Articles | Volume 20, issue 17
https://doi.org/10.5194/bg-20-3651-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3651-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Canopy gaps and associated losses of biomass – combining UAV imagery and field data in a central Amazon forest
Adriana Simonetti
CORRESPONDING AUTHOR
Programa de Pós-graduação em Ciências de Florestas
Tropicais, Instituto Nacional de Pesquisas da Amazônia, Manaus,
69060-062, Brazil
Laboratório de Manejo Florestal, Instituto Nacional de Pesquisas
da Amazônia, Manaus, 69060-062, Brazil
Raquel Fernandes Araujo
Laboratório de Manejo Florestal, Instituto Nacional de Pesquisas
da Amazônia, Manaus, 69060-062, Brazil
Smithsonian Tropical Research Institute, Forest Global Earth Observatory, P.O. Box 0843-03092, Balboa, Ancón, Panama
Carlos Henrique Souza Celes
Laboratório de Manejo Florestal, Instituto Nacional de Pesquisas
da Amazônia, Manaus, 69060-062, Brazil
Smithsonian Tropical Research Institute, Forest Global Earth Observatory, P.O. Box 0843-03092, Balboa, Ancón, Panama
Flávia Ranara da Silva e Silva
Programa de Pós-graduação em Ciências de Florestas
Tropicais, Instituto Nacional de Pesquisas da Amazônia, Manaus,
69060-062, Brazil
Laboratório de Manejo Florestal, Instituto Nacional de Pesquisas
da Amazônia, Manaus, 69060-062, Brazil
Joaquim dos Santos
Laboratório de Manejo Florestal, Instituto Nacional de Pesquisas
da Amazônia, Manaus, 69060-062, Brazil
Niro Higuchi
Laboratório de Manejo Florestal, Instituto Nacional de Pesquisas
da Amazônia, Manaus, 69060-062, Brazil
Susan Trumbore
Biogeochemical Processes Department, Max Planck Institute for
Biogeochemistry, 07745 Jena, Germany
Daniel Magnabosco Marra
CORRESPONDING AUTHOR
Biogeochemical Processes Department, Max Planck Institute for
Biogeochemistry, 07745 Jena, Germany
Related authors
Nathan B. Goncalves, Bruce W. Nelson, Adriana Simonetti, and Scott C. Stark
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 191–196, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-191-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-191-2024, 2024
Carlos A. Sierra, Ingrid Chanca, Meinrat Andreae, Alessandro Carioca de Araújo, Hella van Asperen, Lars Borchardt, Santiago Botía, Luiz Antonio Candido, Caio S. C. Correa, Cléo Quaresma Dias-Junior, Markus Eritt, Annica Fröhlich, Luciana V. Gatti, Marcus Guderle, Samuel Hammer, Martin Heimann, Viviana Horna, Armin Jordan, Steffen Knabe, Richard Kneißl, Jost Valentin Lavric, Ingeborg Levin, Kita Macario, Juliana Menger, Heiko Moossen, Carlos Alberto Quesada, Michael Rothe, Christian Rödenbeck, Yago Santos, Axel Steinhof, Bruno Takeshi, Susan Trumbore, and Sönke Zaehle
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-151, https://doi.org/10.5194/essd-2025-151, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We present here a unique dataset of atmospheric observations of greenhouse gases and isotopes that provide key information on land-atmosphere interactions for the Amazon forests of central Brazil. The data show a relatively large level of variability, but also important trends in greenhouse gases, and signals from fires as well as seasonal biological activity.
Sarah Camelo da Silva, Bárbara Bomfim, Jeffrey Quintin Chambers, Regison Costa de Oliveira, Cacilda Adélia Sampaio de Souza, Marcelo Nunes Vilas-Boas, Adriano José Nogueira Lima, Niro Higuchi, and Bruno Oliva Gimenez
EGUsphere, https://doi.org/10.5194/egusphere-2025-391, https://doi.org/10.5194/egusphere-2025-391, 2025
Short summary
Short summary
Tropical forest soils are known for low fertility, but support vegetation with high species diversity and biomass. Nutrients and carbon essential for forest functioning are stored in the soil and biomass. The region’s topographic gradient, with variations in soil texture and water table depth, influences species distribution. This study quantified macronutrients and carbon in trunks, leaves, and soil of generalist and specialist species across different soil types.
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos A. Sierra
Biogeosciences, 22, 455–472, https://doi.org/10.5194/bg-22-455-2025, https://doi.org/10.5194/bg-22-455-2025, 2025
Short summary
Short summary
Assessing the net carbon (C) budget of the Amazon entails considering the magnitude and timing of C absorption and losses through respiration (transit time of C). Radiocarbon-based estimates of the transit time of C in the Amazon Tall Tower Observatory (ATTO) suggest a change in the transit time from 6 ± 2 years and 18 ± 4 years within 2 years (October 2019 and December 2021, respectively). This variability indicates that only a fraction of newly fixed C can be stored for decades or longer.
