Articles | Volume 20, issue 18
https://doi.org/10.5194/bg-20-3943-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3943-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deciphering the origin of dubiofossils from the Pennsylvanian of the Paraná Basin, Brazil
João Pedro Saldanha
CORRESPONDING AUTHOR
Programa de Pós-Graduação em Geologia, Universidade do
Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil
Joice Cagliari
Programa de Pós-Graduação em Geologia, Universidade do
Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil
Rodrigo Scalise Horodyski
Programa de Pós-Graduação em Geologia, Universidade do
Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil
Lucas Del Mouro
Instituto de Geociências, Universidade de São Paulo, São Paulo, SP, 05508-080, Brazil
Mírian Liza Alves Forancelli Pacheco
Departamento de Biologia, Universidade Federal de São Carlos –
Campus Sorocaba, Sorocaba, SP, 18052-780, Brazil
Related authors
No articles found.
Marlise C. Cassel, Ernesto L. C. Lavina, Joice Cagliari, René Rodrigues, and Egberto Pereira
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-46, https://doi.org/10.5194/cp-2019-46, 2019
Manuscript not accepted for further review
Short summary
Short summary
This manuscript proposes a new occurrence of anoxic events deposits (e.g. anomalous black shale) and other climatic extremes (e.g. hypersalinity) as the record of one of the triggers studied for the Permian-Triassic extinction. Although there are models that explain the extinction of P-T boundary, their triggers need more detailing. This study is also innovative due to the importance of oceanic anoxic events beyond of Crataceous and due to deposits in a intracratonic restricted basin.
Related subject area
Biogeochemistry: Biomineralization
The calcitic test growth rate of Spirillina vivipara (Foraminifera)
Impact of seawater sulfate concentration on sulfur concentration and isotopic composition in calcite of two cultured benthic foraminifera
Marked recent declines in boron in Baltic Sea cod otoliths – a bellwether of incipient acidification in a vast hypoxic system?
Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools
Biomineralization of amorphous Fe-, Mn- and Si-rich mineral phases by cyanobacteria under oxic and alkaline conditions
Biogenic calcium carbonate as evidence for life
Element ∕ Ca ratios in Nodosariida (Foraminifera) and their potential application for paleoenvironmental reconstructions
Properties of exopolymeric substances (EPSs) produced during cyanobacterial growth: potential role in whiting events
Inorganic component in oak waterlogged archaeological wood and volcanic lake compartments
Ultradian rhythms in shell composition of photosymbiotic and non-photosymbiotic mollusks
Extracellular enzyme activity in the coastal upwelling system off Peru: a mesocosm experiment
Multi-proxy assessment of brachiopod shell calcite as a potential archive of seawater temperature and oxygen isotope composition
Upper-ocean flux of biogenic calcite produced by the Arctic planktonic foraminifera Neogloboquadrina pachyderma
Do bacterial viruses affect framboid-like mineral formation?
Calcification response of reef corals to seasonal upwelling in the northern Arabian Sea (Masirah Island, Oman)
Growth rate rather than temperature affects the B∕Ca ratio in the calcareous red alga Lithothamnion corallioides
Heavy metal uptake of nearshore benthic foraminifera during multi-metal culturing experiments
A stable ultrastructural pattern despite variable cell size in Lithothamnion corallioides
Decoupling salinity and carbonate chemistry: low calcium ion concentration rather than salinity limits calcification in Baltic Sea mussels
Technical note: A universal method for measuring the thickness of microscopic calcite crystals, based on bidirectional circular polarization
The patterns of elemental concentration (Ca, Na, Sr, Mg, Mn, Ba, Cu, Pb, V, Y, U and Cd) in shells of invertebrates representing different CaCO3 polymorphs: a case study from the brackish Gulf of Gdańsk (the Baltic Sea)
Carbonic anhydrase is involved in calcification by the benthic foraminifer Amphistegina lessonii
Distribution of chlorine and fluorine in benthic foraminifera
Rare earth elements in oyster shells: provenance discrimination and potential vital effects
Determining how biotic and abiotic variables affect the shell condition and parameters of Heliconoides inflatus pteropods from a sediment trap in the Cariaco Basin
Intercomparison of four methods to estimate coral calcification under various environmental conditions
Technical note: The silicon isotopic composition of choanoflagellates: implications for a mechanistic understanding of isotopic fractionation during biosilicification
Insights into architecture, growth dynamics, and biomineralization from pulsed Sr-labelled Katelysia rhytiphora shells (Mollusca, Bivalvia)
Subaqueous speleothems (Hells Bells) formed by the interplay of pelagic redoxcline biogeochemistry and specific hydraulic conditions in the El Zapote sinkhole, Yucatán Peninsula, Mexico
Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions
Coupled calcium and inorganic carbon uptake suggested by magnesium and sulfur incorporation in foraminiferal calcite
Planktonic foraminiferal spine versus shell carbonate Na incorporation in relation to salinity
Precipitation of calcium carbonate mineral induced by viral lysis of cyanobacteria: evidence from laboratory experiments
Mineral formation induced by cable bacteria performing long-distance electron transport in marine sediments
Variation in brachiopod microstructure and isotope geochemistry under low-pH–ocean acidification conditions
Weaving of biomineralization framework in rotaliid foraminifera: implications for paleoceanographic proxies
Marine and freshwater micropearls: biomineralization producing strontium-rich amorphous calcium carbonate inclusions is widespread in the genus Tetraselmis (Chlorophyta)
Carbon and nitrogen turnover in the Arctic deep sea: in situ benthic community response to diatom and coccolithophorid phytodetritus
Technical note: A refinement of coccolith separation methods: measuring the sinking characteristics of coccoliths
Improving the strength of sandy soils via ureolytic CaCO3 solidification by Sporosarcina ureae
Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents
Calcification in a marginal sea – influence of seawater [Ca2+] and carbonate chemistry on bivalve shell formation
Effect of temperature rise and ocean acidification on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in situ benthocosm approach
Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi
Anatomical structure overrides temperature controls on magnesium uptake – calcification in the Arctic/subarctic coralline algae Leptophytum laeve and Kvaleya epilaeve (Rhodophyta; Corallinales)
Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy
Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress
Ba incorporation in benthic foraminifera
Size-dependent response of foraminiferal calcification to seawater carbonate chemistry
Technical note: an economical apparatus for the observation and harvest of mineral precipitation experiments with light microscopy
Yukiko Nagai, Katsuyuki Uematsu, Briony Mamo, and Takashi Toyofuku
Biogeosciences, 21, 1675–1684, https://doi.org/10.5194/bg-21-1675-2024, https://doi.org/10.5194/bg-21-1675-2024, 2024
Short summary
Short summary
This research highlights Spirillina vivipara's calcification strategy, highlighting variability in foraminiferal test formation. By examining its rapid growth and high calcification rate, we explain ecological strategies correlating with its broad coastal distribution. These insights amplify our understanding of foraminiferal ecology and underscore their impact on marine carbon cycling and paleoclimate studies, advocating for a species-specific approach in future research.
Caroline Thaler, Guillaume Paris, Marc Dellinger, Delphine Dissard, Sophie Berland, Arul Marie, Amandine Labat, and Annachiara Bartolini
Biogeosciences, 20, 5177–5198, https://doi.org/10.5194/bg-20-5177-2023, https://doi.org/10.5194/bg-20-5177-2023, 2023
Short summary
Short summary
Our study focuses on one of the most used microfossils in paleoenvironmental reconstructions: foraminifera. We set up a novel approach of long-term cultures under variable and controlled conditions. Our results highlight that foraminiferal tests can be used as a unique record of both SO42−/CaCO3 and δ34S seawater variation. This establishes geological formations composed of biogenic carbonates as a potential repository of paleoenvironmental seawater sulfate chemical and geochemical variation.
Karin E. Limburg, Yvette Heimbrand, and Karol Kuliński
Biogeosciences, 20, 4751–4760, https://doi.org/10.5194/bg-20-4751-2023, https://doi.org/10.5194/bg-20-4751-2023, 2023
Short summary
Short summary
We found a 3-to-5-fold decline in boron in Baltic cod otoliths between the late 1990s and 2021. The trend correlates with declines in oxygen and pH but not with increased salinity. Otolith B : Ca correlated with phosphorus in a healthy out-group (Icelandic cod) but not in Baltic cod. The otolith biomarkers Mn : Mg (hypoxia proxy) and B : Ca in cod otoliths suggest a general increase in both hypoxia and acidification within Baltic intermediate and deep waters in the last decade.
Narimane Dorey, Sophie Martin, and Lester Kwiatkowski
Biogeosciences, 20, 4289–4306, https://doi.org/10.5194/bg-20-4289-2023, https://doi.org/10.5194/bg-20-4289-2023, 2023
Short summary
Short summary
Human CO2 emissions are modifying ocean carbonate chemistry, causing ocean acidification and likely already impacting marine ecosystems. Here, we added CO2 to intertidal pools at the start of emersion to investigate the influence of future ocean acidification on net community production (NCP) and calcification (NCC). By day, adding CO2 fertilized the pools (+20 % NCP). By night, pools experienced net community dissolution, a dissolution that was further increased (+40 %) by the CO2 addition.
Karim Benzerara, Agnès Elmaleh, Maria Ciobanu, Alexis De Wever, Paola Bertolino, Miguel Iniesto, Didier Jézéquel, Purificación López-García, Nicolas Menguy, Elodie Muller, Fériel Skouri-Panet, Sufal Swaraj, Rosaluz Tavera, Christophe Thomazo, and David Moreira
Biogeosciences, 20, 4183–4195, https://doi.org/10.5194/bg-20-4183-2023, https://doi.org/10.5194/bg-20-4183-2023, 2023
Short summary
Short summary
Iron and manganese are poorly soluble in oxic and alkaline solutions but much more soluble under anoxic conditions. As a result, authigenic minerals rich in Fe and/or Mn have been viewed as diagnostic of anoxic conditions. However, here we reveal a new case of biomineralization by specific cyanobacteria, forming abundant Fe(III)- and Mn(IV)-rich amorphous phases under oxic conditions in an alkaline lake. This might be an overlooked biotic contribution to the scavenging of Fe from water columns.
Sara Ronca, Francesco Mura, Marco Brandano, Angela Cirigliano, Francesca Benedetti, Alessandro Grottoli, Massimo Reverberi, Daniele Federico Maras, Rodolfo Negri, Ernesto Di Mauro, and Teresa Rinaldi
Biogeosciences, 20, 4135–4145, https://doi.org/10.5194/bg-20-4135-2023, https://doi.org/10.5194/bg-20-4135-2023, 2023
Short summary
Short summary
The history of Earth is a story of the co-evolution of minerals and microbes. We present the evidence that moonmilk precipitation is driven by microorganisms within the rocks and not only on the rock surfaces. Moreover, the moonmilk produced within the rocks contributes to rock formation. The calcite speleothem moonmilk is the only known carbonate speleothem on Earth with undoubted biogenic origin, thus representing a biosignature of life.
Laura Pacho, Lennart de Nooijer, and Gert-Jan Reichart
Biogeosciences, 20, 4043–4056, https://doi.org/10.5194/bg-20-4043-2023, https://doi.org/10.5194/bg-20-4043-2023, 2023
Short summary
Short summary
We analyzed Mg / Ca and other El / Ca (Na / Ca, B / Ca, Sr / Ca and Ba / Ca) in Nodosariata. Their calcite chemistry is markedly different to that of the other calcifying orders of foraminifera. We show a relation between the species average Mg / Ca and its sensitivity to changes in temperature. Differences were reflected in both the Mg incorporation and the sensitivities of Mg / Ca to temperature.
Marlisa Martinho de Brito, Irina Bundeleva, Frédéric Marin, Emmanuelle Vennin, Annick Wilmotte, Laurent Plasseraud, and Pieter T. Visscher
Biogeosciences, 20, 3165–3183, https://doi.org/10.5194/bg-20-3165-2023, https://doi.org/10.5194/bg-20-3165-2023, 2023
Short summary
Short summary
Cyanobacterial blooms are associated with whiting events – natural occurrences of fine-grained carbonate precipitation in the water column. The role of organic matter (OM) produced by cyanobacteria in these events has been overlooked in previous research. Our laboratory experiments showed that OM affects the size and quantity of CaCO3 minerals. We propose a model of OM-associated CaCO3 precipitation during picoplankton blooms, which may have been neglected in modern and ancient events.
Giancarlo Sidoti, Federica Antonelli, Giulia Galotta, Maria Cristina Moscatelli, Davor Kržišnik, Vittorio Vinciguerra, Swati Tamantini, Rosita Marabottini, Natalia Macro, and Manuela Romagnoli
Biogeosciences, 20, 3137–3149, https://doi.org/10.5194/bg-20-3137-2023, https://doi.org/10.5194/bg-20-3137-2023, 2023
Short summary
Short summary
The mineral content in archaeological wood pile dwellings and in the surrounding sediments in a volcanic lake was investigated. Calcium was the most abundant element; the second most abundant element was arsenic in sapwood. Sulfur, iron and potassium were also present. The mineral compounds are linked to the volcanic origin of the lake, to bioaccumulation processes induced by bacteria (i.e. sulfate-reducing bacteria) and to biochemical processes.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Kristian Spilling, Jonna Piiparinen, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Maria T. Camarena-Gómez, Elisabeth von der Esch, Martin A. Fischer, Markel Gómez-Letona, Nauzet Hernández-Hernández, Judith Meyer, Ruth A. Schmitz, and Ulf Riebesell
Biogeosciences, 20, 1605–1619, https://doi.org/10.5194/bg-20-1605-2023, https://doi.org/10.5194/bg-20-1605-2023, 2023
Short summary
Short summary
We carried out an enclosure experiment using surface water off Peru with different additions of oxygen minimum zone water. In this paper, we report on enzyme activity and provide data on the decomposition of organic matter. We found very high activity with respect to an enzyme breaking down protein, suggesting that this is important for nutrient recycling both at present and in the future ocean.
