Articles | Volume 20, issue 2
https://doi.org/10.5194/bg-20-421-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-421-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Significant nutrient consumption in the dark subsurface layer during a diatom bloom: a case study on Funka Bay, Hokkaido, Japan
Sachi Umezawa
Graduate School of Fisheries Sciences/Faculty of Fisheries Sciences,
Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
Manami Tozawa
Graduate School of Fisheries Sciences/Faculty of Fisheries Sciences,
Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
Yuichi Nosaka
Department of Marine Biology and Sciences, Tokai University, 5-1-1
Minamisawa, Minami-ku, Sapporo, Hokkaido 005-8601, Japan
Daiki Nomura
Field Science Center for Northern Biosphere, Hokkaido University,
3-1-1 Minato Cho, Hakodate, Hokkaido 041-8611, Japan
Arctic Research Center, Hokkaido University, Kita-21 Nishi-11 Kita-ku,
Sapporo, Hokkaido 001-0021, Japan
Graduate School of Fisheries Sciences/Faculty of Fisheries Sciences,
Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
Hiroji Onishi
Graduate School of Fisheries Sciences/Faculty of Fisheries Sciences,
Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
Hiroto Abe
Graduate School of Fisheries Sciences/Faculty of Fisheries Sciences,
Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
Tetsuya Takatsu
Graduate School of Fisheries Sciences/Faculty of Fisheries Sciences,
Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
Graduate School of Fisheries Sciences/Faculty of Fisheries Sciences,
Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
Arctic Research Center, Hokkaido University, Kita-21 Nishi-11 Kita-ku,
Sapporo, Hokkaido 001-0021, Japan
Related authors
No articles found.
Amanda Sellmaier, Ellen Damm, Torsten Sachs, Benjamin Kirbus, Inge Wiekenkamp, Annette Rinke, Falk Pätzold, Daiki Nomura, Astrid Lampert, and Markus Rex
EGUsphere, https://doi.org/10.5194/egusphere-2025-3778, https://doi.org/10.5194/egusphere-2025-3778, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study presents continuous ship-borne measurements of methane (CH4) concentration and its isotopic composition monitored during the ice drift MOSAiC expedition in 2020. By applying trajectory analysis, we linked atmospheric CH4 variabilities to air mass pathways transported either over open water or sea ice. This study will contribute to reveal the potential role of ship-borne measurements for filing significant observational gaps in the high Arctic.
Naoya Kanna, Kazutaka Tateyama, Takuji Waseda, Anna Timofeeva, Maria Papadimitraki, Laura Whitmore, Hajime Obata, Daiki Nomura, Hiroshi Ogawa, Youhei Yamashita, and Igor Polyakov
Biogeosciences, 22, 1057–1076, https://doi.org/10.5194/bg-22-1057-2025, https://doi.org/10.5194/bg-22-1057-2025, 2025
Short summary
Short summary
This article presents data on iron and manganese, essential micronutrients for primary producers in the Arctic Laptev and East Siberian seas (LESS). There, observations were made through international cooperation with the Nansen and Amundsen Basin Observational System expedition during the late summer of 2021. The results from this study indicate that the major sources controlling the iron and manganese distributions on the LESS continental margins are river discharge and shelf sediment input.
Cited articles
Ban, S., Lee, H-W., Shinada, A., and Toda, T.: In situ egg production and
hatching success of the marine copepod Pseudocalanus newmani in Funka Bay
and adjacent waters off southwestern Hokkaido, Japan: associated to diatom
bloom, J. Plankton Res., 22, 907–922, 2000.
Cochlan, W. P., Price, N. M., and Harrison, P. J.: Effects Of Irradiance On
Nitrogen Uptake By Phytoplankton – Comparison Of Frontal And Stratified
Communities, Mar. Ecol. Prog. Ser., 69, 103–116,
https://doi.org/10.3354/meps069103, 1991.