Nathan B. Goncalves, Bruce W. Nelson, Adriana Simonetti, and Scott C. Stark
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 191–196, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-191-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-191-2024, 2024
Luciano Emmert, Susan Trumbore, Joaquim dos Santos, Adriano Lima, Niro Higuchi, Robinson Negrón-Juárez, Cléo Dias-Júnior, Tarek El-Madany, Olaf Kolle, Gabriel Ribeiro, and Daniel Marra
EGUsphere, https://doi.org/10.5194/egusphere-2024-3234, https://doi.org/10.5194/egusphere-2024-3234, 2024
Preprint archived
Short summary
Short summary
For the first time, we documented wind gusts with the potential to damage trees in a forest in the Central Amazon. We used meteorological data collected at crown height over 24 months. We recorded 424 gusts, which occur more frequently and intensely in higher elevated areas and during the transition from the dry to the wet season. More intense rains showed the strongest relationship with extreme winds, highlighting the role of extreme events in tree mortality.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Maximiliano González-Sosa, Carlos A. Sierra, J. Andrés Quincke, Walter E. Baethgen, Susan Trumbore, and M. Virginia Pravia
SOIL, 10, 467–486, https://doi.org/10.5194/soil-10-467-2024, https://doi.org/10.5194/soil-10-467-2024, 2024
Short summary
Short summary
Based on an approach that involved soil organic carbon (SOC) monitoring, radiocarbon measurement in bulk soil, and incubations from a long-term 60-year experiment, it was concluded that the avoidance of old carbon losses in the integrated crop–pasture systems is the main reason that explains their greater carbon storage capacities compared to continuous cropping. A better understanding of these processes is essential for making agronomic decisions to increase the carbon sequestration capacity.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Jeffrey Prescott Beem-Miller, Craig Rasmussen, Alison May Hoyt, Marion Schrumpf, Georg Guggenberger, and Susan Trumbore
EGUsphere, https://doi.org/10.5194/egusphere-2022-1083, https://doi.org/10.5194/egusphere-2022-1083, 2022
Preprint withdrawn
Short summary
Short summary
We compared the age of persistent soil organic matter as well as active emissions of carbon dioxide from soils across a gradient of climate and geology. We found that clay minerals are more important than mean annual temperature for both persistent and actively cycling soil carbon, and that they may attenuate the sensitivity of soil organic matter decomposition to temperature. Accounting for geology and soil development could therefore improve estimates of soil carbon stocks and changes.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Raquel Fernandes Araujo, Samuel Grubinger, Carlos Henrique Souza Celes, Robinson I. Negrón-Juárez, Milton Garcia, Jonathan P. Dandois, and Helene C. Muller-Landau
Biogeosciences, 18, 6517–6531, https://doi.org/10.5194/bg-18-6517-2021, https://doi.org/10.5194/bg-18-6517-2021, 2021
Short summary
Short summary
Our study contributed to improving the understanding of temporal variation and climate correlates of canopy disturbances mainly caused by treefalls and branchfalls. We used a unique dataset of 5 years of approximately monthly drone-acquired RGB (red–green–blue) imagery for 50 ha of mature tropical forest on Barro Colorado Island, Panama. We found that canopy disturbance rates were highly temporally variable, were higher in the wet season, and were related to extreme rainfall events.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Marion Schrumpf, Klaus Kaiser, Allegra Mayer, Günter Hempel, and Susan Trumbore
Biogeosciences, 18, 1241–1257, https://doi.org/10.5194/bg-18-1241-2021, https://doi.org/10.5194/bg-18-1241-2021, 2021
Short summary
Short summary
A large amount of organic carbon (OC) in soil is protected against decay by bonding to minerals. We studied the release of mineral-bonded OC by NaF–NaOH extraction and H2O2 oxidation. Unexpectedly, extraction and oxidation removed mineral-bonded OC at roughly constant portions and of similar age distributions, irrespective of mineral composition, land use, and soil depth. The results suggest uniform modes of interactions between OC and minerals across soils in quasi-steady state with inputs.
Robinson I. Negrón-Juárez, Jennifer A. Holm, Boris Faybishenko, Daniel Magnabosco-Marra, Rosie A. Fisher, Jacquelyn K. Shuman, Alessandro C. de Araujo, William J. Riley, and Jeffrey Q. Chambers
Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, https://doi.org/10.5194/bg-17-6185-2020, 2020
Short summary
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
Cited articles
Aleixo, I., Norris, D., Hemerik, L., Barbosa, A., Prata, E., Costa, F., and
Poorter, L.: Amazonian rainforest tree mortality driven by climate and
functional traits, Nat. Clim. Change, 9, 384–388,
https://doi.org/10.1038/s41558-019-0458-0, 2019.