Thomas Letulle, Danièle Gaspard, Mathieu Daëron, Florent Arnaud-Godet, Arnauld Vinçon-Laugier, Guillaume Suan, and Christophe Lécuyer
Biogeosciences, 20, 1381–1403, https://doi.org/10.5194/bg-20-1381-2023, https://doi.org/10.5194/bg-20-1381-2023, 2023
Short summary
Short summary
This paper studies the chemistry of modern marine shells called brachiopods. We investigate the relationship of the chemistry of these shells with sea temperatures to test and develop tools for estimating sea temperatures in the distant past. Our results confirm that two of the investigated chemical markers could be useful thermometers despite some second-order variability independent of temperature. The other chemical markers investigated, however, should not be used as a thermometer.
Franziska Tell, Lukas Jonkers, Julie Meilland, and Michal Kucera
Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022, https://doi.org/10.5194/bg-19-4903-2022, 2022
Short summary
Short summary
This study analyses the production of calcite shells formed by one of the main Arctic pelagic calcifiers, the foraminifera N. pachyderma. Using vertically resolved profiles of shell concentration, size and weight, we show that calcification occurs throughout the upper 300 m with an average production flux below the calcification zone of 8 mg CaCO3 m−2 d−1 representing 23 % of the total pelagic biogenic carbonate production. The production flux is attenuated in the twilight zone by dissolution.
Paweł Działak, Marcin D. Syczewski, Kamil Kornaus, Mirosław Słowakiewicz, Łukasz Zych, and Andrzej Borkowski
Biogeosciences, 19, 4533–4550, https://doi.org/10.5194/bg-19-4533-2022, https://doi.org/10.5194/bg-19-4533-2022, 2022
Short summary
Short summary
Bacteriophages comprise one of the factors that may influence mineralization processes. The number of bacteriophages in the environment usually exceeds the number of bacteria by an order of magnitude. One of the more interesting processes is the formation of framboidal pyrite, and it is not entirely clear what processes determine its formation. Our studies indicate that some bacterial viruses may influence the formation of framboid-like or spherical structures.
Philipp M. Spreter, Markus Reuter, Regina Mertz-Kraus, Oliver Taylor, and Thomas C. Brachert
Biogeosciences, 19, 3559–3573, https://doi.org/10.5194/bg-19-3559-2022, https://doi.org/10.5194/bg-19-3559-2022, 2022
Short summary
Short summary
We investigate the calcification rate of reef corals from an upwelling zone, where low seawater pH and high nutrient concentrations represent a recent analogue for the future ocean. Calcification rate of the corals largely relies on extension growth. Variable responses of extension growth to nutrients either compensate or exacerbate negative effects of weak skeletal thickening associated with low seawater pH – a mechanism that is critical for the persistence of coral reefs under global change.
Giulia Piazza, Valentina A. Bracchi, Antonio Langone, Agostino N. Meroni, and Daniela Basso
Biogeosciences, 19, 1047–1065, https://doi.org/10.5194/bg-19-1047-2022, https://doi.org/10.5194/bg-19-1047-2022, 2022
Short summary
Short summary
The coralline alga Lithothamnion corallioides is widely distributed in the Mediterranean Sea and NE Atlantic Ocean, where it constitutes rhodolith beds, which are diversity-rich ecosystems on the seabed. The boron incorporated in the calcified thallus of coralline algae (B/Ca) can be used to trace past changes in seawater carbonate and pH. This paper suggests a non-negligible effect of algal growth rate on B/Ca, recommending caution in adopting this proxy for paleoenvironmental reconstructions.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Valentina Alice Bracchi, Giulia Piazza, and Daniela Basso
Biogeosciences, 18, 6061–6076, https://doi.org/10.5194/bg-18-6061-2021, https://doi.org/10.5194/bg-18-6061-2021, 2021
Short summary
Short summary
Ultrastructures of Lithothamnion corallioides, a crustose coralline alga collected from the Atlantic and Mediterranean Sea at different depths, show high-Mg-calcite cell walls formed by crystals with a specific shape and orientation that are unaffected by different environmental conditions of the living sites. This suggests that the biomineralization process is biologically controlled in coralline algae and can have interesting applications in paleontology.
Trystan Sanders, Jörn Thomsen, Jens Daniel Müller, Gregor Rehder, and Frank Melzner
Biogeosciences, 18, 2573–2590, https://doi.org/10.5194/bg-18-2573-2021, https://doi.org/10.5194/bg-18-2573-2021, 2021
Short summary
Short summary
The Baltic Sea is expected to experience a rapid drop in salinity and increases in acidity and warming in the next century. Calcifying mussels dominate Baltic Sea seafloor ecosystems yet are sensitive to changes in seawater chemistry. We combine laboratory experiments and a field study and show that a lack of calcium causes extremely slow growth rates in mussels at low salinities. Subsequently, climate change in the Baltic may have drastic ramifications for Baltic seafloor ecosystems.
Luc Beaufort, Yves Gally, Baptiste Suchéras-Marx, Patrick Ferrand, and Julien Duboisset
Biogeosciences, 18, 775–785, https://doi.org/10.5194/bg-18-775-2021, https://doi.org/10.5194/bg-18-775-2021, 2021
Short summary
Short summary
The coccoliths are major contributors to the particulate inorganic carbon in the ocean. They are extremely difficult to weigh because they are too small to be manipulated. We propose a universal method to measure thickness and weight of fine calcite using polarizing microscopy that does not require fine-tuning of the light or a calibration process. This method named "bidirectional circular polarization" uses two images taken with two directions of a circular polarizer.
Anna Piwoni-Piórewicz, Stanislav Strekopytov, Emma Humphreys-Williams, and Piotr Kukliński
Biogeosciences, 18, 707–728, https://doi.org/10.5194/bg-18-707-2021, https://doi.org/10.5194/bg-18-707-2021, 2021
Short summary
Short summary
Calcifying organisms occur globally in almost every environment, and the process of biomineralization is of great importance in the global carbon cycle and use of skeletons as environmental data archives. The composition of skeletons is very complex. It is determined by the mechanisms of biological control on biomineralization and the response of calcifying organisms to varying environmental drivers. Yet for trace elements, such as Cu, Pb and Cd, an impact of environmental factors is pronounced.
Siham de Goeyse, Alice E. Webb, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 393–401, https://doi.org/10.5194/bg-18-393-2021, https://doi.org/10.5194/bg-18-393-2021, 2021
Short summary
Short summary
Foraminifera are calcifying organisms that play a role in the marine inorganic-carbon cycle and are widely used to reconstruct paleoclimates. However, the fundamental process by which they calcify remains essentially unknown. Here we use inhibitors to show that an enzyme is speeding up the conversion between bicarbonate and CO2. This helps the foraminifera acquire sufficient carbon for calcification and might aid their tolerance to elevated CO2 level.
Anne Roepert, Lubos Polerecky, Esmee Geerken, Gert-Jan Reichart, and Jack J. Middelburg
Biogeosciences, 17, 4727–4743, https://doi.org/10.5194/bg-17-4727-2020, https://doi.org/10.5194/bg-17-4727-2020, 2020
Short summary
Short summary
We investigated, for the first time, the spatial distribution of chlorine and fluorine in the shell walls of four benthic foraminifera species: Ammonia tepida, Amphistegina lessonii, Archaias angulatus, and Sorites marginalis. Cross sections of specimens were imaged using nanoSIMS. The distribution of Cl and F was co-located with organics in the rotaliids and rather homogeneously distributed in miliolids. We suggest that the incorporation is governed by the biomineralization pathway.
Vincent Mouchi, Camille Godbillot, Vianney Forest, Alexey Ulianov, Franck Lartaud, Marc de Rafélis, Laurent Emmanuel, and Eric P. Verrecchia
Biogeosciences, 17, 2205–2217, https://doi.org/10.5194/bg-17-2205-2020, https://doi.org/10.5194/bg-17-2205-2020, 2020
Short summary
Short summary
Rare earth elements (REEs) in coastal seawater are included in bivalve shells during growth, and a regional fingerprint can be defined for provenance and environmental monitoring studies. We present a large dataset of REE abundances from oysters from six locations in France. The cupped oyster can be discriminated from one locality to another, but this is not the case for the flat oyster. Therefore, provenance studies using bivalve shells based on REEs are not adapted for the flat oyster.
Rosie L. Oakes and Jocelyn A. Sessa
Biogeosciences, 17, 1975–1990, https://doi.org/10.5194/bg-17-1975-2020, https://doi.org/10.5194/bg-17-1975-2020, 2020
Short summary
Short summary
Pteropods are a group of tiny swimming snails whose fragile shells put them at risk from ocean acidification. We investigated the factors influencing the thickness of pteropods shells in the Cariaco Basin, off Venezuela, which is unaffected by ocean acidification. We found that pteropods formed thicker shells when nutrient concentrations, an indicator of food availability, were highest, indicating that food may be an important factor in mitigating the effects of ocean acidification on pteropods.
Miguel Gómez Batista, Marc Metian, François Oberhänsli, Simon Pouil, Peter W. Swarzenski, Eric Tambutté, Jean-Pierre Gattuso, Carlos M. Alonso Hernández, and Frédéric Gazeau
Biogeosciences, 17, 887–899, https://doi.org/10.5194/bg-17-887-2020, https://doi.org/10.5194/bg-17-887-2020, 2020
Short summary
Short summary
In this paper, we assessed four methods (total alkalinity anomaly, calcium anomaly, 45Ca incorporation, and 13C incorporation) to determine coral calcification of a reef-building coral. Under all conditions (light vs. dark incubations and ambient vs. lowered pH levels), calcification rates estimated using the alkalinity and calcium anomaly techniques as well as 45Ca incorporation were highly correlated, while significantly different results were obtained with the 13C incorporation technique.
Alan Marron, Lucie Cassarino, Jade Hatton, Paul Curnow, and Katharine R. Hendry
Biogeosciences, 16, 4805–4813, https://doi.org/10.5194/bg-16-4805-2019, https://doi.org/10.5194/bg-16-4805-2019, 2019
Short summary
Short summary
Isotopic signatures of silica fossils can be used as archives of past oceanic silicon cycling, which is linked to marine carbon uptake. However, the biochemistry that lies behind such chemical fingerprints remains poorly understood. We present the first measurements of silicon isotopes in a group of protists closely related to animals, choanoflagellates. Our results highlight a taxonomic basis to silica isotope signatures, possibly via a shared transport pathway in choanoflagellates and animals.
Laura M. Otter, Oluwatoosin B. A. Agbaje, Matt R. Kilburn, Christoph Lenz, Hadrien Henry, Patrick Trimby, Peter Hoppe, and Dorrit E. Jacob
Biogeosciences, 16, 3439–3455, https://doi.org/10.5194/bg-16-3439-2019, https://doi.org/10.5194/bg-16-3439-2019, 2019
Short summary
Short summary
This study uses strontium as a trace elemental marker in combination with high-resolution nano-analytical techniques to label the growth fronts of bivalves in controlled aquaculture conditions. The growing shells incorporate the labels and are used as
snapshotsvisualizing the growth processes across different shell architectures. These observations are combined with structural investigations across length scales and altogether allow for a detailed understanding of this shell.
Simon Michael Ritter, Margot Isenbeck-Schröter, Christian Scholz, Frank Keppler, Johannes Gescher, Lukas Klose, Nils Schorndorf, Jerónimo Avilés Olguín, Arturo González-González, and Wolfgang Stinnesbeck
Biogeosciences, 16, 2285–2305, https://doi.org/10.5194/bg-16-2285-2019, https://doi.org/10.5194/bg-16-2285-2019, 2019
Short summary
Short summary
Unique and spectacular under water speleothems termed as Hells Bells were recently reported from sinkholes (cenotes) of the Yucatán Peninsula, Mexico. However, the mystery of their formation remained unresolved. Here, we present detailed geochemical analyses and delineate that the growth of Hells Bells results from a combination of biogeochemical processes and variable hydraulic conditions within the cenote.
Andrew C. Mitchell, Erika J. Espinosa-Ortiz, Stacy L. Parks, Adrienne J. Phillips, Alfred B. Cunningham, and Robin Gerlach
Biogeosciences, 16, 2147–2161, https://doi.org/10.5194/bg-16-2147-2019, https://doi.org/10.5194/bg-16-2147-2019, 2019
Short summary
Short summary
Microbially induced carbonate mineral precipitation (MICP) is a natural process that is also being investigated for subsurface engineering applications including radionuclide immobilization and microfracture plugging. We demonstrate that rates of MICP from microbial urea hydrolysis (ureolysis) vary with different bacterial strains, but rates are similar in both oxygenated and oxygen-free conditions. Ureolysis MICP is therefore a viable biotechnology in the predominately oxygen-free subsurface.
Inge van Dijk, Christine Barras, Lennart Jan de Nooijer, Aurélia Mouret, Esmee Geerken, Shai Oron, and Gert-Jan Reichart
Biogeosciences, 16, 2115–2130, https://doi.org/10.5194/bg-16-2115-2019, https://doi.org/10.5194/bg-16-2115-2019, 2019
Short summary
Short summary
Systematics in the incorporation of different elements in shells of marine organisms can be used to test calcification models and thus processes involved in precipitation of calcium carbonates. On different scales, we observe a covariation of sulfur and magnesium incorporation in shells of foraminifera, which provides insights into the mechanics behind shell formation. The observed patterns imply that all species of foraminifera actively take up calcium and carbon in a coupled process.
