Articles | Volume 20, issue 3
https://doi.org/10.5194/bg-20-505-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-505-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
Birmingham Institute for Forest Research, University of Birmingham,
Birmingham, United Kingdom
School of Geography, University of Birmingham, Birmingham, United Kingdom
Department of Earth Sciences, University of Gothenburg, Gothenburg,
Sweden
Catriona A. Macdonald
Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
David S. Ellsworth
Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
Yolima Carrillo
Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
Related authors
No articles found.
Aurora Patchett, Louise Rütting, Tobias Rütting, Samuel Bodé, Sara Hallin, Jaanis Juhanson, C. Florian Stange, Mats P. Björkman, Pascal Boeckx, Gunhild Rosqvist, and Robert G. Björk
EGUsphere, https://doi.org/10.5194/egusphere-2025-2179, https://doi.org/10.5194/egusphere-2025-2179, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study explores how different types of fungi and plant species affect nitrogen cycling in Arctic soils. By removing certain plants, we found that fungi associated with shrubs speed up nitrogen processes more than those with grasses. Dominant plant species enhance nitrogen recycling, while rare species increase nitrogen loss. These findings help predict how Arctic ecosystems respond to climate change, highlighting the importance of fungi and plant diversity in regulating ecosystem processes.
Emiko K. Stuart, Laura Castañeda-Gómez, Wolfram Buss, Jeff R. Powell, and Yolima Carrillo
Biogeosciences, 21, 1037–1059, https://doi.org/10.5194/bg-21-1037-2024, https://doi.org/10.5194/bg-21-1037-2024, 2024
Short summary
Short summary
We inoculated wheat plants with various types of fungi whose impacts on soil carbon are poorly understood. After several months of growth, we examined both their impacts on soil carbon and the underlying mechanisms using multiple methods. Overall the fungi benefitted the storage of carbon in soil, mainly by improving the stability of pre-existing carbon, but several pathways were involved. This study demonstrates their importance for soil carbon storage and, therefore, climate change mitigation.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021, https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Short summary
Land surface model (LSM) is a critical tool to study land responses to droughts and heatwaves, but lacking comprehensive observations limited past model evaluations. Here we use a novel dataset at a water-limited site, evaluate a typical LSM with a range of competing model hypotheses widely used in LSMs and identify marked uncertainty due to the differing process assumptions. We show the extensive observations constrain model processes and allow better simulated land responses to these extremes.
Jinyan Yang, Belinda E. Medlyn, Martin G. De Kauwe, Remko A. Duursma, Mingkai Jiang, Dushan Kumarathunge, Kristine Y. Crous, Teresa E. Gimeno, Agnieszka Wujeska-Klause, and David S. Ellsworth
Biogeosciences, 17, 265–279, https://doi.org/10.5194/bg-17-265-2020, https://doi.org/10.5194/bg-17-265-2020, 2020
Short summary
Short summary
This study addressed a major knowledge gap in the response of forest productivity to elevated CO2. We first quantified forest productivity of an evergreen forest under both ambient and elevated CO2, using a model constrained by in situ measurements. The simulation showed the canopy productivity response to elevated CO2 to be smaller than that at the leaf scale due to different limiting processes. This finding provides a key reference for the understanding of CO2 impacts on forest ecosystems.
Mingkai Jiang, Sönke Zaehle, Martin G. De Kauwe, Anthony P. Walker, Silvia Caldararu, David S. Ellsworth, and Belinda E. Medlyn
Geosci. Model Dev., 12, 2069–2089, https://doi.org/10.5194/gmd-12-2069-2019, https://doi.org/10.5194/gmd-12-2069-2019, 2019
Short summary
Short summary
Here we used a simple analytical framework developed by Comins and McMurtrie (1993) to investigate how different model assumptions affected plant responses to elevated CO2. This framework is useful in revealing both the consequences and the mechanisms through which different assumptions affect predictions. We therefore recommend the use of this framework to analyze the likely outcomes of new assumptions before introducing them to complex model structures.