Allen, C. D., Breshears, D. D., and McDowell, N. G.: On underestimation of
global vulnerability to tree mortality and forest die-off from hotter
drought in the Anthropocene, Ecosphere, 6, 1–55,
https://doi.org/10.1890/ES15-00203.1, 2015.
Amaral, M., Lima, A., Higuchi, F., dos Santos, J., and Higuchi, N.: Dynamics
of Tropical Forest Twenty-Five Years after Experimental Logging in Central
Amazon Mature Forest, Forests, 10, 89, https://doi.org/10.3390/f10020089,
2019.
Araujo, R. F., Nelson, B. W., Celes, C. H. S., and Chambers, J. Q.: Regional
distribution of large blowdown patches across Amazonia in 2005 caused by a
single convective squall line, Geophys. Res. Lett., 44, 7793–7798,
https://doi.org/10.1002/2017GL073564, 2017.
Araujo, R. F., Chambers, J. Q., Celes, C. H. S., Muller-Landau, H. C., dos
Santos, A. P. F., Emmert, F., Ribeiro, G. H. P. M., Gimenez, B. O., Lima, A.
J. N., Campos, M. A. A., and Higuchi, N.: Integrating high resolution drone
imagery and forest inventory to distinguish canopy and understory trees and
quantify their contributions to forest structure and dynamics, PLoS One, 15,
1–16, https://doi.org/10.1371/journal.pone.0243079, 2020.
Araujo, R. F., Celes, C. H. S., Negrón-Juárez, R. I., and
Muller-Landau, H. C.: Analysis codes and datasets: Strong temporal variation
in treefall and branchfall rates in a tropical forest is related to extreme
rainfall: results from five years of monthly drone data for a 50 ha plot,
https://doi.org/10.5281/zenodo.5786740, last access: 16 December 2021a.
Araujo, R. F., Grubinger, S., Celes, C. H. S., Negrón-Juárez, R. I.,
Garcia, M., Dandois, J. P., and Muller-Landau, H. C.: Strong temporal
variation in treefall and branchfall rates in a tropical forest is related
to extreme rainfall: Results from 5 years of monthly drone data for a 50 ha
plot, Biogeosciences, 18, 6517–6531,
https://doi.org/10.5194/bg-18-6517-2021, 2021b.
Araujo, R. F. de: Estrutura do dossel, dinâmica florestal e fenologia
foliar com uso de aeronave remotamente pilotada na Amazônia Central, PhD thesis,
Instituto Nacional De Pesquisas Da Amazônia (INPA), Brazil, 84 pp., 2019.
Asner, G. P., Kellner, J. R., Kennedy-Bowdoin, T., Knapp, D. E., Anderson,
C., and Martin, R. E.: Forest Canopy Gap Distributions in the Southern
Peruvian Amazon, PLoS One, 8, e60875,
https://doi.org/10.1371/journal.pone.0060875, 2013.
Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore,
A., Erwin, T., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W.
F., Lewis, S. L., Monteagudo, A., Neill, D. A., Núñez Vargas, P.,
Pitman, N. C. A., Silva, J. N. M., and Vásquez Martínez, R.:
Increasing biomass in Amazonian forest plots, Philos. T. R. Soc. B, 359, 353–365, https://doi.org/10.1098/rstb.2003.1422, 2004.
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T.
R., Lloyd, J., Lopez Gonzalez, G., Monteagudo Mendoza, A., Malhi, Y., Lewis,
S. L., and Vásquez, R.: Long-term decline of the Amazon carbon sink,
Nature, 519, 344–348, https://doi.org/10.1038/nature14283, 2015.
Brokaw, N. V. L.: The Definition of Treefall Gap and Its Effect on Measures
of Forest Dynamics, Biotropica, 14, 158–160, https://doi.org/10.2307/2387750,
1982.
Burnham, K. P. and Anderson, D. R.: Multimodel inference: A Practical
Information-Theoretic Approach, 488 pp., ISBN: 13 978-0387953649, 2002.
Canham, C. D., Finzi, A. C., Pacala, S. W., and Burbank, D. H.: Causes and
consequences of resource heterogeneity in forests: interspecific variation
in light transmission by canopy trees, Can. J. Forest Res., 24, 337–349,
https://doi.org/10.1139/x94-046, 1994.
Carvalho, L.: An Improved Evaluation of Kolmogorov's Distribution, J. Stat.
Softw., 65, 1–3, https://doi.org/10.18637/jss.v065.c03, 2015.
Chambers, J. Q., Negron-Juarez, R. I., Marra, D. M., Di Vittorio, A., Tews,
J., Roberts, D., Ribeiro, G. H. P. M., Trumbore, S. E., and Higuchi, N.: The
steady-state mosaic of disturbance and succession across an old-growth
central Amazon forest landscape, P. Natl. Acad. Sci. USA, 110,
3949–3954, https://doi.org/10.1073/pnas.1202894110, 2013.