Eveline M. Mezger, Lennart J. de Nooijer, Jacqueline Bertlich, Jelle Bijma, Dirk Nürnberg, and Gert-Jan Reichart
Biogeosciences, 16, 1147–1165, https://doi.org/10.5194/bg-16-1147-2019, https://doi.org/10.5194/bg-16-1147-2019, 2019
Short summary
Short summary
Seawater salinity is an important factor when trying to reconstruct past ocean conditions. Foraminifera, small organisms living in the sea, produce shells that incorporate more Na at higher salinities. The accuracy of reconstructions depends on the fundamental understanding involved in the incorporation and preservation of the original Na of the shell. In this study, we unravel the Na composition of different components of the shell and describe the relative contribution of these components.
Hengchao Xu, Xiaotong Peng, Shijie Bai, Kaiwen Ta, Shouye Yang, Shuangquan Liu, Ho Bin Jang, and Zixiao Guo
Biogeosciences, 16, 949–960, https://doi.org/10.5194/bg-16-949-2019, https://doi.org/10.5194/bg-16-949-2019, 2019
Short summary
Short summary
Viruses have been acknowledged as important components of the marine system for the past 2 decades, but understanding of their role in the functioning of the geochemical cycle remains poor. Results show viral lysis of cyanobacteria can influence the carbonate equilibrium system remarkably and promotes the formation and precipitation of carbonate minerals. Amorphous calcium carbonate (ACC) and aragonite are evident in the lysate, implying that different precipitation processes have occurred.
Nicole M. J. Geerlings, Eva-Maria Zetsche, Silvia Hidalgo-Martinez, Jack J. Middelburg, and Filip J. R. Meysman
Biogeosciences, 16, 811–829, https://doi.org/10.5194/bg-16-811-2019, https://doi.org/10.5194/bg-16-811-2019, 2019
Short summary
Short summary
Multicellular cable bacteria form long filaments that can reach lengths of several centimeters. They affect the chemistry and mineralogy of their surroundings and vice versa. How the surroundings affect the cable bacteria is investigated. They show three different types of biomineral formation: (1) a polymer containing phosphorus in their cells, (2) a sheath of clay surrounding the surface of the filament and (3) the encrustation of a filament via a solid phase containing iron and phosphorus.
Facheng Ye, Hana Jurikova, Lucia Angiolini, Uwe Brand, Gaia Crippa, Daniela Henkel, Jürgen Laudien, Claas Hiebenthal, and Danijela Šmajgl
Biogeosciences, 16, 617–642, https://doi.org/10.5194/bg-16-617-2019, https://doi.org/10.5194/bg-16-617-2019, 2019
Yukiko Nagai, Katsuyuki Uematsu, Chong Chen, Ryoji Wani, Jarosław Tyszka, and Takashi Toyofuku
Biogeosciences, 15, 6773–6789, https://doi.org/10.5194/bg-15-6773-2018, https://doi.org/10.5194/bg-15-6773-2018, 2018
Short summary
Short summary
We interpret detailed SEM and time-lapse observations of the calcification process in living foraminifera, which we reveal to be directly linked to the construction mechanism of organic membranes where the calcium carbonate precipitation takes place. We show that these membranes are a highly perforated outline is first woven by skeletal pseudopodia and then later overlaid by a layer of membranous pseudopodia to close the gaps. The chemical composition is related to these structures.
Agathe Martignier, Montserrat Filella, Kilian Pollok, Michael Melkonian, Michael Bensimon, François Barja, Falko Langenhorst, Jean-Michel Jaquet, and Daniel Ariztegui
Biogeosciences, 15, 6591–6605, https://doi.org/10.5194/bg-15-6591-2018, https://doi.org/10.5194/bg-15-6591-2018, 2018
Short summary
Short summary
The unicellular microalga Tetraselmis cordiformis (Chlorophyta) was recently discovered to form intracellular mineral inclusions, called micropearls, which had been previously overlooked. The present study shows that 10 Tetraselmis species out of the 12 tested share this biomineralization capacity, producing amorphous calcium carbonate inclusions often enriched in Sr. This novel biomineralization process can take place in marine, brackish or freshwater and is therefore a widespread phenomenon.
Ulrike Braeckman, Felix Janssen, Gaute Lavik, Marcus Elvert, Hannah Marchant, Caroline Buckner, Christina Bienhold, and Frank Wenzhöfer
Biogeosciences, 15, 6537–6557, https://doi.org/10.5194/bg-15-6537-2018, https://doi.org/10.5194/bg-15-6537-2018, 2018
Short summary
Short summary
Global warming has altered Arctic phytoplankton communities, with unknown effects on deep-sea communities that depend strongly on food produced at the surface. We compared the responses of Arctic deep-sea benthos to input of phytodetritus from diatoms and coccolithophorids. Coccolithophorid carbon was 5× less recycled than diatom carbon. The utilization of the coccolithophorid carbon may be less efficient, so a shift from diatom to coccolithophorid blooms could entail a delay in carbon cycling.
Hongrui Zhang, Heather Stoll, Clara Bolton, Xiaobo Jin, and Chuanlian Liu
Biogeosciences, 15, 4759–4775, https://doi.org/10.5194/bg-15-4759-2018, https://doi.org/10.5194/bg-15-4759-2018, 2018
Short summary
Short summary
The sinking speeds of coccoliths are relevant for laboratory methods to separate coccoliths for geochemical analysis. However, in the absence of estimates of coccolith settling velocity, previous implementations have depended mainly on time-consuming method development by trial and error. In this study, the sinking velocities of cocooliths were carefully measured for the first time. We also provide an estimation of coccolith sinking velocity by shape, which will make coccolith separation easier.
Justin Michael Whitaker, Sai Vanapalli, and Danielle Fortin
Biogeosciences, 15, 4367–4380, https://doi.org/10.5194/bg-15-4367-2018, https://doi.org/10.5194/bg-15-4367-2018, 2018
Short summary
Short summary
Materials, like soils or cements, can require repair. This study used a new bacterium (Sporosarcina ureae) in a repair method called "microbially induced carbonate precipitation" (MICP). In three trials, benefits were shown: S. ureae could make a model sandy soil much stronger by MICP, in fact better than a lot of other bacteria. However, MICP-treated samples got weaker in three trials of acid rain. In conclusion, S. ureae in MICP repair shows promise when used in appropriate climates.
Esmee Geerken, Lennart Jan de Nooijer, Inge van Dijk, and Gert-Jan Reichart
Biogeosciences, 15, 2205–2218, https://doi.org/10.5194/bg-15-2205-2018, https://doi.org/10.5194/bg-15-2205-2018, 2018
Jörn Thomsen, Kirti Ramesh, Trystan Sanders, Markus Bleich, and Frank Melzner
Biogeosciences, 15, 1469–1482, https://doi.org/10.5194/bg-15-1469-2018, https://doi.org/10.5194/bg-15-1469-2018, 2018
Short summary
Short summary
The distribution of mussel in estuaries is limited but the mechanisms are not well understood. We document for the first time that reduced Ca2+ concentration in the low saline, brackish Baltic Sea affects the ability of mussel larvae to calcify the first larval shell. As complete formation of the shell is a prerequisite for successful development, impaired calcification during this sensitive life stage can have detrimental effects on the species' ability to colonize habitats.
Sha Ni, Isabelle Taubner, Florian Böhm, Vera Winde, and Michael E. Böttcher
Biogeosciences, 15, 1425–1445, https://doi.org/10.5194/bg-15-1425-2018, https://doi.org/10.5194/bg-15-1425-2018, 2018
Short summary
Short summary
Spirorbis tube worms are common epibionts on brown algae in the Baltic Sea. We made experiments with Spirorbis in the
Kiel Outdoor Benthocosmsat CO2 and temperature conditions predicted for the year 2100. The worms were able to grow tubes even at CO2 levels favouring shell dissolution but did not survive at mean temperatures over 24° C. This indicates that Spirorbis worms will suffer from future excessive ocean warming and from ocean acidification fostering corrosion of their protective tubes.
Andrea C. Gerecht, Luka Šupraha, Gerald Langer, and Jorijntje Henderiks
Biogeosciences, 15, 833–845, https://doi.org/10.5194/bg-15-833-2018, https://doi.org/10.5194/bg-15-833-2018, 2018
Short summary
Short summary
Calcifying phytoplankton play an import role in long-term CO2 removal from the atmosphere. We therefore studied the ability of a representative species to continue sequestrating CO2 under future climate conditions. We show that CO2 sequestration is negatively affected by both an increase in temperature and the resulting decrease in nutrient availability. This will impact the biogeochemical cycle of carbon and may have a positive feedback on rising CO2 levels.
Merinda C. Nash and Walter Adey
Biogeosciences, 15, 781–795, https://doi.org/10.5194/bg-15-781-2018, https://doi.org/10.5194/bg-15-781-2018, 2018
Short summary
Short summary
Past seawater temperatures can be reconstructed using magnesium / calcium ratios of biogenic carbonates. As temperature increases, so does magnesium. Here we show that for these Arctic/subarctic coralline algae, anatomy is the first control on Mg / Ca, not temperature. When using coralline algae for temperature reconstruction, it is first necessary to check for anatomical influences on Mg / Ca.
Thomas M. DeCarlo, Juan P. D'Olivo, Taryn Foster, Michael Holcomb, Thomas Becker, and Malcolm T. McCulloch
Biogeosciences, 14, 5253–5269, https://doi.org/10.5194/bg-14-5253-2017, https://doi.org/10.5194/bg-14-5253-2017, 2017
Short summary
Short summary
We present a new technique to quantify the chemical conditions under which corals build their skeletons by analysing them with lasers at a very fine resolution, down to 1/100th the width of a human hair. Our first applications to laboratory-cultured and wild corals demonstrates the complex interplay among seawater conditions (temperature and acidity), calcifying fluid chemistry, and bulk skeleton accretion, which will define the sensitivity of coral calcification to 21st century climate change.
Giulia Faucher, Linn Hoffmann, Lennart T. Bach, Cinzia Bottini, Elisabetta Erba, and Ulf Riebesell
Biogeosciences, 14, 3603–3613, https://doi.org/10.5194/bg-14-3603-2017, https://doi.org/10.5194/bg-14-3603-2017, 2017
Short summary
Short summary
The main goal of this study was to understand if, similarly to the fossil record, high quantities of toxic metals induce coccolith dwarfism in coccolithophore species. We investigated, for the first time, the effects of trace metals on coccolithophore species other than E. huxleyi and on coccolith morphology and size. Our data show a species-specific sensitivity to trace metal concentration, allowing the recognition of the most-, intermediate- and least-tolerant taxa to trace metal enrichments.
Lennart J. de Nooijer, Anieke Brombacher, Antje Mewes, Gerald Langer, Gernot Nehrke, Jelle Bijma, and Gert-Jan Reichart
Biogeosciences, 14, 3387–3400, https://doi.org/10.5194/bg-14-3387-2017, https://doi.org/10.5194/bg-14-3387-2017, 2017
Michael J. Henehan, David Evans, Madison Shankle, Janet E. Burke, Gavin L. Foster, Eleni Anagnostou, Thomas B. Chalk, Joseph A. Stewart, Claudia H. S. Alt, Joseph Durrant, and Pincelli M. Hull
Biogeosciences, 14, 3287–3308, https://doi.org/10.5194/bg-14-3287-2017, https://doi.org/10.5194/bg-14-3287-2017, 2017
Short summary
Short summary
It is still unclear whether foraminifera (calcifying plankton that play an important role in cycling carbon) will have difficulty in making their shells in more acidic oceans, with different studies often reporting apparently conflicting results. We used live lab cultures, mathematical models, and fossil measurements to test this question, and found low pH does reduce calcification. However, we find this response is likely size-dependent, which may have obscured this response in other studies.
Chris H. Crosby and Jake V. Bailey
Biogeosciences, 14, 2151–2154, https://doi.org/10.5194/bg-14-2151-2017, https://doi.org/10.5194/bg-14-2151-2017, 2017
Short summary
Short summary
In the course of experiments exploring the formation of calcium phosphate minerals in a polymeric matrix, we developed a small-scale, reusable, and low-cost setup that allows microscopic observation over time for use in mineral precipitation experiments that use organic polymers as a matrix. The setup uniquely accommodates changes in solution chemistry during the course of an experiment and facilitates easy harvesting of the precipitates for subsequent analysis.
Cited articles
Aarnes, I., Svensen, H., Connolly, J. A. D., and Podladchikov, Y. Y.: How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins, Geochim. Cosmochim. Ac., 74, 7179–7195, https://doi.org/10.1016/j.gca.2010.09.011, 2010.
Aarnes, I., Podladchikov, Y., and Svensen, H.: Devolatilization-induced pressure build-up: Implications for reaction front movement and breccia pipe
formation, Geofluids, 12, 265–279, https://doi.org/10.1111/j.1468-8123.2012.00368.x, 2012.
Agirrezabala, L. M., Permanyer, A., Suárez-Ruiz, I., and Dorronsoro, C.:
Contact metamorphism of organic-rich mudstones and carbon release around a
magmatic sill in the Basque-Cantabrian Basin, western Pyrenees, Org. Geochem., 69, 26–35, https://doi.org/10.1016/j.orggeochem.2014.01.014, 2014.
Al-Agha, M. R., Burley, S. D., Curtis, C. D., and Esson, J.: Complex cementation textures and authigenic mineral assemblages in Recent concretions from the Lincolnshire Wash (east coast, UK) driven by Fe(0) to Fe(II) oxidation, J. Geol. Soc. Lond., 152, 157–171, https://doi.org/10.1144/gsjgs.152.1.0157, 1995.
