of Abies fargesii from the Shennongjia area in
central China, Int. J. Biometeorol., 60, 1175–1181,
https://doi.org/10.1007/s00484-015-1111-x, 2016.
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Investigations in central and western China show that tree ring inverted latewood intensity...
Altmetrics
Final-revised paper
Preprint