Chao, K. J., Phillips, O. L., Monteagudo, A., Torres-Lezama, A., and
Vásquez Martínez, R.: How do trees die? Mode of death in northern
Amazonia, J. Veg. Sci., 20, 260–268,
https://doi.org/10.1111/j.1654-1103.2009.05755.x, 2009.
Clark, D. A., Asao, S., Fisher, R., Reed, S., Reich, P. B., Ryan, M. G.,
Wood, T. E., and Yang, X.: Reviews and syntheses: Field data to benchmark
the carbon cycle models for tropical forests, Biogeosciences, 14,
4663–4690, https://doi.org/10.5194/bg-14-4663-2017, 2017.
Cushman, K. C., Detto, M., García, M., and Muller-Landau, H. C.: Soils
and topography control natural disturbance rates and thereby forest
structure in a lowland tropical landscape, Ecol. Lett., 25, 1126–1138,
https://doi.org/10.1111/ele.13978, 2022.
Dalagnol, R., Wagner, F. H., Galvão, L. S., Streher, A. S., Phillips, O.
L., Gloor, E., Pugh, T. A. M., Ometto, J. P. H. B., and Aragão, L. E. O.
C.: Large-scale variations in the dynamics of Amazon forest canopy gaps from
airborne lidar data and opportunities for tree mortality estimates, Sci.
Rep., 11, 1388, https://doi.org/10.1038/s41598-020-80809-w, 2021.
Denslow, J. S.: Gap Partitioning among Tropical Rainforest Trees,
Biotropica, 12, 47–55, https://doi.org/10.2307/2388156, 1980.
Denslow, J. S.: Tropical Rainforest gaps and tree species diversity, Annu.
Rev. Ecol. Evol. Syst., 18, 431–51, 1987.
De Toledo, J. J., Magnusson, W. E., Castilho, C. V., and Nascimento, H. E.
M.: How much variation in tree mortality is predicted by soil and topography
in Central Amazonia?, Forest Ecol. Manag., 262, 331–338,
https://doi.org/10.1016/j.foreco.2011.03.039, 2011.
De Toledo, J. J., Magnusson, W. E., Castilho, C. V., and Nascimento, H. E.
M.: Tree mode of death in Central Amazonia: Effects of soil and topography
on tree mortality associated with storm disturbances, Forest Ecol. Manag.,
263, 253–261, https://doi.org/10.1016/j.foreco.2011.09.017, 2012.
Espírito-Santo, F. D. B., Gloor, M., Keller, M., Malhi, Y., Saatchi,
S., Nelson, B., Junior, R. C. O., Pereira, C., Lloyd, J., Frolking, S.,
Palace, M., Shimabukuro, Y. E., Duarte, V., Mendoza, A. M.,
López-González, G., Baker, T. R., Feldpausch, T. R., Brienen, R. J.
W., Asner, G. P., Boyd, D. S., and Phillips, O. L.: Size and frequency of
natural forest disturbances and the Amazon forest carbon balance, Nat.
Commun., 5, 1–6, https://doi.org/10.1038/ncomms4434, 2014.
Eysenrode, D. S., Bogaert, J., Hecke, P. Van, and Impens, I.: Influence of
tree-fall orientation on canopy gap shape in an Ecuadorian rain forest, J.
Trop. Ecol., 14, 865–869, https://doi.org/10.1017/S0266467498000625, 1998.
Feng, Y., Negrón-Juárez, R. I., Romps, D. M., and Chambers, J. Q.:
Amazon windthrow disturbances are likely to increase with storm frequency
under global warming, Nat. Commun., 14, 101,
https://doi.org/10.1038/s41467-022-35570-1, 2023.
Fontes, C. G., Chambers, J. Q., and Higuchi, N.: Revealing the causes and
temporal distribution of tree mortality in Central Amazonia, Foreset Ecol.
Manag., 424, 177–183, https://doi.org/10.1016/j.foreco.2018.05.002, 2018.
Gagnon, J. L., Jokela, E. J., Moser, W., and Huber, D. A.: Characteristics
of gaps and natural regeneration in mature longleaf pine flatwoods
ecosystems, Forest Ecol. Manag., 187, 373–380,
https://doi.org/10.1016/j.foreco.2003.07.002, 2004.
Getzin, S., Wiegand, K., and Schöning, I.: Assessing biodiversity in
forests using very high-resolution images and unmanned aerial vehicles,
Method. Ecol. Evol., 3, 397–404,
https://doi.org/10.1111/j.2041-210X.2011.00158.x, 2012.
Getzin, S., Nuske, R. S., and Wiegand, K.: Using Unmanned Aerial Vehicles
(UAV) to Quantify Spatial Gap Patterns in Forests, 6, 6988–7004,
https://doi.org/10.3390/rs6086988, 2014.