Conway, H. L. and Whitledge, T. E.: Distribution, Fluxes And Biological
Utilization Of Inorganic Nitrogen During A Spring Bloom In The New-York
Bight, J. Mar. Res., 37, 657–668, 1979.
Cullen, J. J. and Horrigan, S. G.: Effects Of Nitrate On The Diurnal
Vertical Migration, Carbon To Nitrogen Ratio, And The Photosynthetic
Capacity Of The Dinoflagellate Gymnodinium-Splendens, Mar. Biol., 62,
81–89, https://doi.org/10.1007/bf00388169, 1981.
Dobashi, R., Ueno, H., Okada, Y., Tanaka, T., Nishioka, J., Hirawake, T.,
Ooki, A., Itoh, S., Hasegawa, D., Sasai, Y., Sasaki, H., and Yasuda, I.:
Observations of anticyclonic eddies in the western subarctic North Pacific,
J. Oceanogr., 77, 229–242, https://doi.org/10.1007/s10872-020-00586-y, 2021.
Hansen, H. P.: Determination of oxygen, in: The methods of seawater analysis, edited by: Grasshoff, K., Kremling, K.,
and Ehrhard, M., WILEY – VCH Verlag GmbH, 75–89,
https://doi.org/10.1002/9783527613984.ch4, 1999.
Harrison, P. J., Whitney, F. A., Tsuda, A., Saito, H., and Tadokoro, K.:
Nutrient and plankton dynamics in the NE and NW gyres of the subarctic
Pacific Ocean, J. Oceanogr., 60, 93–117,
https://doi.org/10.1023/B:JOCE.0000038321.57391.2a, 2004.
Hioki, N., Kuma, K., Morita, Y., Miura, D., Ooki, A., Tanaka, S., Onishi,
H., Takatsu, T., Kobayashi, N., and Kamei, Y.: Regeneration dynamics of iron
and nutrients from bay sediment into bottom water of Funka Bay, Japan,
J. Oceanogr., 71, 703–714, https://doi.org/10.1007/s10872-015-0312-6, 2015.
Hirose, N., Sakamoto, K., Usui, N., Yamanaka, G., and Kohno, N.: The 10-year
reanalysis dataset of an operational system for monitoring and forecasting
coastal and open-ocean status around Japan (JPN Atlas 2020), Technical
Reports Of The Meteorological Research Institute No.83, Meteorological Research Institute, Japan Meteorological Agency,
https://doi.org/10.11483/mritechrepo.83, 2020.
Japan Meteorological Agency: meteorological data archives,
https://www.data.jma.go.jp/obd/stats/etrn/index.php/, last access: 15 January 2023.
Kudo, I. and Matsunaga, K.: Environmental factors affecting the occurrence
and production of the spring phytoplankton bloom in Funka Bay, Japan, J.
Oceanogr., 55, 505–513, 1999.
Kudo, I., Yoshimura, T., Yanada, M., and Matsunaga, K.: Exhaustion of
nitrate terminates a phytoplankton bloom in Funka Bay, Japan: change in
SiO4 : NO3 consumption rate during the bloom, Mar. Ecol. Prog.
Ser., 193, 45–51, https://doi.org/10.3354/meps193045, 2000.
Kudo, I., Yoshimura, T., Lee, C. W., Yanada, M., and Maita, Y.: Nutrient
regeneration at bottom after a massive spring bloom in a subarctic coastal
environment, Funka Bay, Japan, J. Oceanogr., 63, 791–801,
https://doi.org/10.1007/s10872-007-0067-9, 2007.
Kudo, I., Hisatoku, T., Yoshimura, T., and Maita, Y.: Primary productivity
and nitrogen assimilation with identifying the contribution of urea in Funka
Bay, Japan, Estuar. Coast. Shelf Sci., 158, 12–19,
https://doi.org/10.1016/j.ecss.2015.03.012, 2015.
Maita, Y. and Odate, T.: Seasonal changes in size fractionated primary
production and nutrient concentrations in the temperate neritic water of
Funka Bay, Japan, J. Oceanogr. Soc. Jpn., 44, 268–279, 1988.