Edmund M. Ryan, Kiona Ogle, Heather Kropp, Kimberly E. Samuels-Crow, Yolima Carrillo, and Elise Pendall
Geosci. Model Dev., 11, 1909–1928, https://doi.org/10.5194/gmd-11-1909-2018, https://doi.org/10.5194/gmd-11-1909-2018, 2018
Short summary
Short summary
Our work evaluated the appropriateness of the common steady-state (SS) assumption, for example when partitioning soil respiration of CO2 into recently photosynthesized carbon (C) and older C. Using a new model of soil CO2 production and transport we found that the SS assumption is valid most of the time, especially in sand/silt soils. Non-SS conditions occurred mainly for the few days following large rain events in all soil types, but the non-SS period was prolonged and magnified in clay soils.
Anne B. Jansen-Willems, Gary J. Lanigan, Timothy J. Clough, Louise C. Andresen, and Christoph Müller
SOIL, 2, 601–614, https://doi.org/10.5194/soil-2-601-2016, https://doi.org/10.5194/soil-2-601-2016, 2016
Short summary
Short summary
Legacy effects of increased temperature on both nitrogen (N) transformation rates and nitrous oxide (N2O) emissions from permanent temperate grassland soil were evaluated. A new source-partitioning model showed the importance of oxidation of organic N as a source of N2O. Gross organic (and not inorganic) N transformation rates decreased in response to the prior soil warming treatment. This was also reflected in reduced N2O emissions associated with organic N oxidation and denitrification.
Louise C. Andresen, Anna-Karin Björsne, Samuel Bodé, Leif Klemedtsson, Pascal Boeckx, and Tobias Rütting
SOIL, 2, 433–442, https://doi.org/10.5194/soil-2-433-2016, https://doi.org/10.5194/soil-2-433-2016, 2016
Short summary
Short summary
In soil the constant transport of nitrogen (N) containing compounds from soil organic matter and debris out into the soil water, is controlled by soil microbes and enzymes that literally cut down polymers (such as proteins) into single amino acids (AA), hereafter microbes consume AAs and excrete ammonium back to the soil. We developed a method for analysing N turnover and flow of organic N, based on parallel 15N tracing experiments. The numerical model gives robust and simultaneous quantification.
L. C. Andresen, S. Bode, A. Tietema, P. Boeckx, and T. Rütting
SOIL, 1, 341–349, https://doi.org/10.5194/soil-1-341-2015, https://doi.org/10.5194/soil-1-341-2015, 2015
Related subject area
Biogeochemistry: Soils
Modelling the effect of climate–substrate interactions on soil organic matter decomposition with the Jena Soil Model
Solubility characteristics of soil humic substances as a function of pH: mechanisms and biogeochemical perspectives
Exploring microscale heterogeneity as a driver of biogeochemical transformations and gas transport in peat
Dissolved organic matter fosters core mercury-methylating microbiomes for methylmercury production in paddy soils
A microbially driven and depth-explicit soil organic carbon model constrained by carbon isotopes to reduce parameter equifinality
Earth observation reveals reduced winter wheat growth and the importance of plant available water during drought
Plutonium concentrations link soil organic matter decline to wind erosion in ploughed soils of South Africa
Litter biomass as a driver of soil VOC fluxes in a Mediterranean forest
A synthesis of Sphagnum litterbag experiments: initial leaching losses bias decomposition rate estimates
Carbon and Nitrogen Dynamics in Subsoils After 20 years of Added Precipitation in a Mediterranean Grassland
Effect of straw retention and mineral fertilization on P speciation and P-transformation microorganisms in water- extractable colloids of a Vertisol
A new approach to continuous monitoring of carbon use efficiency and biosynthesis in soil microbes from measurement of CO2 and O2
Validating laboratory insights into the drivers of soil rewetting respiration pulses with field measurements
Diverse organic carbon dynamics captured by radiocarbon analysis of distinct compound classes in a grassland soil
Effects of basalt, concrete fines, and steel slag on maize growth and heavy metal accumulation in an enhanced weathering experiment
The effects of land use on soil carbon stocks in the UK
Technical note: A validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis
Depth Effects of Long-term Organic Residue Application on Soil Organic Carbon Stocks in Central Kenya
Distinct changes in carbon, nitrogen, and phosphorus cycling in the litter layer across two contrasting forest-tundra ecotones
Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems
Technical note: An open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grassland
Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh
Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau
Non-mycorrhizal root-associated fungi increase soil C stocks and stability via diverse mechanisms
Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change in chemical structure
Soil priming effects and involved microbial community along salt gradients
Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification
Ecosystem-specific patterns and drivers of global reactive iron mineral-associated organic carbon
Dark septate endophytic fungi associated with pioneer grass inhabiting volcanic deposits and their functions in promoting plant growth
Global patterns and drivers of phosphorus fractions in natural soils
Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Differential temperature sensitivity of intracellular metabolic processes and extracellular soil enzyme activities
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
The paradox of assessing greenhouse gases from soils for nature-based solutions
Management-induced changes in soil organic carbon on global croplands
Pore network modeling as a new tool for determining gas diffusivity in peat
Temperature sensitivity of dark CO2 fixation in temperate forest soils
Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites
Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra basin (Madagascar): insights in past vegetation changes
Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential
Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation
To what extent can soil moisture and soil Cu contamination stresses affect nitrous species emissions? Estimation through calibration of a nitrification–denitrification model
Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence
Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils – seasonal patterns and effects of fertilization
Marleen Pallandt, Marion Schrumpf, Holger Lange, Markus Reichstein, Lin Yu, and Bernhard Ahrens
Biogeosciences, 22, 1907–1928, https://doi.org/10.5194/bg-22-1907-2025, https://doi.org/10.5194/bg-22-1907-2025, 2025
Short summary
Short summary
As soils warm due to climate change, soil organic carbon (SOC) decomposes faster due to increased microbial activity, given sufficient available moisture. We modelled the microbial decomposition of plant litter and residue at different depths and found that deep soil layers are more sensitive than topsoils. Warming causes SOC loss, but its extent depends on the litter type and its temperature sensitivity, which can either counteract or amplify losses. Droughts may also counteract warming-induced SOC losses.
Xuemei Yang, Jie Zhang, Khan M. G. Mostofa, Mohammad Mohinuzzaman, H. Henry Teng, Nicola Senesi, Giorgio S. Senesi, Jie Yuan, Yu Liu, Si-Liang Li, Xiaodong Li, Baoli Wang, and Cong-Qiang Liu
Biogeosciences, 22, 1745–1765, https://doi.org/10.5194/bg-22-1745-2025, https://doi.org/10.5194/bg-22-1745-2025, 2025
Short summary
Short summary
The solubility characteristics of soil humic acids (HAs), fulvic acids (FAs), and protein-like substances (PLSs) at varying pH levels remain unclear. The key findings include the following: HA solubility increases with increasing pH and decreases with decreasing pH; HApH6 and HApH1 contribute to 39.1–49.2% and 3.1–24.1% of dissolved organic carbon, respectively; and HApH2, FA, and PLSs are highly soluble at acidic pHs and are transported by ambient water. These issues are crucial for sustainable soil management.
Lukas Kohl, Petri Kiuru, Marjo Palviainen, Maarit Raivonen, Markku Koskinen, Mari Pihlatie, and Annamari Laurén
Biogeosciences, 22, 1711–1727, https://doi.org/10.5194/bg-22-1711-2025, https://doi.org/10.5194/bg-22-1711-2025, 2025
Short summary
Short summary
We present an assay to illuminate heterogeneity in biogeochemical transformations within peat samples. For this, we injected isotope-labeled acetate into peat cores and monitored the release of label-derived gases, which we compared to microtomography images. The fraction of label converted to CO2 and the rapidness of this conversion were linked to injection depth and air-filled porosity.
Qiang Pu, Bo Meng, Jen-How Huang, Kun Zhang, Jiang Liu, Yurong Liu, Mahmoud A. Abdelhafiz, and Xinbin Feng
Biogeosciences, 22, 1543–1556, https://doi.org/10.5194/bg-22-1543-2025, https://doi.org/10.5194/bg-22-1543-2025, 2025
Short summary
Short summary
This study examines the effect of dissolved organic matter (DOM) on microbial mercury (Hg) methylation in paddy soils. It uncovers that DOM regulates Hg methylation mainly through altering core Hg-methylating microbiome composition and boosting the growth of core Hg-methylating microorganisms. The study highlights that in the regulation of methylmercury formation in paddy soils, more attention should be paid to changes in DOM concentration and composition.