Aleali, M., Rahimpour-Bonab, H., Moussavi-Harami, R., and Jahani, D.:
Environmental and sequence stratigraphic implications of anhydrite textures:
A case from the Lower Triassic of the Central Persian Gulf, J. Asian Earth
Sci., 75, 110–125, https://doi.org/10.1016/j.jseaes.2013.07.017, 2013.
Alhaddad, M. S. and Ahmed, H. A. M.: A Review of Magnesite Mineral and its
Industrial Application, Arab. J. Sci. Publ., 2663, 1–13, 2022.
Apolinarska, K., Pełechaty, M., and Pukacz, A.: CaCO3 sedimentation by modern charophytes (Characeae): can calcified remains and carbonate δ13C and δ18O record the ecological state of lakes? – a review, Stud. Limnol. Telmatolog., 5, 55–66, 2011.
Aquino, C. D., Buso, V. V., Faccini, U. F., Milana, J. P., and Paim, P. S. G.: Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding-line system from the Itararé Group
(Paraná Basin), southern Brazil, J. S. Am. Earth Sci., 67, 180–200,
https://doi.org/10.1016/j.jsames.2016.02.008, 2016.
Aref, M. A. and Mannaa, A. A.: The significance of gypsum morphology in
interpreting environmental changes caused by human construction, Red Sea
coastal evaporation environment, Saudi Arabia, Environ. Earth Sci., 80, 1–21, 2021.
Arp, G., Bissett, A., Brinkmann, N., Cousin, S., Beer, D. D. E., Friedl, T.,
Mohr, K. I., Neu, T. R., Reimer, A., Shiraishi, F., Stackebrandt, E., and Zippel, B.: Tufa-forming biofilms of German karstwater streams: microorganisms, exopolymers, hydrochemistry and calcification, Microb. Phys. Control., 336, 83–118, 2010.
Ayllón-Quevedo, F., Souza-Egipsy, V., Sanz-Montero, M. E., and
Rodríguez-Aranda, J .P.: Fluid inclusion analysis of twinned selenite
gypsum beds from the Miocene of the Madrid basin (Spain). Implication on
dolomite bioformation, Sediment. Geol., 201, 212–230, https://doi.org/10.1016/j.sedgeo.2007.06.001, 2007.
Baa̧bel, M.: Models for evaporite, selenite and gypsum microbialite
deposition in ancient saline basins, Acta Geol. Pol., 54, 219–249, 2004.
Ba̧bel, M.: Depositional environments of a salina-type evaporite basin
recorded in the Badenian gypsum facies in the northern Carpathian Foredeep,
Geol. Soc. London, Spec. Publ., 285, 107–142, https://doi.org/10.1144/SP285.7, 2007.
Balistieri, P., Netto, R. G., and Lavina, E. L. C.: Icnofauna de ritmitos do topo da Formação Mafra (Permo-Carbonífero da Bacia do Paraná) em Rio Negro, Estado do Paraná (PR), Brasil. Asoc. Paleontológica
Argentina. IV Reun. Argentina Icnología y II Reun. Icnología del
Mercosur, 9, 131–139, 2003.
Balistieri, P., Netto, R. G., and Sedorko, D.: Paleoichnology of the Itararé Group in the State of Santa Catarina and Rio Negro City (PR), Brazil: a revision, Terr. Plur., 15, e2118322, https://doi.org/10.5212/TerraPlural.v.15.2118322.039, 2021.
Balistieri, P. R. M. N., Netto, R. G., andLavina, E. L. C.: Ichnofauna from the Upper Carboniferous-Lower Permian rhythmites from Mafra, Santa Catarina State, Brazil: ichnotaxonomy, Revista Brasileira de Paleontologia, 4, 13–26, 2002.
Bandel, K. and Shinaq, R.: Sediments of the Precambrian Wadi Abu Barqa
Formation influenced by life and their relation to the Cambrian sandstones
in southern Jordan, Freib. Forschungshefte C, 499, 78–91, 2003.
Baran, E. J.: Review: Natural oxalates and their analogous synthetic
complexes, J. Coord. Chem. 67, 3734–3768, https://doi.org/10.1080/00958972.2014.937340, 2014.
Baucon, A., De Carvalho, C. N., Felletti, F., and Cabella, R.: Ichnofossils,
cracks or crystals? A test for biogenicity of stick-like structures from
vera rubin ridge, mars, Geosciences, 10, 39, https://doi.org/10.3390/geosciences10020039, 2020.
Baumgartner, L. K., Reid, R. P., Dupraz, C., Decho, A. W., Buckley, D. H.,
Spear, J. R., Przekop, K. M., and Visscher, P. T.: Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries, Sediment. Geol., 185,
131–145, https://doi.org/10.1016/j.sedgeo.2005.12.008, 2006.
Beavington-Penney, S. J., Paul Wright, V., and Woelkerling, W. J.: Recognising macrophyte-vegetated environments in the rock record: a new criterion using `hooked' forms of crustose coralline red algae, Sediment. Geol., 166, 1–9, https://doi.org/10.1016/j.sedgeo.2003.11.022, 2004.
Bengtson, S., Rasmussen, B., Ivarsson, M., Muhling, J., Broman, C., Marone,
F., Stampanoni, M., and Bekker, A.: Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt, Nat. Ecol. Evol., 1, 1–6,
https://doi.org/10.1038/s41559-017-0141, 2017.
Benison, K. C. and Bowen, B. B.: Extreme sulfur-cycling in acid brine lake
environments of Western Australia, Chem. Geol., 351, 154–167,
https://doi.org/10.1016/j.chemgeo.2013.05.018, 2013.
Benzerara, K. and Menguy, N.: Looking for traces of life in minerals, Comptes
Rendus Palevol., 8, 617–628, https://doi.org/10.1016/j.crpv.2009.03.006, 2009.
Benzerara, K., Bernard, S., and Miot, J.: Mineralogical Identification of Traces of Life, Springer, 123–144, https://doi.org/10.1007/978-3-319-96175-0_6, 2019.
Bindschedler, S., Cailleau, G., Braissant, O., Millière, L., Job, D., and
Verrecchia, E. P.: Unravelling the enigmatic origin of calcitic nanofibres in
soils and caves: Purely physicochemical or biogenic processes?, Biogeosciences, 11, 2809–2825., https://doi.org/10.5194/bg-11-2809-2014, 2014.
Bindschedler, S., Cailleau, G., and Verrecchia, E.: Role of Fungi in the
Biomineralization of Calcite, Minerals, 6, 41, https://doi.org/10.3390/min6020041, 2016.
Bontognali, T. R. R., Vasconcelos, C., Warthmann, R. J., Bernasconi, S. M.,
Dupraz, C., StrohmengeR, C. J., and McKenzie, J. A.: Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates), Sedimentology, 57, 824–844, https://doi.org/10.1111/j.1365-3091.2009.01121.x, 2010.
Bosak, T. and Newman, D. K.: Microbial Kinetic Controls on Calcite Morphology in Supersaturated Solutions, J. Sediment. Res., 75, 190–199,
https://doi.org/10.2110/jsr.2005.015, 2005.
Botta, O., Bada, J. L., Gomez-Elvira, J., Javaux, E., Selsis, F., and Summons, R.: Strategies of Life Detection, in: Space Sciences Series of ISSI, Springer Science & Business Media, Springer US, Boston, MA,
https://doi.org/10.1007/978-0-387-77516-6, 2008.
Bower, D. M., Hummer, D. R., Steele, A., and Kyono, A.: The Co-Evolution of
Fe-Oxides, Ti-Oxides, and Other Microbially Induced Mineral Precipitates. In: Sandy Sediments: Understanding the Role of Cyanobacteria In Weathering
and Early Diagenesis., J. Sediment. Res., 85, 1213–1227, https://doi.org/10.2110/jsr.2015.76, 2015.
Brace, W. F.: Permeability of crystalline and argillaceous rocks, Int. J.
Rock Mech. Min. Sci. Geomech., 17, 241–251, https://doi.org/10.1016/0148-9062(80)90807-4, 1980.
Braissant, O., Cailleau, G., Dupraz, C., and Verrecchia, E. P.: Bacterially
induced mineralization of calcium carbonate in terrestrial environments: the
role of exopolysaccharides and amino acids., J. Sediment. Res., 73, 485–490, https://doi.org/10.1306/111302730485, 2003.
Brammall, A.: VI – The Genesis of Chiastolite; and its suspected Occurrence
in Association with a Basic Intrusive, Geolog. Mag., 2, 224–228, 1915.
Brasier, M., Green, O., Lindsay, J., and Steele, A.: Earth's Oldest
(∼3.5 Ga) Fossils and the `Early Eden Hypothesis': Questioning the Evidence, Orig. Life Evol. Biosph. 34, 257–269, https://doi.org/10.1023/B:ORIG.0000009845.62244.d3, 2004.
Brasier, M. D. and Wacey, D.: Fossils and astrobiology: new protocols for cell evolution in deep time, Int. J. Astrobiol., 11, 217–228,
https://doi.org/10.1017/S1473550412000298, 2012.
Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk,
M. J., Lindsay, J. F., Steele, A., and Grassineau, N. V.: Questioning the evidence for Earth's oldest fossils, Nature, 416, 76–81, https://doi.org/10.1038/416076a, 2002.
Briggs, D. E. G.: The Role of Decay and Mineralization in the Preservation of
Soft-Bodied Fossils, Annu. Rev. Earth Planet. Sci., 31, 275–301,
https://doi.org/10.1146/annurev.earth.31.100901.144746, 2003.
Briggs, D. E. G. and McMahon, S.: The role of experiments in investigating the taphonomy of exceptional preservation, Palaeontology, 59, 1–11,
https://doi.org/10.1111/pala.12219, 2016.
Buatois, L. A., Netto, R. G., Mángano, M. G., and Balistieri, P. R. M. N.: Extreme freshwater release during the late Paleozoic Gondwana deglaciation and its impact on coastal ecosystems, Geology, 34, 1021,
https://doi.org/10.1130/G22994A.1, 2006.
Buick, R.: Microfossil Recognition in Archean Rocks: An Appraisal of Spheroids and Filaments from a 3500 M.Y. Old Chert-Barite Unit at North Pole, Western Australia, Palaios, 5, 441, https://doi.org/10.2307/3514837, 1990.
Cagliari, J., Philipp, R. P., Buso, V. V., Netto, R. G., Klaus Hillebrand, P., da Cunha Lopes, R., Stipp Basei, M. A., and Faccini, U. F.: Age constraints of the glaciation in the Paraná Basin: evidence from new U–Pb dates, J. Geol. Soc. Lond., 173, 871–874, https://doi.org/10.1144/jgs2015-161, 2016.
Cailleau, G., Verrecchia, E. P., Braissant, O., and Emmanuel, L.: The biogenic origin of needle fibre calcite, Sedimentology, 56, 1858–1875, https://doi.org/10.1111/j.1365-3091.2009.01060.x, 2009.
Callefo, F., Maldanis, L., Teixeira, V. C., de Abans, R. A. O., Monfredini, T., Rodrigues, F., and Galante, D.: Evaluating Biogenicity on the Geological Record with Synchrotron-Based Techniques, Front. Microbiol., 10, 1–12, https://doi.org/10.3389/fmicb.2019.02358, 2019a.
Callefo, F., Ricardi-Branco, F., Hartmann, G. A., Galante, D., Rodrigues, F.,
Maldanis, L., Yokoyama, E., Teixeira, V. C., Noffke, N., Bower, D. M.,
Bullock, E. S., Braga, A. H., Coaquira, J. A. H., and Fernandes, M. A.: Evaluating iron as a biomarker of rhythmites – An example from the last Paleozoic ice age of Gondwana, Sediment. Geol., 383, 1–15,
https://doi.org/10.1016/j.sedgeo.2019.02.002, 2019b.
Canuto, J. R., dos Santos, P. R., and Rocha-Campos, A. C.: Estratigrafia de
sequênicas do grupo Itararé (Neopaleozoico), Revista Brasileira de
Geociências, 31, 107–116, 2001.
Cardoso, A. R., Basilici, G., and da Silva, P. A. S.: Early diagenetic calcite replacement of evaporites in playa lakes of the Quiricó Formation (Lower Cretaceous, SE Brazil), Sediment. Geol., 438, 106212, https://doi.org/10.1016/j.sedgeo.2022.106212, 2022.
Chen, J., Blume, H.-P., and Beyer, L.: Weathering of rocks induced by lichen
colonization – a review, Catena, 39, 121–146, https://doi.org/10.1016/S0341-8162(99)00085-5, 2000.
Daemon, R. F. and Quadros, L. D.: Bioestratigrafia do Neopaleozóico da
bacia do Paraná, Congresso Brasileiro de Geologia, 24, 359–412, 1970.
Davies, G. R. and Smith, L. B.: Structurally controlled hydrothermal dolomite
reservoir facies: An overview, Am. Assoc. Pet. Geol. Bull. 90, 1641–1690,
https://doi.org/10.1306/05220605164, 2006.
Davies, N. S., Liu, A. G., Gibling, M. R., and Miller, R. F.: Resolving MISS
conceptions and misconceptions: A geological approach to sedimentary surface
textures generated by microbial and abiotic processes, Earth-Sci. Rev., 154, 210–246, https://doi.org/10.1016/j.earscirev.2016.01.005, 2016.
Davies, N. S., Shillito, A. P., Slater, B. J., Liu, A. G., and McMahon, W. J.: Evolutionary synchrony of Earth's biosphere and sedimentary-stratigraphic
record, Earth-Sci. Rev., 201, 102979, https://doi.org/10.1016/j.earscirev.2019.102979, 2020.
de Almeida, F. F. M.: Distribuição regional e relações
tectônicas do magmatismo pós-paleozoico no brasil, Rev. Bras.