Gimenez, B. O., dos Santos, L. T., Gebara, J., Celes, C. H. S., Durgante, F.
M., Lima, A. J. N., Santos, J. dos, and Higuchi, N.: Tree climbing
techniques and volume equations for Eschweilera (Matá-Matá), a
hyperdominant genus in the Amazon Forest, Forests, 8, 154,
https://doi.org/10.3390/f8050154, 2017.
Gorgens, E. B., Keller, M., Jackson, T., Marra, D. M., Reis, C. R., de
Almeida, D. R. A., Coomes, D., and Ometto, J. P.: Out of steady state:
Tracking canopy gap dynamics across Brazilian Amazon, Biotropica, 55, 755–766,
https://doi.org/10.1111/btp.13226, 2023.
Grubb, P. J.: the Maintenance of Species-Richness in Plant Communities: the
Importance of the Regeneration Niche, Biol. Rev., 52, 107–145,
https://doi.org/10.1111/j.1469-185x.1977.tb01347.x, 1977.
Hubbell, S. P., Foster, R. B., O'Brien, S. T., Harms, K. E., Condit, R.,
Wechsler, B., Wright, S. J., and de Lao, S. L.: Light-Gap Disturbances,
Recruitment Limitation, and Tree Diversity in a Neotropical Forest, Science, 283, 554–557, https://doi.org/10.1126/science.283.5401.554, 1999.
Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O'Connor, J., and
Rosette, J.: Structure from Motion Photogrammetry in Forestry: a Review,
Curr. For. Report., 5, 155–168, https://doi.org/10.1007/s40725-019-00094-3,
2019.
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, https://doi.org/10.1017/9781009157896.001, 2021.
Jucker, T.: Deciphering the fingerprint of disturbance on the
three-dimensional structure of the world's forests, New Phytol., 233,
612–617, https://doi.org/10.1111/nph.17729, 2022.
Kellner, J. R. and Asner, G. P.: Winners and losers in the competition for
space in tropical forest canopies, Ecol. Lett., 17, 556–562,
https://doi.org/10.1111/ele.12256, 2014.
Kellner, J. R., Clark, D. B., and Hubbell, S. P.: Pervasive canopy dynamics
produce short-term stability in a tropical rain forest landscape, Ecol.
Lett., 12, 155–164, https://doi.org/10.1111/j.1461-0248.2008.01274.x, 2009.
Laurance, W. F., Oliveira, A. A., Laurance, S. G., Condit, R., Nascimento,
H. E. M., Sanchez-Thorin, A. C., Lovejoy, T. E., Andrade, A., D'Angelo, S.,
Ribeiro, J. E., and Dick, C. W.: Pervasive alteration of tree communities in
undisturbed Amazonian forests, Nature, 428, 171–175,
https://doi.org/10.1038/nature02383, 2004.
Lawton, R. O. and Putz, F. E.: Natural Disturbance and Gap-Phase
Regeneration in a Wind-Exposed Tropical Cloud Forest, Ecology, 69, 764–777,
https://doi.org/10.2307/1941025, 1988.
Leitold, V., Morton, D. C., Longo, M., Dos-Santos, M. N., Keller, M., and
Scaranello, M.: El Niño drought increased canopy turnover in Amazon
forests, New Phytol., 219, 959–971, https://doi.org/10.1111/nph.15110,
2018.
Lertzman, K. P. and Krebs, C. J.: Gap-phase structure of a subalpine
old-growth forest, Can. J. Forest Res., 21, 1730–1741,
https://doi.org/10.1139/x91-239, 1991.
Lima, A. J. N., Suwa, R., De Mello Ribeiro, G. H. P., Kajimoto, T., Dos
Santos, J., Da Silva, R. P., De Souza, C. A. S., De Barros, P. C., Noguchi,
H., Ishizuka, M., and Higuchi, N.: Allometric models for estimating above-
and below-ground biomass in Amazonian forests at São Gabriel da
Cachoeira in the upper Rio Negro, Brazil, Forest Ecol. Manag., 277, 163–172,
https://doi.org/10.1016/j.foreco.2012.04.028, 2012.
Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints, Int. J. Comput. Vis., 60, 91–110, https://doi.org/10.1023/B:VISI.0000029664.99615.94, 2004.
Magnabosco Marra, D., Chambers, J. Q., Higuchi, N., Trumbore, S. E.,
Ribeiro, G. H. P. M., Dos Santos, J., Negrón-Juárez, R. I., Reu, B.,
and Wirth, C.: Large-scale wind disturbances promote tree diversity in a
Central Amazon forest, PLoS One, 9, e103711,
https://doi.org/10.1371/journal.pone.0103711, 2014a.