Marra, J.: The compensation irradiance for phytoplankton in nature,
Geophys. Res. Lett., 31, L06305, https://doi.org/10.1029/2003gl018881, 2004.
Miyake, H., Yanada, M., Nishi, T., and Hoshizawa, K.: Short-time variation
in low trophic level productivity and hydrographic conditions in Funka Bay,
Mem. Fac. Fish. Hokkaido Univ., 45, 36–41, 1998.
Nakada, S., Ishikawa, Y., Awaji, T., In, T., Koyamada, K., Watanobe, M.,
Okumura, H., Nishida, Y., and Saitoh, S. I.: An integrated approach to the
heat and water mass dynamics of a large bay: High-resolution simulations of
Funka Bay, Japan, J. Geophys. Res.-Ocean., 118, 3530–3547,
https://doi.org/10.1002/jgrc.20262, 2013.
Nelson, D. M. and Conway, H. L.: Effects of the light regime on nutrient
assimilation by phytoplankton in the Baja California and Northwest Africa
upwelling systems, J. Mar. Res., 37, 301–318, 1979.
Nishioka, J., Ono, T., Saito, H., Sakaoka, K., and Yoshimura, T.: Oceanic
iron supply mechanisms which support the spring diatom bloom in the Oyashio
region, western subarctic Pacific, J. Geophys. Res.-Ocean.,
116, C02021, https://doi.org/10.1029/2010jc006321, 2011.
Odate, T.: Temporal and horizontal distribution of the diatom community
during the spring bloom in Funka Bay, southern Hokkaido, Bull. Plank. Soc.
Jpn., 34, 33–42, 1987.
Odate, T, Yanada, M., Mizuta, H., and Maita, Y.: Phytoplankton carbon
biomass estimated from the size-fractionated chlorophyll a concentration and
cell density in the northern coastal waters from spring bloom to summer,
Bull. Plank. Soc. Jpn., 39, 127–144, 1993.
Ohtani, K.: Studies on the change of the hydrographic conditions in the
Funka Bay, II. Characteristics of the water occupying the Funka Bay, Bull.
Fac. Fish., Hokkaido Univ., 22, 58–66, 1971 (in Japanese).
Ohtani, K. and Kido, K.: Oceanographic structure in Funka Bay, Bull. Fac.
Fish. Hokkaido Univ., 31, 84–114, 1980 (in Japanese with English abstract).
Ooki, A.: Funka Bay observation bottle data (Nutrients, chlorophyll-a, and oxygen) from February to April of 2019, Zenodo [data set], https://doi.org/10.5281/zenodo.7537961, 2023.
Ooki, A., Shida, R., Otsu, M., Onishi, H., Kobayashi, N., Iida, T., Nomura,
D., Suzuki, K., Yamaoka, H., and Takatsu, T.: Isoprene production in
seawater of Funka Bay, Hokkaido, Japan, J. Oceanogr., 75,
485–501, https://doi.org/10.1007/s10872-019-00517-6, 2019.
Ooki, A., Miyashita, N., Umezawa, S., Tozawa, M., Nosaka, N., Nomura, D.,
Onishi, H., Abe, H., and Takatsu, T.: Isoprene production in the water
column and sediment in Funka Bay, Hokkaido, Japan, Geochem. J., 56, 142–150, https://doi.org/10.2343/geochemj.GJ22013, 2022.
Regaudie-De-Gioux, A. and Duarte, C. M.: Compensation irradiance for
planktonic community metabolism in the ocean, Global Biogeochem. Cy.,
24, GB4013, https://doi.org/10.1029/2009gb003639, 2010.
Rey, F. and Skjoldal, H. R.: Consumption of silicic-acid below the Euphotic
Zone by sedimenting diatom blooms in the Barents Sea, Mar. Ecol.
Prog. Ser., 36, 307–312, https://doi.org/10.3354/meps036307, 1987.