Geociências, 17, 325–349, https://doi.org/10.25249/0375-7536.1986325349, 1987.
De Barros, G. E. B., Becker-Kerber, B., Sedorko, D., Lima, J. H. D., and Pacheco, M. L. A. F.: Ichnological aspects of the Aquidauana Formation (Upper
Carboniferous, Itararé Group, Brazil): An arthropod-colonized glacial
setting, Palaeogeogr. Palaeoclim. Palaeoecol., 578, 110575,
https://doi.org/10.1016/j.palaeo.2021.110575, 2021.
Della Porta, G.: Carbonate build-ups in lacustrine, hydrothermal and fluvial
settings: comparing depositional geometry, fabric types and geochemical
signature, Geol. Soc. Lond. Spec. Publ., 418, 17–68, https://doi.org/10.1144/SP418.4, 2015.
De Vargas, T., Boff, F. E., Belladona, R., Faccioni, L. F., Reginato, P. A. R., and Carlos, F. S.: Influence of geological discontinuities on the groundwater flow of the Serra Geral Fractured Aquifer System, Groundw. Sustain. Dev., 18, 100780, https://doi.org/10.1016/j.gsd.2022.100780, 2022.
Dionne, J. C.: Formes, figures et faciès sédimentaires glaciels des
estrans vaseux des régions froides, Palaeogeogr. Palaeoclim. Palaeoecol., 51, 415–451, https://doi.org/10.1016/0031-0182(85)90097-5, 1985.
Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., O'Neil, J., and Little, C. T. S.: Evidence for early life in Earth's oldest hydrothermal vent precipitates, Nature, 543, 60–64,
https://doi.org/10.1038/nature21377, 2017.
Douglas, S. and Beveridge, T.: Mineral formation by bacteria in natural
microbial communities, FEMS Microbiol. Ecol., 26, 79–88,
https://doi.org/10.1016/S0168-6496(98)00027-0, 1998.
Dupraz, C., Visscher, P. T., Baumgartner, L. K., and Reid, R. P.: Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas), Sedimentology, 51, 745–765,
https://doi.org/10.1111/j.1365-3091.2004.00649.x, 2004.
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., and Visscher, P. T.: Processes of carbonate precipitation in modern microbial mats, Earth-Sci. Rev., 96, 141–162, https://doi.org/10.1016/j.earscirev.2008.10.005, 2009.
Dutton, M. V. and Evans, C. S.: Oxalate production by fungi: its role in
pathogenicity and ecology in the soil environment, Can. J. Microbiol., 42,
881–895, https://doi.org/10.1139/m96-114, 1996.
Espinosa-Marzal, R. M. and Scherer, G. W.: Advances in understanding damage by salt crystallization, Acc. Chem. Res., 43, 897–905, https://doi.org/10.1021/ar9002224, 2010.
Eugster, H. P.: Geochemistry of Evaporitic Lacustrine Deposits, Annu. Rev.
Earth Planet. Sci., 8, 35–63, https://doi.org/10.1146/annurev.ea.08.050180.000343, 1980.
Eymard, I., Alvarez, M., Bilmes, A., Vasconcelos, C., and Ariztegui, D.:
Tracking Organomineralization Processes from Living Microbial Mats to Fossil
Microbialites, Minerals, 10, 605, https://doi.org/10.3390/min10070605, 2020.
Farias, F., Szatmari, P., Bahniuk, A., and França, A. B.: Evaporitic
carbonates in the pre-salt of Santos Basin – Genesis and tectonic implications, Mar. Pet. Geol., 105, 251–272, https://doi.org/10.1016/j.marpetgeo.2019.04.020, 2019.
Finkelman, R. B., Bostick, N. H., Dulong, F. T., Senftle, F. E., and Thorpe, A. N.: Influence of an igneous intrusion on the inorganic geochemistry of a
bituminous coal from Pitkin County, Colorado, Int. J. Coal Geol., 36,
223–241, https://doi.org/10.1016/S0166-5162(98)00005-6, 1998.
Franca, A. B. and Potter, P. E.: Estratigrafia, ambiente deposicional e
análise de reservatório do Grupo Itararé (Permocarbonifero),
Bacia do Parana (Parte 1), Bol. Geociencias – Petrobras, 2, 147–191, 1988.
Franceschi, V. R. and Horner, H. T.: Calcium oxalate crystals in plants, Bot.
Rev., 46, 361–427, https://doi.org/10.1007/BF02860532, 1980.
Franceschi, V. R. and Nakata, P. A.: Calcium oxalate in plants: Formation and
function, Annu. Rev. Plant Biol., 56, 41–71, https://doi.org/10.1146/annurev.arplant.56.032604.144106, 2005.
Frank, H. T., Gomes, M. E. B., and Formoso, M. L. L.: Revisão da extensão areal e do volume da Formação Serra Geral, Bacia do Paraná, América do Sul, Pesqui. em Geociências, 36, 49–57, https://doi.org/10.22456/1807-9806.17874, 2009.
Friedmann, E. J., Weed, R., and Land, V.: Abiotic Weathering in the Antarctic
Cold Desert, Science, 236, 703–705, 1987.
Frisia, S., Borsato, A., Fairchild, I. J., McDermott, F., and Selmo, E. M.:
Aragonite-Calcite Relationships in Speleothems (Grotte De Clamouse, France):
Environment, Fabrics, and Carbonate Geochemistry, J. Sediment. Res., 72,
687–699, https://doi.org/10.1306/020702720687, 2002.
Gadd, G. M.: Geomycology: biogeochemical transformations of rocks, minerals,
metals and radionuclides by fungi, bioweathering and bioremediation, Mycol.
Res., 111, 3–49, https://doi.org/10.1016/j.mycres.2006.12.001, 2007.
Gadd, G. M., Rhee, Y. J., Stephenson, K., and Wei, Z.: Geomycology: Metals,
actinides and biominerals, Environ. Microbiol. Rep., 4, 270–296,
https://doi.org/10.1111/j.1758-2229.2011.00283.x, 2012.
Gadd, G. M., Bahri-Esfahani, J., Li, Q., Rhee, Y. J., Wei, Z., Fomina, M.,
and Liang, X.: Oxalate production by fungi: significance in geomycology,
biodeterioration and bioremediation, Fungal Biol. Rev., 28, 36–55,
https://doi.org/10.1016/j.fbr.2014.05.001, 2014.
Gandini, R., Netto, R. G., and Souza, P. A.: Paleoicnologia e a palinologia dos ritmitos do Grupo Itararé na pedreira de Águas Claras (Santa
Catarina, Brasil), Gaea, 3, 47–59, 2007.
Garber, R. A., Levy, Y., and Friedman, G. M.: The sedimentology of the Dead Sea, Carbon. Evapor., 2, 43–57, https://doi.org/10.1007/BF03174303, 1987.
García Ruiz, J. M., Carnerup, A., Christy, A. G., Welham, N. J., and Hyde, S. T.: Morphology: An Ambiguous Indicator of Biogenicity, Astrobiology, 2, 353–369, https://doi.org/10.1089/153110702762027925, 2002.
Gargaud, M., Irvine, W. M., Amils, R., Cleaves, H. J., Pinti, D. L., Quintanilla, J. C., Rouan, D., Spohn, T., Tirard, S., and Viso, M. (Eds.):
Encyclopedia of Astrobiology, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-44185-5, 2015.
Gerdes, M. L., Baumgartner, L. P., and Person, M.: Convective fluid flow through heterogeneous country rocks during contact metamorphism, J. Geophys. Res.-Solid, 103, 23983–24003, https://doi.org/10.1029/98jb02049, 1998.
Golab, A. N., Hutton, A. C., and French, D.: Petrography, carbonate mineralogy and geochemistry of thermally altered coal in Permian coal measures, Hunter Valley, Australia, Int. J. Coal Geol., 70, 150–165,
https://doi.org/10.1016/j.coal.2006.01.010, 2007.
Golubic, S., Seong-Joo, L., and Browne, K. M.: Cyanobacteria: Architects of
Sedimentary Structures, in: Microbial Sediments, Springer, Berlin, Heidelberg, 57–67, https://doi.org/10.1007/978-3-662-04036-2_8, 2000.
Gomes, A. L. S., Becker-Kerber, B., Osés, G. L., Prado, G., Becker Kerber, P., de Barros, G. E. B., Galante, D., Rangel, E., Bidola, P., Herzen, J., Pfeiffer, F., Rizzutto, M. A., and Pacheco, M. L. A. F.: Paleometry as a key tool to deal with paleobiological and astrobiological issues: some contributions and reflections on the Brazilian fossil record, Int. J. Astrobiol., 18, 575–589, https://doi.org/10.1017/S1473550418000538, 2019.
Granier, B.: The contribution of calcareous green algae to the production of
limestones: a review, Geodiversitas, 34, 35–60, https://doi.org/10.5252/g2012n1a3, 2012.
Green, S.: Polymerized Tubular Silicates in Lower Cambrian Carbonates –
Biology or Chemistry?. Independent Project in Earth Science, Department of
Earth Sciences, Uppsala University, Uppsala, https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-476830 (last access: 30 March 2023), 2022.
Grgasović, T.: Taxonomy of the fossil calcareous algae: Revision of
genera Physoporella Steinmann and Oligoporella Pia (Dasycladales), Carnets
géologie, Notebooks Geol., 22, 171–310, https://doi.org/10.2110/carnets.2022.2207, 2022.
Hamdi-Aissa, B., Valles, V., Aventurier, A., and Ribolzi, O.: Soils and Brine
Geochemistry and Mineralogy of Hyperarid Desert Playa, Ouargla Basin, Algerian Sahara, Arid L. Res. Manage., 18, 103–126,
https://doi.org/10.1080/1532480490279656, 2004.
Hartmann, L. A., da Cunha Duarte, L., Massonne, H.-J., Michelin, C.,
Rosenstengel, L. M., Bergmann, M., Theye, T., Pertille, J., Arena, K. R.,
Duarte, S. K., Pinto, V. M., Barboza, E. G., Rosa, M. L. C. C., and Wildner, W.: Sequential opening and filling of cavities forming vesicles, amygdales and giant amethyst geodes in lavas from the southern Paraná volcanic
province, Brazil and Uruguay, Int. Geol. Rev., 54, 1–14,
https://doi.org/10.1080/00206814.2010.496253, 2012.
Hellevang, H., Aagaard, P., and Jahren, J.: Will dawsonite form during CO2 storage?, Greenh. Gases Sci. Technol., 4, 191–199,
https://doi.org/10.1002/ghg.1378, 2014.
Hofmann, B. A. and Bernasconi, S. M.: Review of occurrences and carbon isotope geochemistry of oxalate minerals: implications for the origin and fate of oxalate in diagenetic and hydrothermal fluids, Chem. Geol., 149, 127–146, https://doi.org/10.1016/S0009-2541(98)00043-6, 1998.
Hofmann, H. J.: Precambrian remains in Canada: fossils, dubiofossils, and
pseudofossils, in: International Geological Congress, 24th Session, Proceedings, Montreal, 20–30, 1972.
Hooper, J. N. A. and Van Soest, R. W. M.: Systema Porifera. A Guide to the
Classification of Sponges, in: Systema Porifera, Springer US, 1–7,
https://doi.org/10.1007/978-1-4615-0747-5_1, 2002.
Hu, Z., Shao, M., Li, H., Cai, Q., Zhong, C., Xianming, Z., and Deng, Y.:
Synthesis of needle-like aragonite crystals in the presence of magnesium
chloride and their application in papermaking, Adv. Compos. Mater., 18,
315–326, https://doi.org/10.1163/156855109X434720, 2009.
Huggett, J. M., Schultz, B. P., Shearman, D. J., and Smith, A. J.: The petrology of ikaite pseudomorphs and their diagenesis, Proc. Geol. Assoc., 116, 207–220, https://doi.org/10.1016/S0016-7878(05)80042-2, 2005.
Huntington, K. W., Budd, D. A., Wernicke, B. P., and Eiler, J. M.: Use of
Clumped-Isotope Thermometry To Constrain the Crystallization Temperature of
Diagenetic Calcite, J. Sediment. Res., 81, 656–669, https://doi.org/10.2110/jsr.2011.51, 2011.
Inglez, L., Warren, L. V., Quaglio, F., Netto, R. G., Okubo, J., Arrouy, M. J., Simões, M. G., and Poiré, D. G.: Scratching the discs: evaluating
alternative hypotheses for the origin of the Ediacaran discoidal structures
from the Cerro Negro Formation, La Providencia Group, Argentina, Geolog. Mag., 159, 1192–1209, https://doi.org/10.1017/S0016756821000327, 2021.
Isbell, J. L., Miller, M. F., Wolfe, K. L., and Lenaker, P. A.: Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the
development of Northern Hemisphere cyclothems?, in: Extreme Depositional
Environments: Mega End Members in Geologic Time, Geological Society of
America, 5–24, https://doi.org/10.1130/0-8137-2370-1.5, 2003.
Ivarsson, M., Drake, H., Neubeck, A., Sallstedt, T., Bengtson, S., Roberts,
N. M. W., and Rasmussen, B.: The fossil record of igneous rock, Earth-Sci. Rev., 210, 103342, https://doi.org/10.1016/j.earscirev.2020.103342, 2020.
Ivarsson, M., Drake, H., Neubeck, A., Snoeyenbos-West, O., Belivanova, V., and Bengtson, S.: Introducing palaeolithobiology, Geologiska Föreningen i Stockholm Förhandlingar, 143, 305–319, https://doi.org/10.1080/11035897.2021.1895302, 2021.