Magnabosco Marra, D., Fagg, C. W., Pereira, B. A. da S., and Felfili, J. M.:
Trees and environmental variables influence the natural regeneration of
sesonally dry tropical forest in Central Brazil, Neotrop. Biol. Conserv., 9,
62–77, https://doi.org/10.4013/nbc.2014.92.01, 2014b.
Magnabosco Marra, D., Higuchi, N., Trumbore, S. E., Ribeiro, G. H. P. M.,
Dos Santos, J., Carneiro, V. M. C., Lima, A. J. N., Chambers, J. Q.,
Negrón-Juárez, R. I., Holzwarth, F., Reu, B., and Wirth, C.:
Predicting biomass of hyperdiverse and structurally complex central
Amazonian forests – A virtual approach using extensive field data,
Biogeosciences, 13, 1553–1570, https://doi.org/10.5194/bg-13-1553-2016,
2016.
Magnabosco Marra, D., Trumbore, S. E., Higuchi, N., Ribeiro, G. H. P. M.,
Negrón-Juárez, R. I., Holzwarth, F., Rifai, S. W., dos Santos, J.,
Lima, A. J. N., Kinupp, V. F., Chambers, J. Q., and Wirth, C.: Windthrows
control biomass patterns and functional composition of Amazon forests, Glob.
Change Biol., 24, 5867–5881, https://doi.org/10.1111/gcb.14457, 2018.
Malhi, Y. and Román-Cuesta, R. M.: Analysis of lacunarity and scales of
spatial homogeneity in IKONOS images of Amazonian tropical forest canopies,
Remote Sens. Environ., 112, 2074–2087,
https://doi.org/10.1016/j.rse.2008.01.009, 2008.
Marengo, J. A., Jones, R., Alves, L. M., and Valverde, M. C.: Future change
of temperature and precipitation extremes in South America as derived from
the PRECIS regional climate modeling system, Int. J. Climatol., 29,
2241–2255, https://doi.org/10.1002/joc.1863, 2009.
McDowell, N., Allen, C. D., Anderson-Teixeira, K., Brando, P., Brienen, R.,
Chambers, J., Christoffersen, B., Davies, S., Doughty, C., Duque, A.,
Espirito-Santo, F., Fisher, R., Fontes, C. G., Galbraith, D., Goodsman, D.,
Grossiord, C., Hartmann, H., Holm, J., Johnson, D. J., Kassim, A. R.,
Keller, M., Koven, C., Kueppers, L., Kumagai, T., Malhi, Y., McMahon, S. M.,
Mencuccini, M., Meir, P., Moorcroft, P., Muller-Landau, H. C., Phillips, O.
L., Powell, T., Sierra, C. A., Sperry, J., Warren, J., Xu, C., and Xu, X.:
Drivers and mechanisms of tree mortality in moist tropical forests, New
Phytol., 219, 851–869, https://doi.org/10.1111/nph.15027, 2018.
Naka, K.: Community dynamics of evergreen broadleaf forests in southwestern
Japan. I. Wind damaged trees and canopy gaps in an evergreen oak forest,
Bot. Mag. Tokyo, 95, 385–399, https://doi.org/10.1007/BF02489476, 1982.
Negrón-Juárez, R. I., Chambers, J. Q., Guimaraes, G., Zeng, H.,
Raupp, C. F. M., Marra, D. M., Ribeiro, G. H. P. M., Saatchi, S. S., Nelson,
B. W., and Higuchi, N.: Widespread Amazon forest tree mortality from a
single cross-basin squall line event, Geophys. Res. Lett., 37, 1–5,
https://doi.org/10.1029/2010GL043733, 2010.
Negrón-Juárez, R. I., Chambers, J. Q., Marra, D. M., Ribeiro, G. H.
P. M., Rifai, S. W., Higuchi, N., and Roberts, D.: Detection of subpixel
treefall gaps with Landsat imagery in Central Amazon forests, Remote Sens.
Environ., 115, 3322–3328, https://doi.org/10.1016/j.rse.2011.07.015, 2011.
Negrón-Juárez, R. I., Jenkins, H. S., Raupp, C. F. M., Riley, W. J.,
Kueppers, L. M., Marra, D. M., Ribeiro, G. H. P. M., Monteiro, M. T. F.,
Candido, L. A., Chambers, J. Q., and Higuchi, N.: Windthrow variability in
central Amazonia, Atmosphere, 8, 1–17,
https://doi.org/10.3390/atmos8020028, 2017.
Negrón-Juárez, R. I., Holm, J. A., Marra, D. M., Rifai, S. W.,
Riley, W. J., Chambers, J. Q., Koven, C. D., Knox, R. G., McGroddy, M. E.,
Di Vittorio, A. V., Urquiza-Muñoz, J., Tello-Espinoza, R., Muñoz, W.