Marijn Van de Broek, Gerard Govers, Marion Schrumpf, and Johan Six
Biogeosciences, 22, 1427–1446, https://doi.org/10.5194/bg-22-1427-2025, https://doi.org/10.5194/bg-22-1427-2025, 2025
Short summary
Short summary
Soil organic carbon models are used to predict how soils affect the concentration of CO2 in the atmosphere. We show that equifinality – the phenomenon that different parameter values lead to correct overall model outputs, albeit with a different model behaviour – is an important source of model uncertainty. Our results imply that adding more complexity to soil organic carbon models is unlikely to lead to better predictions as long as more data to constrain model parameters are not available.
Hanna Sjulgård, Lukas Valentin Graf, Tino Colombi, Juliane Hirte, Thomas Keller, and Helge Aasen
Biogeosciences, 22, 1341–1354, https://doi.org/10.5194/bg-22-1341-2025, https://doi.org/10.5194/bg-22-1341-2025, 2025
Short summary
Short summary
Our study showed that stress-related crop response to changing environmental conditions can be detected by monitoring crops using satellite images at the landscape level. This could be useful for farmers to identify when stresses occur. Our results also suggest that satellite imagery can be used to discover soil impacts on crop development at farm fields. The inclusion of soil properties in satellite image analyses could further improve the accuracy of the prediction of drought stress on crops.
Joel Mohren, Hendrik Wiesel, Wulf Amelung, L. Keith Fifield, Alexandra Sandhage-Hofmann, Erik Strub, Steven A. Binnie, Stefan Heinze, Elmarie Kotze, Chris Du Preez, Stephen G. Tims, and Tibor J. Dunai
Biogeosciences, 22, 1077–1094, https://doi.org/10.5194/bg-22-1077-2025, https://doi.org/10.5194/bg-22-1077-2025, 2025
Short summary
Short summary
We measured concentrations of nuclear fallout in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century, the data strongly correlate with the organic matter content of the soils. The finding implies that wind erosion strongly influenced the loss of organic matter in the soils we investigated. Furthermore, the exponential decline of fallout concentrations and organic matter content over time peaks shortly after native grassland is ploughed.
Manon Rocco, Julien Kammer, Mathieu Santonja, Brice Temime-Roussel, Cassandra Saignol, Caroline Lecareux, Etienne Quivet, Henri Wortham, and Elena Ormeno
EGUsphere, https://doi.org/10.5194/egusphere-2025-54, https://doi.org/10.5194/egusphere-2025-54, 2025
Short summary
Short summary
Soil emissions of biogenic volatile organic compounds (BVOCs) play a significant role in ecosystems, yet the impact of litter accumulation on these emissions is often overlooked, particularly in Mediterranean deciduous forests. A study in downy oak forest identified over 135 BVOCs, many absorbed by the soil, while others were emitted and increased with litter biomass. This underscores the critical role of litter and microbial activity in shaping soil BVOC dynamics under changing climates.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
Biogeosciences, 22, 417–433, https://doi.org/10.5194/bg-22-417-2025, https://doi.org/10.5194/bg-22-417-2025, 2025
Short summary
Short summary
Decomposition rates for Sphagnum mosses, the main peat-forming plants in northern peatlands, are often derived from litterbag experiments. Here, we estimate initial leaching losses from available Sphagnum litterbag experiments and analyze how decomposition rates are biased when initial leaching losses are ignored. Our analyses indicate that initial leaching losses range between 3 to 18 mass-% and that this may result in overestimated mass losses when extrapolated to several decades.
Leila Maria Wahab, Sora Kim, and Asmeret Asefaw Berhe
EGUsphere, https://doi.org/10.5194/egusphere-2024-3607, https://doi.org/10.5194/egusphere-2024-3607, 2025
Short summary
Short summary
Soils are a large reservoir of carbon on land and there is uncertainty regarding how it will be affected by climate change. There is still active research about how changing precipitation patterns, a key aspect of climate change, will affect soil carbon and furthermore how vulnerable subsoils are to climate change. In this study, we studied subsoils after 20 years of experimentally manipulated precipitation shifts to see whether increasing precipitation would affect carbon amounts and chemistry.