Richardson, T. L. and Cullen, J. J.: Changes in buoyancy and chemical
composition during growth of a coastal marine diatom: Ecological and
biogeochemical consequences, Mar. Ecol. Prog. Ser., 128, 77–90,
https://doi.org/10.3354/meps128077, 1995.
Richardson, T. L., Cullen, J. J., Kelley, D. E., and Lewis, M. R.: Potential
contributions of vertically migrating Rhizosolenia to nutrient cycling and
new production in the open ocean, J. Plank. Res., 20, 219–241,
https://doi.org/10.1093/plankt/20.2.219, 1998.
Rosa, A. L., Isoda, Y., Uehara, K., and Aiki, T.: Seasonal variations of
water system distribution and flow patterns in the southern sea area of
Hokkaido, Japan, J. Oceanogr., 63, 573–588,
https://doi.org/10.1007/s10872-007-0051-4, 2007.
Shimizu, Y., Ooki, A., Onishi, H., Takatsu, T., Tanaka, S., Inagaki, Y.,
Suzuki, K., Kobayashi, N., Kamei, Y., and Kuma, K.: Seasonal variation of
volatile organic iodine compounds in the water column of Funka Bay,
Hokkaido, Japan, J. Atmos. Chem., 74, 205–225,
https://doi.org/10.1007/s10874-016-9352-6, 2017.
Spall, M. A.: A diagnostic study of the wind-driven and buoyancy-driven
north-atlantic circulation, J. Geophys. Res.-Ocean., 96,
18509–18518, https://doi.org/10.1029/91jc01957, 1991.
Thomson, R. E. and Fine, I. V.: Estimating mixed layer depth from oceanic
profile data, J. Atmos. Ocean. Technol., 20, 319–329,
https://doi.org/10.1175/1520-0426(2003)020<0319:emldfo>2.0.co;2, 2003.
Villareal, T. A., Woods, S., Moore, J. K., and CulverRymsza, K.: Vertical
migration of rhizosolenia mats and their significance to NO fluxes in the
central north Pacific gyre, J. Plank. Res., 18, 1103–1121,
https://doi.org/10.1093/plankt/18.7.1103, 1996.
Villareal, T. A., Pilskaln, C., Brzezinski, M., Lipschultz, F., Dennett, M.,
and Gardner, G. B.: Upward transport of oceanic nitrate by migrating diatom
mats, Nature, 397, 423-425, https://doi.org/10.1038/17103, 1999.
Villareal, T. A., Pilskaln, C. H., Montoya, J. P., and Dennett, M.: Upward
nitrate transport by phytoplankton in oceanic waters: balancing nutrient
budgets in oligotrophic seas, Peerj, 2, e302, https://doi.org/10.7717/peerj.302, 2014.
Welschmeyer, N. A.: Fluorometric analysis of chlorophyll a in the presence of
chlorophyll b and pheopigments, Limnol. Oceanogr., 39, 1985–1992,
https://doi.org/10.4319/lo.1994.39.8.1985, 1994.
Wirtz, K. and Lan Smith, S.: Vertical migration by bulk phytoplankton
sustains biodiversity and nutrient input to the surface ocean, Sci.
Rep., 10, 1142, https://doi.org/10.1038/s41598-020-57890-2, 2020.
Yoshimura, T. and Kudo, I.: Seasonal phosphorus depletion and microbial
responses to the change in phosphorus availability in a subarctic coastal
environment, Mar. Chem., 126, 182–192, https://doi.org/10.1016/j.marchem.2011.06.003,
2011.
Short summary
We conducted repetitive observations in Funka Bay, Japan, during the spring bloom 2019. We found nutrient concentration decreases in the dark subsurface layer during the bloom. Incubation experiments confirmed that diatoms could consume nutrients at a substantial rate, even in darkness. We concluded that the nutrient reduction was mainly caused by nutrient consumption by diatoms in the dark.
We conducted repetitive observations in Funka Bay, Japan, during the spring bloom 2019. We found...
Altmetrics
Final-revised paper
Preprint