A., Ribeiro, G. H. P. M., and Higuchi, N.: Vulnerability of Amazon forests
to storm-driven tree mortality, Environ. Res. Lett., 13, 054021,
https://doi.org/10.1088/1748-9326/aabe9f, 2018.
Negrón-Juárez, R. I, Magnabosco-Marra, D., Feng, Y.,
Urquiza-Muñoz, J. D., Riley, W. J., and Chambers, J. Q.: Windthrow
characteristics and their regional association with rainfall, soil, and
surface elevation in the Amazon, Environ. Res. Lett., 18, 014030,
https://doi.org/10.1088/1748-9326/acaf10, 2023.
Nelson, B. W., Kapos, V., Adams, J. B., Oliveira, W. J., and Braun, O. P.
G.: Forest Disturbance by Large Blowdowns in the Brazilian Amazon, Ecology,
75, 853–858, https://doi.org/10.2307/1941742, 1994.
Oliveira, A. A. D. E. and Mori, S. A.: A central Amazonian terra firme
forest, I. High tree species richness on poor soils, Biodivers. Conserv., 8,
1219–1244, https://doi.org/10.1023/A:1008908615271, 1999.
Ometto, J., Gorgens, E. B., Pereira, F. R. d. S., Sato, L., Assis, M. L. R., Cantinho, R., Longo, M., Jacon, A. D., and Keller, M.: L1A – Discrete airborne LiDAR transects collected by EBA in the Brazilian Amazon (Mato Grosso, Amazonas e Pará), Version v20230303, Zenodo [data set], https://doi.org/10.5281/zenodo.7636454, 2023.
Pan, Y., Birdsey, R. A., Phillips, O. L., and Jackson, R. B.: The structure,
distribution, and biomass of the world's forests, Annu. Rev. Ecol. Evol.
Syst., 44, 593–622, https://doi.org/10.1146/annurev-ecolsys-110512-135914,
2013.
Phillips, O. L. and Gentry, A. H.: Increasing Turnover Through Time in
Tropical Forests, Science, 263, 954–958,
https://doi.org/10.1126/science.263.5149.954, 1994.
Pinto, A. C. M., Higuchi, N., Iida, S., Santos, J., Ribeiro, R. J., Rocha, R. M., and Silva, R. P. P.: Padrão de distribuição espacial de espécies florestais que ocorrem na região de Manaus – AM, in: Projeto Jacaranda Fase II – Pesquisas Florestais na Amazônia Central, edited by: INPA, Manaus, 1–20, 2003.
Putz, F. E., Coley, P. D., Lu, K., Montalvo, A., and Aiello, A.: Uprooting
and snapping of trees: structural determinants and ecological consequences,
Can. J. Forest Res., 13, 1011–1020, https://doi.org/10.1139/x83-133, 1983.
Reis, C. R., Jackson, T. D., Bastos Gorgens, E., Dalagnol, R., Jucker, T.,
Henrique Nunes, M., and Pierre Ometto, J.: Forest structure and degradation
drive canopy gap sizes across the Brazilian Amazon, bioRxiv,
2021.05.03.442416,
https://doi.org/10.1101/2021.05.03.442416, 2021.
Ribeiro, G. H. P. de M., Suwa, R., Magnabosco Marra, D., Lima, A. J. N.,
Kajimoto, T., Ishizuka, M., and Higuchi, N.: Allometry for Juvenile Trees in
an Amazonian Forest after Wind Disturbance, Japan Agric. Res. Q. JARQ, 48,
213–219, https://doi.org/10.6090/jarq.48.213, 2014.
Ribeiro, G. H. P. M., Chambers, J. Q., Peterson, C. J., Trumbore, S. E.,
Marra, D. M., Wirth, C., Cannon, J. B., Négron-juárez, R. I., Lima,
A. J. N., Paula, E. V. C. M. De, Santos, J., and Higuchi, N.: Forest Ecology
and Management Mechanical vulnerability and resistance to snapping and
uprooting for Central Amazon tree species, Forest Ecol. Manag., 380, 1–10,
https://doi.org/10.1016/j.foreco.2016.08.039, 2016.
Runkle, J. R.: Gap Regeneration in Some Old-growth Forests of the Eastern
United States, Ecology, 62, 1041–1051, https://doi.org/10.2307/1937003,
1982.
Runkle, J. R. and Yetter, T. C.: Treefalls Revisited: Gap Dynamics in the
Southern Appalachians, Ecology, 68, 417–424,
https://doi.org/10.2307/1939273, 1987.
Santos, L. T., Marra, D. M., Trumbore, S., Camargo, P. B. De, Lima, A. J. N.