Shanshan Bai, Yifei Ge, Dongtan Yao, Yifan Wang, Jinfang Tan, Shuai Zhang, Yutao Peng, and Xiaoqian Jiang
Biogeosciences, 22, 135–151, https://doi.org/10.5194/bg-22-135-2025, https://doi.org/10.5194/bg-22-135-2025, 2025
Short summary
Short summary
Mineral fertilization led to increases in total P, available P, high-activity inorganic P fractions, and organic P but reduced the abundance of P-cycling genes by decreasing soil pH and increasing P in bulk soil. Straw retention enhanced organic carbon, total P, and available P concentrations in water-extractable colloids (WECs). Abundances of the phoD gene and phoD-harboring Proteobacteria in WECs were elevated under straw retention, suggesting an increase in P-mineralization capacity.
Kyle E. Smart, Daniel O. Breecker, Christopher B. Blackwood, and Timothy M. Gallagher
Biogeosciences, 22, 87–101, https://doi.org/10.5194/bg-22-87-2025, https://doi.org/10.5194/bg-22-87-2025, 2025
Short summary
Short summary
When microbes consume carbon within soils, it is important to know how much carbon is respired and lost as carbon dioxide versus how much is used to make new biomass. We used a new approach of monitoring carbon dioxide and oxygen to track the fate of consumed carbon during a series of laboratory experiments where sugar was added to moistened soil. Our approach allowed us to estimate how much sugar was converted to dead microbial biomass, which is more likely to be preserved in soils.
Xiankun Li, Marleen Pallandt, Dilip Naidu, Johannes Rousk, Gustaf Hugelius, and Stefano Manzoni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3324, https://doi.org/10.5194/egusphere-2024-3324, 2024
Short summary
Short summary
While laboratory studies have identified many drivers and their effects on the carbon emission pulse after rewetting of dry soils, a validation with field data is still missing. Here, we show that the carbon emission pulse in the laboratory and in the field increases with soil organic carbon and temperature, but their trends with pre-rewetting dryness and moisture increment at rewetting differ. We conclude that the laboratory findings can be partially validated.
Katherine E. Grant, Marisa N. Repasch, Kari M. Finstad, Julia D. Kerr, Maxwell Marple, Christopher J. Larson, Taylor A. B. Broek, Jennifer Pett-Ridge, and Karis J. McFarlane
Biogeosciences, 21, 4395–4411, https://doi.org/10.5194/bg-21-4395-2024, https://doi.org/10.5194/bg-21-4395-2024, 2024
Short summary
Short summary
Soils store organic carbon composed of multiple compounds from plants and microbes for different lengths of time. To understand how soils store these different carbon types, we measure the time each carbon fraction is in a grassland soil profile. Our results show that the length of time each individual soil fraction is in our soil changes. Our approach allows a detailed look at the different components in soils. This study can help improve our understanding of soil dynamics.
Jet Rijnders, Arthur Vienne, and Sara Vicca
EGUsphere, https://doi.org/10.5194/egusphere-2024-3022, https://doi.org/10.5194/egusphere-2024-3022, 2024
Short summary
Short summary
A mesocosm experiment was set-up to investigate how maize responds to basalt, concrete fines and steel slags application, using a dose-response approach. Biomass increased with basalt application, but did not change with concrete fines or steel slags, except for increased tassel biomass. Mg, Ca and Si generally increased in the crops, while heavy metal concentrations remained unaffected or even decreased in the plants. Overall, crops were positively affected by application of silicate materials.
Peter Levy, Laura Bentley, Peter Danks, Bridget Emmett, Angus Garbutt, Stephen Heming, Peter Henrys, Aidan Keith, Inma Lebron, Niall McNamara, Richard Pywell, John Redhead, David Robinson, and Alexander Wickenden
Biogeosciences, 21, 4301–4315, https://doi.org/10.5194/bg-21-4301-2024, https://doi.org/10.5194/bg-21-4301-2024, 2024
Short summary
Short summary
We collated a large data set (15 790 soil cores) on soil carbon stock in different land uses. Soil carbon stocks were highest in woodlands and lowest in croplands. The variability in the effects was large. This has important implications for agri-environment schemes seeking to sequester carbon in the soil by altering land use because the effect of a given intervention is very hard to verify.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Claude Raoul Müller, Johan Six, Daniel Mugendi Njiru, Bernard Vanlauwe, and Marijn Van de Broek
EGUsphere, https://doi.org/10.5194/egusphere-2024-2796, https://doi.org/10.5194/egusphere-2024-2796, 2024
Short summary
Short summary
We studied how different organic and inorganic nutrient inputs affect soil organic carbon (SOC) down to 70 cm in Kenya. After 19 years, all organic treatments increased SOC stocks as compared to the control, but mineral nitrogen had no significant effect. Manure was the organic treatment that significantly increased SOC the deepest as its effect could be observed down to 60 cm. Manure was the best strategy to limit SOC loss in croplands and maintain soil quality after deforestation.