Jassim, R. Z. and Al-Badri, A. S.: Mineral resources and occurrences of sodium chloride in Iraq: an overview, Iraqi Bulletin of Geology and Mining, 8, 263–287, 2019.
Jones, B.: Review of aragonite and calcite crystal morphogenesis in thermal
spring systems, Sediment. Geol., 354, 9–23, 2017.
Kisch, H. J. and Taylor, G. H.: Metamorphism and alteration near an
intrusive-coal contact, Econ. Geol., 61, 343–361, https://doi.org/10.2113/gsecongeo.61.2.343, 1966.
Kitano, Y. and Hood, D. W.: Calcium Carbonate Crystal Forms Formed from Sea
Water by Inorganic Processes, J. Oceanogr. Soc. Jpn., 18, 141–145,
https://doi.org/10.5928/kaiyou1942.18.141, 1962.
Knoll, A. H.: Systems paleobiology, Geol. Soc. Am. Bull., 125, 3–13,
https://doi.org/10.1130/B30685.1, 2013.
Kraus, E. A., Beeler, S. R., Mors, R. A., Floyd, J. G., Stamps, B. W., Nunn,
H. S., Stevenson, B. S., Johnson, H. A., Shapiro, R. S., Loyd, S. J., Spear,
J. R., and Corsetti, F. A.: Microscale biosignatures and abiotic mineral
authigenesis in Little Hot Creek, California, Front. Microbiol., 9, 1–13,
https://doi.org/10.3389/fmicb.2018.00997, 2018.
Kropp, J., Von Bloh, W., and Klenke, T.: Calcite formation in microbial mats:
Modeling and quantification of inhomogeneous distribution patterns by a
cellular automaton model and multifractal measures, Int. J. Earth Sci., 85,
857–863, https://doi.org/10.1007/s005310050117, 1996.
Kropp, J., Block, A., Von Bloh, W., Klenke, T., and Schellnhuber, H. J.:
Multifractal characterization of microbially induced magnesian calcite
formation in recent tidal flat sediments, Sediment. Geol., 109, 37–51,
https://doi.org/10.1016/S0037-0738(96)00059-0, 1997.
Kunoh, T., Hashimoto, H., McFarlane, I. R., Hayashi, N., Suzuki, T., Taketa,
E., Tamura, K., Takano, M., El-Naggar, M. Y., Kunoh, H., and Takada, J.: Abiotic deposition of Fe complexes onto Leptothrix sheaths, Biology (Basel), 5, 26, https://doi.org/10.3390/biology5020026, 2016.
Last, F. M., Last, W. M., Fayek, M., and Halden, N. M.: Occurrence and significance of a cold-water carbonate pseudomorph in microbialites from a saline lake, J. Paleolimnol., 50, 505–517, https://doi.org/10.1007/s10933-013-9742-6, 2013.
Leonov, M. V. and Fedonkin, M. A.: Discovery of the first macroscopic algal
assemblage in the Terminal Proterozoic of Namibia, southwest Africa, Commun.
Geol. Surv. Namib., 14, 87–93, 2009.
Lepot, K., Addad, A., Knoll, A. H., Wang, J., Troadec, D., Béché, A.,
and Javaux, E. J.: Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation, Nat. Commun., 8, 14890, https://doi.org/10.1038/ncomms14890, 2017.
Liang, A., Paulo, C., Zhu, Y., and Dittrich, M.: CaCO3 biomineralization on cyanobacterial surfaces: Insights from experiments with three Synechococcus strains, Colloids Surf. B Biointerf., 111, 600–608,
https://doi.org/10.1016/j.colsurfb.2013.07.012, 2013.
Lima, J. H. D., Netto, R. G., Corrêa, C. G., and Lavina, E. L. C.: Ichnology of deglaciation deposits from the Upper Carboniferous Rio do Sul Formation (Itararé Group, Paraná Basin) at central-east Santa Catarina State (southern Brazil), J. S. Am. Earth Sci., 63, 137–148,
https://doi.org/10.1016/j.jsames.2015.07.008, 2015.
Lima, J. H. D., Minter, N. J., and Netto, R. G.: Insights from functional morphology and neoichnology for determining tracemakers: a case study of the
reconstruction of an ancient glacial arthropod-dominated fauna, Lethaia, 50,
576–590, https://doi.org/10.1111/let.12214, 2017.
Lin, C. Y., Turchyn, A. V., Krylov, A., and Antler, G.: The microbially driven formation of siderite in salt marsh sediments, Geobiology, 18, 207–224, https://doi.org/10.1111/gbi.12371, 2020.
Lippmann, F.: Sedimentary Carbonate Minerals, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-65474-9, 1973.
Liu, C., Xie, Q., Wang, G., Zhang, C., Wang, L., and Qi, K.: Reservoir
properties and controlling factors of contact metamorphic zones of the diabase in the northern slope of the Gaoyou Sag, Subei Basin, eastern China,
J. Nat. Gas Sci. Eng., 35, 392–411, https://doi.org/10.1016/j.jngse.2016.08.070, 2016.
Loope, D. B.: Rhizoliths in ancient eolianites, Sediment. Geol., 56, 301–314, https://doi.org/10.1016/0037-0738(88)90058-9, 1988.
Lowenstam, H. A. and Epstein, S.: On the Origin of Sedimentary Aragonite Needles of the Great Bahama Bank, J. Geol., 65, 364–375, https://doi.org/10.1086/626439, 1957.
Lu, Z., Rickaby, R. E. M., Kennedy, H., Kennedy, P., Pancost, R. D., Shaw, S., Lennie, A., Wellner, J., and Anderson, J. B.: An ikaite record of late Holocene climate at the Antarctic Peninsula, Earth Planet. Sc. Lett., 325–326, 108–115, https://doi.org/10.1016/j.epsl.2012.01.036, 2012.
Maiklem, W. R., Bebout, D. G., and Glaister, R. P.: Classification of anhydrite – practical approach, Bull. Canad. Petrol. Geo., 17, 194–233, 1969.
Makovicky, E., Karup-Møller, S., and Li, J.: Mineralogy of the chrysanthemum stone, Neues Jahrb. für Mineral. – Abhandlungen, 182, 241–251, https://doi.org/10.1127/0077-7757/2006/0048, 2006.
Maldanis, L., Hickman-Lewis, K., Verezhak, M., Gueriau, P., Guizar-Sicairos,
M., Jaqueto, P., Trindade, R. I. F., Rossi, A. L., Berenguer, F., Westall, F., Bertrand, L., and Galante, D.: Nanoscale 3D quantitative imaging of 1.88 Ga Gunflint microfossils reveals novel insights into taphonomic and biogenic characters, Sci. Rep., 10, 8163, https://doi.org/10.1038/s41598-020-65176-w,
2020.
Maliva, R. G.: Displacive Calcite Syntaxial Overgrowths in Open Marine
Limestones, SEPM J. Sediment. Res., 59, 397–403, https://doi.org/10.1306/212F8FA3-2B24-11D7-8648000102C1865D, 1989.
Mason, B. J., Bryant, G. W., and Van den Heuvel, A. P.: The growth habits and
surface structure of ice crystals, Philos. Mag., 8, 505–526, https://doi.org/10.1080/14786436308211150, 1963.
Mason, R. and Liu, R.: The Origin of Spots in Contact Aureoles and Over-Heating of Country Rock Next to a Dyke, J. Earth Sci., 29, 1005–1009,
https://doi.org/10.1007/s12583-018-0882-5, 2018.
Mason, R., Burton, K. W., Yuan, Y., and She, Z.: Chiastolite, Gondwana Res., 18, 222–229, https://doi.org/10.1016/j.gr.2010.03.005, 2010.
McLachlan, I. R. and Anderson, A.: A review of the evidence for marine
conditions in Southern Africa during Dwyka times, Palaeont. Afr., 15, 37–64, 1973.
McLoughlin, N.: Biogenicity, in: Encyclopedia of Astrobiology, edited by: Gargaud, M., Amils, R., and Cleaves, H. J., Springer, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-11274-4_17, 2011.
McLoughlin, N., Furnes, H., Banerjee, N. R., Muehlenbachs, K., and Staudigel, H.: Ichnotaxonomy of microbial trace fossils in volcanic glass, J. Geol. Soc.
Lond., 166, 159–169, https://doi.org/10.1144/0016-76492008-049, 2009.
McLoughlin, N. and Grosch, E. G.: A Hierarchical System for Evaluating the
Biogenicity of Metavolcanic- and Ultramafic-Hosted Microalteration Textures
in the Search for Extraterrestrial Life, Astrobiology, 15, 901–921,
https://doi.org/10.1089/ast.2014.1259, 2015.
McMahon, S. and Cosmidis, J.: False biosignatures on Mars: anticipating
ambiguity, J. Geol. Soc. Lond., 179, jgs2021-050, https://doi.org/10.1144/jgs2021-050, 2022.
McMahon, S. and Ivarsson, M.: A New Frontier for Palaeobiology: Earth's Vast
Deep Biosphere, BioEssays, 41, 1900052, https://doi.org/10.1002/bies.201900052, 2019.
McMahon, S., Ivarsson, M., Wacey, D., Saunders, M., Belivanova, V., Muirhead, D., Knoll, P., Steinbock, O., and Frost, D. A.: Dubiofossils from a Mars-analogue subsurface palaeoenvironment: The limits of biogenicity criteria, Geobiology, 19, 473–488, https://doi.org/10.1111/gbi.12445, 2021.
Merino, N., Aronson, H. S., Bojanova, D. P., Feyhl-Buska, J., Wong, M. L.,
Zhang, S., and Giovannelli, D.: Living at the Extremes: Extremophiles and the
Limits of Life in a Planetary Context, Front. Microbiol., 10, 780, https://doi.org/10.3389/fmicb.2019.00780, 2019.
Meyers, P. A. and Simoneit, B. R. T.: Effects of extreme heating on the elemental and isotopic compositions of an Upper Cretaceous coal, Org. Geochem., 30, 299–305, https://doi.org/10.1016/S0146-6380(99)00015-7, 1999.
Milani, E. J., De Melo, J. H. G., De Souza, P. A., Fernandes, L. A., and França, A. B.: Bacia do Paraná, B. Geoci. Petrobras, Rio de Janeiro, Brazil, 15, 265–287, 2007.
Milliken, K. L.: Diagenesis, in: Encyclopedia of Sediments and
Sedimentary Rocks. Encyclopedia of Earth Sciences Series, edited by: Middleton, G. V., Church, M. J., Coniglio, M., Hardie, L. A., and Longstaffe, F. J., Springer, Dordrecht, 339–349, https://doi.org/10.1007/978-1-4020-3609-5_66, 1978.
Monroe, J. S. and Dietrich, R. V.: Pseudofossils, Rocks Miner., 65, 150–158,
https://doi.org/10.1080/00357529.1990.11761667, 1990.
Mouro, L. D. and Saldanha, J. P.: Sponge fossil of Brazil: review and
perspectives. Paleontol. Em Destaque – Bol. Inf. da Soc. Bras. Paleontol., 36, 46–61, https://doi.org/10.4072/paleodest.2021.36.75.03, 2021.
Mücke, A.: Chamosite, siderite and the environmental conditions of their
formation in chamosite-type Phanerozoic ooidal ironstones, Ore Geol. Rev., 28, 235–249, https://doi.org/10.1016/j.oregeorev.2005.03.004, 2006.
Müller, W. E. G., Belikov, S. I., Tremel, W., Perry, C. C., Gieskes, W. W. C., Boreiko, A., and Schröder, H. C.: Siliceous spicules in marine demosponges (example Suberites domuncula), Micron, 37, 107–120,
https://doi.org/10.1016/j.micron.2005.09.003, 2006.
Muscente, A. D., Schiffbauer, J. D., Broce, J., Laflamme, M., O'Donnell, K.,
Boag, T. H., Meyer, M., Hawkins, A. D., Huntley, J. W., McNamara, M., MacKenzie, L. A., Stanley, G. D., Hinman, N. W., Hofmann, M. H., and Xiao, S.: Exceptionally preserved fossil assemblages through geologic time and space, Gondwana Res., 48, 164–188, https://doi.org/10.1016/j.gr.2017.04.020, 2017.
Nardy, A. J. R., Oliveira, M. D., Betancourt, R. H. S., Verdugo, D. R. H.,
and Machado, F. B.: Geologia e estratigrafia da Formação Serra geral, Geociências, 21, 15–32, 2002.
Netto, R. G., Balistieri, P. R. M. N., Lavina, E. L. C., and Silveira, D. M.:
Ichnological signatures of shallow freshwater lakes in the glacial
Itararé Group (Mafra Formation, Upper Carboniferous–Lower Permian of
Paraná Basin, S Brazil), Palaeogeogr. Palaeoclim. Palaeoecol., 272,
240–255, https://doi.org/10.1016/j.palaeo.2008.10.028, 2009.
Netto, R. G., Corrêa, C. G., Lima, J. H. D., Sedorko, D., and
Villegas-Martín, J.: Deciphering myriapoda population dynamics during
Gondwana deglaciation cycles through neoichnology, J. S. Am. Earth Sci., 109, 103247, https://doi.org/10.1016/j.jsames.2021.103247, 2021.
Neveu, M., Hays, L. E., Voytek, M. A., New, M. H., and Schulte, M. D.: The Ladder of Life Detection, Astrobiology, 18, 1375–1402, https://doi.org/10.1089/ast.2017.1773, 2018.