N., Ribeiro, G. H. P. M. P. M., Santos, J., Higuchi, N., Dos Santos, L. T.,
Marra, D. M., Trumbore, S., De Camargo, P. B., Negrón-Juárez, R. I.,
Lima, A. J. N. N., Ribeiro, G. H. P. M. P. M., Dos Santos, J., and Higuchi,
N.: Windthrows increase soil carbon stocks in a central Amazon forest,
Biogeosciences, 13, 1299–1308, https://doi.org/10.5194/bg-13-1299-2016,
2016.
Schliemann, S. A. and Bockheim, J. G.: Methods for studying treefall gaps: A
review, Forest Ecol. Manag., 261, 1143–1151,
https://doi.org/10.1016/j.foreco.2011.01.011, 2011.
Senf, C.: Seeing the System from Above: The Use and Potential of Remote Sensing for Studying Ecosystem Dynamics, Ecosystems, 25, 1719–1737, https://doi.org/10.1007/s10021-022-00777-2, 2022.
Simonetti, A.: Canopy gaps and associated losses of biomass – combining UAV imagery and field data in a Central Amazon forest, Zenodo [code], https://doi.org/10.5281/zenodo.8298693, 2023.
Sombroek, W.: Spatial and Temporal Patterns of Amazon Rainfall, AMBIO A J.
Hum. Environ., 30, 388–396, https://doi.org/10.1579/0044-7447-30.7.388,
2001.
Tan, J., Jakob, C., Rossow, W. B., and Tselioudis, G.: Increases in tropical
rainfall driven by changes in frequency of organized deep convection,
Nature, 519, 451–454, https://doi.org/10.1038/nature14339, 2015.
Urquiza Muñoz, J. D., Magnabosco Marra, D., Negrón-Juarez, R. I.,
Tello-Espinoza, R., Alegría-Muñoz, W., Pacheco-Gómez, T.,
Rifai, S. W., Chambers, J. Q., Jenkins, H. S., Brenning, A., and Trumbore,
S. E.: Recovery of Forest Structure Following Large-Scale Windthrows in the
Northwestern Amazon, Forests, 12, 667, https://doi.org/10.3390/f12060667,
2021.
Vepakomma, U., St-Onge, B., and Kneeshaw, D.: Spatially explicit
characterization of boreal forest gap dynamics using multi-temporal lidar
data, Remote Sens. Environ., 112, 2326–2340,
https://doi.org/10.1016/j.rse.2007.10.001, 2008.
Vitousek, P. M. and Denslow, J. S.: Nitrogen and Phosphorus Availability in
Treefall Gaps of a Lowland Tropical Rainforest, J. Ecol., 74, 1167,
https://doi.org/10.2307/2260241, 1986.
Whitmore, T. C.: Canopy Gaps and the Two Major Groups of Forest Trees,
Ecology, 70, 536–538, https://doi.org/10.2307/1940195, 1989.
Wu, J., Albert, L. P., Lopes, A. P., Restrepo-Coupe, N., Hayek, M.,
Wiedemann, K. T., Guan, K., Stark, S. C., Christoffersen, B., Prohaska, N.,
Tavares, J. V., Marostica, S., Kobayashi, H., Ferreira, M. L., Campos, K.
S., Dda Silva, R., Brando, P. M., Dye, D. G., Huxman, T. E., Huete, A. R.,
Nelson, B. W., and Saleska, S. R.: Leaf development and demography explain
photosynthetic seasonality in Amazon evergreen forests, Science,
351, 972–976, https://doi.org/10.1126/science.aad5068, 2016.
Yamamoto, S.-I.: Invited Review Forest Gap Dynamics and Tree Regeneration,
J. Forest Res, 5, 223–229, 2000.
Yavitt, J. B., Battles, J. J., Lang, G. E., and Knight, D. H.: The canopy
gap regime in a secondary Neotropical forest in Panama, J. Trop. Ecol., 11,
391–402, https://doi.org/10.1017/S0266467400008853, 1995.
Yue, W., Juyu, L., Zhaochen, Z., Jianbo, H., Ji, Y., Yong, L., and Wanhui,
Y.: Forest Plots Gap and Canopy Structure Analysis Based on Two UAV Images
, Trop. Geogr., 39, 553–561,
https://doi.org/10.13284/j.cnki.rddl.003148, 2019.

Zuleta, D., Arellano, G., McMahon, S. M., Aguilar, S., Bunyavejchewin, S.,
Castaño, N., Chang-Yang, C., Duque, A., Mitre, D., Nasardin, M.,
Pérez, R., Sun, I., Yao, T. L., Valencia, R., Krishna Moorthy, S. M.,
Verbeeck, H., and Davies, S. J.: Damage to living trees contributes to
almost half of the biomass losses in tropical forests, Glob. Change Biol.,
1–12, https://doi.org/10.1111/gcb.16687, 2023.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(2463 KB) - Full-text XML
- Corrigendum
-
Supplement
(542 KB) - BibTeX
- EndNote
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in...
Altmetrics
Final-revised paper
Preprint