Frank Hagedorn, Joesphine Imboden, Pavel Moiseev, Decai Gao, Emmanuel Frossard, Daniel Christen, Konstantin Gavazov, and Jasmin Fetzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2622, https://doi.org/10.5194/egusphere-2024-2622, 2024
Short summary
Short summary
At treeline, plant species change abruptly from low stature plants in tundra to trees in forests. Our study documents that from tundra towards forest, the litter layer gets strongly enriched in nutrients. We show that these litter quality changes alter nutrient processing by soil microbes and increase the nutrient release during decomposition in forest than in tundra. The associated improvement of nutrient availability in the forest potentially stimulates tree growth and treeline shifts.
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Sahiti Bulusu, Cristina Prieto García, Helen E. Dahlke, and Elad Levintal
Biogeosciences, 21, 3007–3013, https://doi.org/10.5194/bg-21-3007-2024, https://doi.org/10.5194/bg-21-3007-2024, 2024
Short summary
Short summary
Do-it-yourself hardware is a new way to improve measurement resolution. We present a low-cost, automated system for field measurements of low nitrate concentrations in soil porewater and open water bodies. All data hardware components cost USD 1100, which is much cheaper than other available commercial solutions. We provide the complete building guide to reduce technical barriers, which we hope will allow easier reproducibility and set up new soil and environmental monitoring applications.
Violeta Mendoza-Martinez, Scott L. Collins, and Jennie R. McLaren
Biogeosciences, 21, 2655–2667, https://doi.org/10.5194/bg-21-2655-2024, https://doi.org/10.5194/bg-21-2655-2024, 2024
Short summary
Short summary
We examine the impacts of multi-decadal nitrogen additions on a dryland ecosystem N budget, including the soil, microbial, and plant N pools. After 26 years, there appears to be little impact on the soil microbial or plant community and only minimal increases in N pools within the soil. While perhaps encouraging from a conservation standpoint, we calculate that greater than 95 % of the nitrogen added to the system is not retained and is instead either lost deeper in the soil or emitted as gas.
Sean Fettrow, Andrew Wozniak, Holly A. Michael, and Angelia L. Seyfferth
Biogeosciences, 21, 2367–2384, https://doi.org/10.5194/bg-21-2367-2024, https://doi.org/10.5194/bg-21-2367-2024, 2024
Short summary
Short summary
Salt marshes play a big role in global carbon (C) storage, and C stock estimates are used to predict future changes. However, spatial and temporal gradients in C burial rates over the landscape exist due to variations in water inundation, dominant plant species and stage of growth, and tidal action. We quantified soil C concentrations in soil cores across time and space beside several porewater biogeochemical variables and discussed the controls on variability in soil C in salt marsh ecosystems.
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024, https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Short summary
Soil organic matter stability depends on future temperature and precipitation scenarios. We used radiocarbon (14C) data and model predictions to understand how the transit time of carbon varies under environmental change in grasslands and peatlands. Soil moisture affected the Δ14C of peatlands, while temperature did not have any influence. Our models show the correspondence between Δ14C and transit time and could allow understanding future interactions between terrestrial and atmospheric carbon
Emiko K. Stuart, Laura Castañeda-Gómez, Wolfram Buss, Jeff R. Powell, and Yolima Carrillo
Biogeosciences, 21, 1037–1059, https://doi.org/10.5194/bg-21-1037-2024, https://doi.org/10.5194/bg-21-1037-2024, 2024
Short summary
Short summary
We inoculated wheat plants with various types of fungi whose impacts on soil carbon are poorly understood. After several months of growth, we examined both their impacts on soil carbon and the underlying mechanisms using multiple methods. Overall the fungi benefitted the storage of carbon in soil, mainly by improving the stability of pre-existing carbon, but several pathways were involved. This study demonstrates their importance for soil carbon storage and, therefore, climate change mitigation.