Noffke, N.: The criteria for the biogeneicity of microbially induced
sedimentary structures (MISS) in Archean and younger, sandy deposits,
Earth-Sci. Rev. 96, 173–180, https://doi.org/10.1016/j.earscirev.2008.08.002, 2009.
Noffke, N.: Geobiology, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-12772-4, 2010.
Noffke, N.: Comment on the paper by Davies et al. “Resolving MISS
conceptions and misconceptions: A geological approach to sedimentary surface
textures generated by microbial and abiotic processes” (Earth Science
Reviews, 154 (2016), 210–246), Earth-Sci. Rev., 176, 373–383,
https://doi.org/10.1016/j.earscirev.2017.11.021, 2018.
Noffke, N.: Microbially Induced Sedimentary Structures in Clastic Deposits:
Implication for the Prospection for Fossil Life on Mars, Astrobiology, 21,
866–892, https://doi.org/10.1089/ast.2021.0011, 2021.
Noffke, N., Gerdes, G., Klenke, T., and Krumbein, W. E.: A microscopic
sedimentary succession of graded sand and microbial mats in modern
siliciclastic tidal flats, Sediment. Geol., 110, 1–6, https://doi.org/10.1016/S0037-0738(97)00039-0, 1997.
Noll, S. H. and Netto, R. G.: Microbially induced sedimentary structures in late Pennsylvanian glacial settings: A case study from the Gondwanan Paraná Basin, J. S. Am. Earth Sci., 88, 385–398,
https://doi.org/10.1016/j.jsames.2018.09.010, 2018.
Oehlerich, M., Mayr, C., Griesshaber, E., Lücke, A., Oeckler, O. M.,
Ohlendorf, C., Schmahl, W. W., and Zolitschka, B.: Ikaite precipitation in a
lacustrine environment – implications for palaeoclimatic studies using
carbonates from Laguna Potrok Aike (Patagonia, Argentina), Quaternary Sci. Rev., 71, 46–53, https://doi.org/10.1016/j.quascirev.2012.05.024, 2013.
Payandi-Rolland, D., Roche, A., Vennin, E., Visscher, P. T., Amiotte-Suchet, P., Thomas, C., and Bundeleva, I. A.: Carbonate Precipitation in Mixed Cyanobacterial Biofilms Forming Freshwater Microbial Tufa, Minerals, 9, 409, https://doi.org/10.3390/min9070409, 2019.
Perillo, V. L., Maisano, L., Martinez, A. M., Quijada, I. E., and Cuadrado, D. G.: Microbial mat contribution to the formation of an evaporitic environment in a temperate-latitude ecosystem, J. Hydrol., 575, 105–114,
https://doi.org/10.1016/j.jhydrol.2019.05.027, 2019.
Pfeifer, L. S., Birkett, B. A., Van Den Driessche, J., Pochat, S., and Soreghan, G. S.: Ice-crystal traces imply ephemeral freezing in early Permian
equatorial Pangea, Geology, 49, 1397–1401, https://doi.org/10.1130/G49011.1, 2021.
Pitra, P. and De Waal, S. A.: High-temperature, low-pressure metamorphism and
development of prograde symplectites, Marble Hall Fragment, Bushveld Complex
(South Africa), J. Metamorph. Geol., 19, 311–325.
https://doi.org/10.1046/j.1525-1314.2001.00313.x, 2001.
Pratt, B. R.: Calcification of cyanobacterial filaments: Girvanella and the
origin of lower Paleozoic lime mud, Geology, 29, 763,
https://doi.org/10.1130/0091-7613(2001)029<0763:COCFGA>2.0.CO;2, 2001.
Pueschel, C. M.: Calcium oxalate crystals in the green alga Spirogyra
hatillensis (Zygnematales, Chlorophyta), Int. J. Plant Sci., 162, 1337–1345,
https://doi.org/10.1086/322943, 2001.
Puigdomenech, C. G., Carvalho, B., Paim, P. S. G., and Faccini, U. F.: Lowstand Turbidites and Delta Systems of the Itararé Group in the Vidal Ramos region (SC), southern Brazil, Brazil. J. Geol., 44, 529–544,
https://doi.org/10.5327/Z23174889201400040002, 2014.
Purgstaller, B., Dietzel, M., Baldermann, A., and Mavromatis, V.: Control of
temperature and aqueous ratio on the (trans-)formation of ikaite, Geochim. Cosmochim. Ac., 217, 128–143,
https://doi.org/10.1016/j.gca.2017.08.016, 2017.
Ramakrishna, C., Thenepalli, T., and Ahn, J. W.: A brief review of aragonite
precipitated calcium carbonate (PCC) synthesis methods and its applications, Korean Chem. Eng. Res., 55, 443–455, https://doi.org/10.9713/kcer.2017.55.4.443, 2017.
Reijmer, J. J. G.: Marine carbonate factories: Review and update,
Sedimentology, 68, 1729–1796, https://doi.org/10.1111/sed.12878, 2021.
Ren, M. and Jones, B.: Modern authigenic amorphous and crystalline iron
oxyhydroxides in subsurface Ordovician dolostones (Jinan, North China Block): Biomineralization and crystal morphology, Sediment. Geol., 426, 106044, https://doi.org/10.1016/j.sedgeo.2021.106044, 2021.
Retallack, G. J.: Ediacaran periglacial sedimentary structures, J. Palaeosci., 70, 5–30, https://doi.org/10.54991/jop.2021.8, 2021.
Retallack, G. J.: Early Ediacaran lichen from Death Valley, California, USA,
J. Palaeosci., 71, 187–218, https://doi.org/10.54991/jop.2022.1841, 2022.
Roberts, J. A., Bennett, P. C., González, L. A., Macpherson, G. L., and
Milliken, K. L.: Microbial precipitation of dolomite in methanogenic
groundwater, Geology, 32, 277, https://doi.org/10.1130/G20246.2, 2004.
Roden, E. E., Kappler, A., Bauer, I., Jiang, J., Paul, A., Stoesser, R.,
Konishi, H., and Xu, H.: Extracellular electron transfer through microbial
reduction of solid-phase humic substances, Nat. Geosci., 3, 417–421,
https://doi.org/10.1038/ngeo870, 2010.
Rodriguez-Navarro, C., Jimenez-Lopez, C., Rodriguez-Navarro, A.,
Gonzalez-Muñoz, M. T., and Rodriguez-Gallego, M.: Bacterially mediated
mineralization of vaterite, Geochim. Cosmochim. Ac., 71, 1197–1213,
https://doi.org/10.1016/j.gca.2006.11.031, 2007.
Rogov, M., Ershova, V., Vereshchagin, O., Vasileva, K., Mikhailova, K., and
Krylov, A.: Database of global glendonite and ikaite records throughout the
Phanerozoic, Earth Syst. Sci. Data, 13, 343–356, https://doi.org/10.5194/essd-13-343-2021, 2021.
Rouillard, J., Van Zuilen, M., Pisapia, C., and Garcia-Ruiz, J. M.: An
Alternative Approach for Assessing Biogenicity, Astrobiology, 21, 151–164,
https://doi.org/10.1089/ast.2020.2282, 2021.
Salamuni, R., Marques Filho, P. L., and Sobanski, A. C.: Considerações sobre turbiditos da Formação Itararé (Carbonífero Superior), Rio Negro-PR e Mafra-SC, Boletim da Sociedade Brasileira de Geologia, 15, 1–19, 1966.
Salvany, J. M., García-Veigas, J., and Ortí, F.: Glauberite-halite
association of the Zaragoza Gypsum Formation (Lower Miocene, Ebro Basin, NE Spain), Sedimentology, 54, 443–467, https://doi.org/10.1111/j.1365-3091.2006.00844.x, 2007.
Sánchez-Navas, A., de Cassia Oliveira-Barbosa, R., García-Casco, A., and Martín-Algarra, A.: Transformation of Andalusite to Kyanite in the
Alpujarride Complex (Betic Cordillera, Southern Spain): Geologic Implications, J. Geol., 120, 557–574, https://doi.org/10.1086/666944, 2012.
Sanchez-Moral, S., Canaveras, J. C., Laiz, L., Saiz-Jimenez, C., Bedoya, J.,
and Luque, L.: Biomediated Precipitation of Calcium Carbonate Metastable Phases in Hypogean Environments: A Short Review, Geomicrobiol. J., 20, 491–500, https://doi.org/10.1080/713851131, 2003.
Santos, R. V., Dantas, E. L., de Oliveira, C. G., de Alvarenga, C. J. S., dos Anjos, C. W. D., Guimarães, E. M., and Oliveira, F. B.: Geochemical and thermal effects of a basic sill on black shales and limestones of the Permian Irati Formation, J. S. Am. Earth Sci., 28, 14–24, https://doi.org/10.1016/j.jsames.2008.12.002, 2009.
Sapota, T., Aldahan, A., and Al-Aasm, I. S.: Sedimentary facies and climate
control on formation of vivianite and siderite microconcretions in sediments
of Lake Baikal, Siberia, J. Paleolimnol., 36, 245–257, https://doi.org/10.1007/s10933-006-9005-x, 2006.
Saxby, J. D. and Stephenson, L. C.: Effect of an igneous intrusion on oil shale at Rundle (Australia), Chem. Geol., 63, 1–16,
https://doi.org/10.1016/0009-2541(87)90068-4, 1987
Schemiko, D. C. B., Vesely, F. F., and Rodrigues, M. C. N. L.: Deepwater to
fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil, J. S. Am. Earth Sci., 95, 102260, https://doi.org/10.1016/j.jsames.2019.102260, 2019.
Schiffbauer, J. D., Yin, L., Bodnar, R. J., Kaufman, A. J., Meng, F., Hu, J.,
Shen, B., Yuan, X., and Bao, H., Xiao, S.: Ultrastructural and Geochemical
Characterization of Archean–Paleoproterozoic Graphite Particles: Implications for Recognizing Traces of Life in Highly Metamorphosed Rocks,
Astrobiology, 7, 684–704, https://doi.org/10.1089/ast.2006.0098, 2007.
Schneider, R., Mühlmann, H., Tommasi, E., Medeiros, R. D., Daemon, R.
F., and Nogueira, A. A.: Revisão estratigráfica da Bacia do Paraná, Congresso brasileiro de Geologia, 28, 41–65, 1974.
Schopf, J. W. and Kudryavtsev, A. B.: Biogenicity of Earth's earliest fossils: A resolution of the controversy, Gondwana Res., 22, 761–771,
https://doi.org/10.1016/j.gr.2012.07.003, 2012.
Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J., and Czaja, A. D.: Laser–Raman imagery of Earth's earliest fossils, Nature, 416, 73–76,
2002.
Schubert, C. J., Nürnberg, D., Scheele, N., Pauer, F., and Kriews, M.: 13C isotope depletion in ikaite crystals: evidence for methane release from the Siberian shelves, Geo-Mar. Lett., 17, 169–174, https://doi.org/10.1007/s003670050023, 1997.
Schultz, B., Thibault, N., and Huggett, J.: The minerals ikaite and its
pseudomorph glendonite: Historical perspective and legacies of Douglas Shearman and Alec K. Smith, Proc. Geol. Assoc., https://doi.org/10.1016/j.pgeola.2022.02.003, 2022.
Sethmann, I. and Wörheide, G.: Structure and composition of calcareous
sponge spicules: A review and comparison to structurally related biominerals, Micron, 39, 209–228, https://doi.org/10.1016/j.micron.2007.01.006, 2008.
Shearman, D. J., Mcgugan, A., Stein, C., and Smith, A. J.: Ikaite, CaCO3 ⋅ 6 H2O, precursor of the thinolites in the Quaternary tufas and tufa mounds of the Lahontan and Mono Lake Basins, western United States, Geol. Soc. Am. Bull., 101, 913–917, https://doi.org/10.1130/0016-7606(1989)101<0913:ICOPOT>2.3.CO;2, 1989.
Sibley, D. F., Nordeng, S. H., and Borkowski, M. L.: Dolomitization kinetics of hydrothermal bombs and natural settings, J. Sediment. Res., 64, 630–637,
https://doi.org/10.1306/D4267E29-2B26-11D7-8648000102C1865D, 1994.
Silva, M. S.: Uso de medidas digitais em RGB em fitoclastos na caracterização da influência térmica das intrusivas
ígneas (Grupo Serra Geral) nos siltitos da Formação Taciba,
Itaiópolis, SC, Undergraduate geology monograph, Universidade Federal de
Santa Catarina, Florianópolis, https://repositorio.ufsc.br/handle/123456789/218651 (last access: 26 January 2023), 2020.
Slater, G. F.: Biosignatures: Interpreting Evidence of the Origins and
Diversity of Life, Geosci. Canada, 36, 170–178, 2009.
Sommer, V. P., Kuchle, J., and De Ros, L. F.: Seismic stratigraphic framework and seismic facies of the Aptian Pre-salt Barra Velha Formation in the Tupi
Field, Santos Basin, Brazil, J. S. Am. Earth Sci., 118, 103947,
https://doi.org/10.1016/j.jsames.2022.103947, 2022.
Souza, P. A.: Late Carboniferous palynostratigraphy of the Itararé Subgroup, northeastern Paraná Basin, Brazil, Rev. Palaeobot. Palynol.,
138, 9–29, https://doi.org/10.1016/j.revpalbo.2005.09.004, 2006.
Spadafora, A., Perri, E., Mckenzie, J. A., and Vasconcelos, C.: Microbial
biomineralization processes forming modern Ca:Mg carbonate stromatolites, Sedimentology, 57, 27–40, https://doi.org/10.1111/j.1365-3091.2009.01083.x, 2010.