Huimin Sun, Michael W. I. Schmidt, Jintao Li, Jinquan Li, Xiang Liu, Nicholas O. E. Ofiti, Shurong Zhou, and Ming Nie
Biogeosciences, 21, 575–589, https://doi.org/10.5194/bg-21-575-2024, https://doi.org/10.5194/bg-21-575-2024, 2024
Short summary
Short summary
A soil organic carbon (SOC) molecular structure suggested that the easily decomposable and stabilized SOC is similarly affected after 9-year warming and N treatments despite large changes in SOC stocks. Given the long residence time of some SOC, the similar loss of all measurable chemical forms of SOC under global change treatments could have important climate consequences.
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences, 21, 1–11, https://doi.org/10.5194/bg-21-1-2024, https://doi.org/10.5194/bg-21-1-2024, 2024
Short summary
Short summary
Soil salinity mediates microorganisms and soil processes like soil organic carbon (SOC) cycling. We observed that negative priming effects at the early stages might be due to the preferential utilization of cottonseed meal. The positive priming that followed decreased with the increase in salinity.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023, https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary
Short summary
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil inorganic carbon (SIC) on a non-pretreated soil aliquot. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot complete the thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to quantify any SIC amount.
Bo Zhao, Amin Dou, Zhiwei Zhang, Zhenyu Chen, Wenbo Sun, Yanli Feng, Xiaojuan Wang, and Qiang Wang
Biogeosciences, 20, 4761–4774, https://doi.org/10.5194/bg-20-4761-2023, https://doi.org/10.5194/bg-20-4761-2023, 2023
Short summary
Short summary
This study provided a comprehensive analysis of the spatial variability and determinants of Fe-bound organic carbon (Fe-OC) among terrestrial, wetland, and marine ecosystems and its governing factors globally. We illustrated that reactive Fe was not only an important sequestration mechanism for OC in terrestrial ecosystems but also an effective “rusty sink” of OC preservation in wetland and marine ecosystems, i.e., a key factor for long-term OC storage in global ecosystems.
Han Sun, Tomoyasu Nishizawa, Hiroyuki Ohta, and Kazuhiko Narisawa
Biogeosciences, 20, 4737–4749, https://doi.org/10.5194/bg-20-4737-2023, https://doi.org/10.5194/bg-20-4737-2023, 2023
Short summary
Short summary
In this research, we assessed the diversity and function of the dark septate endophytic (DSE) fungi community associated with Miscanthus condensatus root in volcanic ecosystems. Both metabarcoding and isolation were adopted in this study. We further validated effects on plant growth by inoculation of some core DSE isolates. This study helps improve our understanding of the role of Miscanthus condensatus-associated DSE fungi during the restoration of post-volcanic ecosystems.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Imane Slimani, Xia Zhu-Barker, Patricia Lazicki, and William Horwath
Biogeosciences, 20, 3873–3894, https://doi.org/10.5194/bg-20-3873-2023, https://doi.org/10.5194/bg-20-3873-2023, 2023
Short summary
Short summary
There is a strong link between nitrogen availability and iron minerals in soils. These minerals have multiple outcomes for nitrogen availability depending on soil conditions and properties. For example, iron can limit microbial degradation of nitrogen in aerated soils but has opposing outcomes in non-aerated soils. This paper focuses on the multiple ways iron can affect nitrogen bioavailability in soils.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Adetunji Alex Adekanmbi, Laurence Dale, Liz Shaw, and Tom Sizmur
Biogeosciences, 20, 2207–2219, https://doi.org/10.5194/bg-20-2207-2023, https://doi.org/10.5194/bg-20-2207-2023, 2023
Short summary
Short summary
The decomposition of soil organic matter and flux of carbon dioxide are expected to increase as temperatures rise. However, soil organic matter decomposition is a two-step process whereby large molecules are first broken down outside microbial cells and then respired within microbial cells. We show here that these two steps are not equally sensitive to increases in soil temperature and that global warming may cause a shift in the rate-limiting step from outside to inside the microbial cell.