Stockmann, G., Tollefsen, E., Skelton, A., Brüchert, V., Balic-Zunic, T., Langhof, J., Skogby, H., and Karlsson, A.: Control of a calcite inhibitor
(phosphate) and temperature on ikaite precipitation in Ikka Fjord, southwest
Greenland, Appl. Geochem., 89, 11–22, https://doi.org/10.1016/j.apgeochem.2017.11.005, 2018.
Suchý, V., Borecká, L., Pachnerová Brabcová, K., Havelcová, M., Svetlik, I., Machovič, V., Lapčák, L., and
Ovšonková, Z. A.: Microbial signatures from speleothems: A petrographic and scanning electron microscopy study of coralloids from the
Koněprusy Caves (the Bohemian Karst, Czech Republic), Sedimentology, 68,
1198–1226, https://doi.org/10.1111/sed.12826, 2021.
Teixeira, C. A. S., Sawakuchi, A. O., Bello, R. M. S., Nomura, S. F., Bertassoli, D. J., and Chamani, M. A. C.: Fluid inclusions in calcite filled opening fractures of the Serra Alta Formation reveal paleotemperatures and composition of diagenetic fluids percolating Permian shales of the Paraná Basin, J. S. Am. Earth Sci., 84, 242–254, https://doi.org/10.1016/j.jsames.2018.04.004, 2018.
Tisato, N., Torriani, S. F. F., Monteux, S., Sauro, F., De Waele, J., Tavagna, M. L., D'Angeli, I. M., Chailloux, D., Renda, M., Eglinton, T. I., and Bontognali, T. R. R.: Microbial mediation of complex subterranean mineral structures, Sci. Rep., 5, 15525, https://doi.org/10.1038/srep15525, 2015.
Toffolo, M. B.: The significance of aragonite in the interpretation of the
microscopic archaeological record, Geoarchaeology, 36, 149–169,
https://doi.org/10.1002/gea.21816, 2021.
Trampe, E. C. L., Larsen, J. E. N., Glaring, M. A., Stougaard, P., and Kühl, M.: In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland) – A Unique Microbial Habitat, Front. Microbiol., 7, 128–143, https://doi.org/10.3389/fmicb.2016.00722, 2016.
Trichet, J., Défarge, C., Tribble, J., Tribble, G., and Sansone, F.:
Christmas Island lagoonal lakes, models for the deposition of
carbonate–evaporite–organic laminated sediments, Sediment. Geol., 140,
177–189, https://doi.org/10.1016/S0037-0738(00)00177-9, 2001.
Turner, E. C. and Jones, B.: Microscopic calcite dendrites in cold-water tufa: Implications for nucleation of micrite and cement, Sedimentology, 52,
1043–1066, https://doi.org/10.1111/j.1365-3091.2005.00741.x, 2005.
Uriz, M.-J., Turon, X., Becerro, M. A., and Agell, G.: Siliceous spicules and
skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns,
and biological functions, Microsc. Res. Tech., 62, 279–299, https://doi.org/10.1002/jemt.10395, 2003.
Valdez Buso, V., Aquino, C. D., Paim, P. S. G., de Souza, P. A., Mori, A. L.,
Fallgatter, C., Milana, J. P., and Kneller, B.: Late Palaeozoic glacial cycles and subcycles in western Gondwana: Correlation of surface and subsurface data of the Paraná Basin, Brazil, Palaeogeogr. Palaeoclim.
Palaeoecol., 531, 108435, https://doi.org/10.1016/j.palaeo.2017.09.004, 2019.
Valdez Buso, V., Milana, J. P., di Pasquo, M., Paim, P. S. G., Philipp, R. P., Aquino, C. D., Cagliari, J., Junior, F. C., and Kneller, B.: Timing of the Late Palaeozoic glaciation in western Gondwana: New ages and correlations from Paganzo and Paraná basins, Palaeogeogr. Palaeoclim. Palaeoecol., 544, 109624, https://doi.org/10.1016/j.palaeo.2020.109624, 2020.
Vasconcelos, C., McKenzie, J. A., Bernasconi, S., Grujic, D., and Tiens, A. J.: Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures, Nature, 377, 220–222, https://doi.org/10.1038/377220a0,
1995.
Vasconcelos, C., Warthmann, R., McKenzie, J. A., Visscher, P. T., Bittermann,
A. G., and van Lith, Y.: Lithifying microbial mats in Lagoa Vermelha, Brazil:
Modern Precambrian relics?, Sediment. Geol., 185, 175–183,
https://doi.org/10.1016/j.sedgeo.2005.12.022, 2006.
Verrecchia, E. P. and Verrecchia, K. E.: Needle-fiber Calcite: A Critical Review and a Proposed Classification, SEPM J. Sediment. Res., 64A, 650–664,
https://doi.org/10.1306/D4267E33-2B26-11D7-8648000102C1865D, 1994.
Vesely, F. F. and Assine, M. L.: Deglaciation sequences in the Permo-Carboniferous Itararé Group, Paraná Basin, southern Brazil, J.
S. Am. Earth Sci., 22, 156–168, https://doi.org/10.1016/j.jsames.2006.09.006, 2006.
Vesely, F. F., Delgado, D., Spisila, A. L., and Brumatti, M.: Divisão
litoestratigráfica do das Grupo Itararé no Mapeamento da suscetibilidade vertentes naturais estado do Paraná translacionais em
ante a ocorrência de escorregamentos um trecho da BR-376, através
da análise, Bol. Parana. Geosci., 78, 3–23, 2021.
Vickers, M., Watkinson, M., Price, G. D., and Jerrett, R.: An improved model for the ikaite-glendonite transformation: evidence from the Lower Cretaceous of Spitsbergen, Svalbard, Nor. J. Geol., 98, 1–15, https://doi.org/10.17850/njg98-1-01, 2018.
Voigt, S., Oliver, K., and Small, B. J.: Potential Ice Crystal Marks From
Pennsylvanian–Permian Equatorial Red-Beds of Northwest Colorado, U.S.A.,
Palaios, 36, 377–392, https://doi.org/10.2110/PALO.2021.024, 2021
Vuillemin, A., Wirth, R., Kemnitz, H., Schleicher, A. M., Friese, A., Bauer,
K. W., Simister, R., Nomosatryo, S., Ordoñez, L., Ariztegui, D., Henny,
C., Crowe, S. A., Benning, L. G., Kallmeyer, J., Russell, J. M., Bijaksana, S., Vogel, H., and The Towuti Drilling Project Science Team: Formation of
diagenetic siderite in modern ferruginous sediments, Geology, 47, 540–544,
https://doi.org/10.1130/G46100.1, 2019.
Wacey, D.: Establishing the Criteria for Early Life on Earth, Springer, 47–53, https://doi.org/10.1007/978-1-4020-9389-0_4, 2009.
Wacey, D.: Stromatolites in the ∼3400 Ma Strelley Pool Formation,
Western Australia: Examining Biogenicity from the Macro- to the Nano-Scale,
Astrobiology 10, 381–395, https://doi.org/10.1089/ast.2009.0423, 2010.
Wang, H., Ye, Y., Deng, Y., Liu, Y., Lyu, Y., Zhang, F., Wang, X., and Zhang,
S.: Multi-Element Imaging of a 1.4 Ga Authigenic Siderite Crystal, Minerals,
11, 1395, https://doi.org/10.3390/min11121395, 2021.
Ward, W. C. and Halley, R. B.: Dolomitization in a Mixing Zone of Near-Seawater Composition, Late Pleistocene, Northeastern Yucatan Peninsula, SEPM J. Sediment. Res., 55, 407–420, https://doi.org/10.1306/212F86E8-2B24-11D7-8648000102C1865D, 1985.
Warren, J.: Dolomite: occurrence, evolution and economically important
associations, Earth-Sci. Rev., 52, 1–81, https://doi.org/10.1016/S0012-8252(00)00022-2, 2000.
Warren, J. K.: Evaporites, brines and base metals: What is an evaporite?
Defining the rock matrix, Aust. J. Earth Sci., 43, 115–132, https://doi.org/10.1080/08120099608728241, 1996.
Warren, J. K.: Evaporites through time: Tectonic, climatic and eustatic
controls in marine and nonmarine deposits, Earth-Sci. Rev., 98, 217–268,
https://doi.org/10.1016/j.earscirev.2009.11.004, 2010.
Warren, J. K.: Evaporites, Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-319-13512-0, 2016.
Weaver, C. E.: Shale-slate metamorphism in southern Appalachians, Elsevier,
ISBN 0-444-42264-1, 1984.
Weaver, J. C. and Morse, D. E.: Molecular biology of demosponge axial filaments and their roles in biosilicification, Microsc. Res. Tech., 62, 356–367, https://doi.org/10.1002/jemt.10401, 2003.
Weiner, S.: Biomineralization: A structural perspective, J. Struct. Biol.,
163, 229–234, https://doi.org/10.1016/j.jsb.2008.02.001, 2008.
Weiner, S. and Dove, P.: An Overview of Biomineralization Processes and the
Problem of the Vital Effect, Rev. Mineral. Geochem., 54, 1–29,
https://doi.org/10.2113/0540001, 2003.
Weinschütz, L. C. and de Castro, J. C.: Seqüências deposicionais da Formação Taciba (Grupo Itararé, Neocarbonífero a Eopermiano) na região de Mafra (SC), Bacia do Paraná, Brazil. J. Geol., 36, 243–252, 2006.
Westall, F.: Morphological Biosignatures in Early Terrestrial and Extraterrestrial Materials, Space Sci. Rev., 135, 95–114,
https://doi.org/10.1007/s11214-008-9354-z, 2008.
Whitney, K. D.: Systems of Biomineralization in the Fungi, in: Origin,
Evolution, and Modern Aspects of Biomineralization in Plants and Animals,
Springer US, Boston, MA, 433–441, https://doi.org/10.1007/978-1-4757-6114-6_34, 1989.
Wilson, M. J., Jones, D., and Russell, J. D.: Glushinskite, a naturally occurring magnesium oxalate, Mineral. Mag., 43, 837–840,
https://doi.org/10.1180/minmag.1980.043.331.02, 1980.
Wolf, K. H.: Gradational sedimentary products of calcareous algae,
Sedimentology, 5, 1–37, https://doi.org/10.1111/j.1365-3091.1965.tb01556.x, 1965.
Worden, R. H. and Burley, S. D.: Sandstone Diagenesis: The Evolution of Sand to Stone, in: Sandstone Diagenesis, Blackwell Publishing Ltd., Oxford, UK,
1–44, https://doi.org/10.1002/9781444304459.ch, 2009.
Wright, D. T. and Wacey, D.: Sedimentary dolomite: a reality check, Geol. Soc. Lond. Spec. Publ., 235, 65–74, https://doi.org/10.1144/GSL.SP.2004.235.01.03, 2004.
Wright, D. T. and Wacey, D.: Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications, Sedimentology, 52, 987–1008,
https://doi.org/10.1111/j.1365-3091.2005.00732.x, 2005.
Wright, V. P. and Barnett, A. J.: An abiotic model for the development of
textures in some South Atlantic early Cretaceous lacustrine carbonates, Geol. Soc. Spec. Publ., 418, 209–219, https://doi.org/10.1144/SP418.3, 2015.
Xia, C., Ye, B., Jiang, J., and Hou, Z.: Review of natural origin, distribution, and long-term conservation of CO2 in sedimentary basins of China, Earth-Sci. Rev., 226, 103953, https://doi.org/10.1016/j.earscirev.2022.103953, 2022.
Xu, F., You, X., Li, Q., and Liu, Y.: Can primary ferroan dolomite and ankerite be precipitated? Its implications for formation of submarine methane-derived authigenic carbonate (MDAC) chimney, Minerals, 9, 413, https://doi.org/10.3390/min9070413, 2019.
Zalán, P. V., Conceição, J. J., Astolfi, M. M., Tiriba Appi, V.,
Wolff, S., and Santos Vieira, I.: Estilos estruturais relacionados a intrusões magmáticas básicas em rochas sedimentares, Boletim
Técnico da Petrobrás, 4, 221–230, 1985.
Zekri, A. Y., Shedid, S. A., and Almehaideb, R. A.: Investigation of supercritical carbon dioxide, aspheltenic crude oil, and formation brine interactions in carbonate formations, J. Petrol. Sci. Eng., 69, 63–70,
https://doi.org/10.1016/j.petrol.2009.05.009, 2009.
Zhang, Y., Sun, H., Stowell, H. H., Zayernouri, M., and Hansen, S. E.: A review of applications of fractional calculus in Earth system dynamics, Chaos Solit. Fract., 102, 29–46, https://doi.org/10.1016/j.chaos.2017.03.051, 2017.
Zhou, X., Lu, Z., Rickaby, R. E. M., Domack, E. W., Wellner, J. S., and Kennedy, H. A.: Ikaite Abundance Controlled by Porewater Phosphorus Level: Potential Links to Dust and Productivity, J. Geol., 123, 269–281,
https://doi.org/10.1086/681918, 2015.
Zhu, L., Zhao, Q., Zheng, X., and Xie, Y.: Formation of star-shaped calcite
crystals with Mg2+ inorganic mineralizer without organic template, J.
Solid State Chem., 179, 1247–1252, https://doi.org/10.1016/j.jssc.2006.01.036, 2006.
Short summary
We analyze a complex and branched mineral structure with an obscure origin, considering form, matrix, composition, and context. Comparisons eliminate controlled biominerals. The structure's intricate history suggests microbial influence and alterations, followed by a thermal event. Complex interactions shaped its forms, making origin classification tougher. This study highlights the elaborated nature of dubiofossils, identifying challenges in distinguishing biominerals from abiotic minerals.
We analyze a complex and branched mineral structure with an obscure origin, considering form,...
Altmetrics
Final-revised paper
Preprint