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023, https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Short summary
Ultrasonication with density fractionation of soils is a commonly used method to separate soil organic matter pools, which is, e.g., important to calculate carbon turnover in landscapes. It is shown that the approach that merges soil and dense solution without mixing has a low recovery rate and causes co-extraction of parts of the retained labile pool along with the intermediate pool. An alternative method with high recovery rates and no cross-contamination was recommended.
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023, https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Petri Kiuru, Marjo Palviainen, Arianna Marchionne, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, and Annamari Laurén
Biogeosciences, 19, 5041–5058, https://doi.org/10.5194/bg-19-5041-2022, https://doi.org/10.5194/bg-19-5041-2022, 2022
Short summary
Short summary
Peatlands are large carbon stocks. Emissions of carbon dioxide and methane from peatlands may increase due to changes in management and climate. We studied the variation in the gas diffusivity of peat with depth using pore network simulations and laboratory experiments. Gas diffusivity was found to be lower in deeper peat with smaller pores and lower pore connectivity. However, gas diffusivity was not extremely low in wet conditions, which may reflect the distinctive structure of peat.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022, https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022, https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Short summary
This study focused on the modellisation of two important drivers of soil greenhouse gas emissions: soil contamination and soil moisture change. The aim was to include a Cu function in the soil biogeochemical model DNDC for different soil moisture conditions and then to estimate variation in N2O, NO2 or NOx emissions. Our results show a larger effect of Cu on N2 and N2O emissions than on the other nitrogen species and a higher effect for the soils incubated under constant constant moisture.
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Cited articles
Achat, D. L., Augusto, L., Gallet-Budynek, A., and Loustau, D.: Future
challenges in coupled C–N–P cycle models for terrestrial ecosystems under
global change: a review, Biogeochemistry, 131, 173–202,
https://doi.org/10.1007/s10533-016-0274-9, 2016.
Adeleke, R., Nwangburuka, C., and Oboirien, B.: Origins, roles and fate of
organic acids in soils: A review, South Afr. J. Bot., 108,
393–406, https://doi.org/10.1016/j.sajb.2016.09.002, 2017.
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of
photosynthesis, canopy properties and plant production to rising CO2, New
Phytol., 165, 351–372,
https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005.
Allison, S. D. and Vitousek, P. M.: Responses of extracellular enzymes to
simple and complex nutrient inputs, Soil Biol. Biochem., 37,
937–944, https://doi.org/10.1016/j.soilbio.2004.09.014, 2005.
Andresen, L. C., Carrillo, Y., Macdonald, C. A., Castañeda-Gómez,
L., Bodé, S., and Rütting, T.: Nitrogen dynamics after two years of
elevated CO2 in phosphorus limited Eucalyptus woodland, Biogeochemistry, 150, 297–312,
https://doi.org/10.1007/s10533-020-00699-y, 2020.
Atkinson, G.: A multivariate analysis of alluvial terrace soils of the
clarendon and cranebrook formations, Nepean River, NSW, Soil Res., 26,
243–259, 1988.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models Using lme4, J. Stat. Soft., 67, 1–48,
https://doi.org/10.18637/jss.v067.i01, 2015.
Bell, C. W., Fricks, B. E., Rocca, J. D., Steinweg, J. M., McMahon, S. K.,
and Wallenstein, M. D.: High-throughput Fluorometric Measurement of
Potential Soil Extracellular Enzyme Activities, J. Visual.
Exp., 81, 50961, https://doi.org/10.3791/50961, 2013.
Bengtson, P., Barker, J., and Grayston, S. J.: Evidence of a strong coupling
between root exudation, C and N availability, and stimulated SOM
decomposition caused by rhizosphere priming effects, Ecol. Evol.,
2, 1843–1852, https://doi.org/10.1002/ece3.311, 2012.
Berg, B. and McClaugherty, C.: Nitrogen and phosphorus release from
decomposing litter in relation to the disappearance of lignin, Can.
J. Bot., 67, 1148–1156, https://doi.org/10.1139/b89-150, 1989.
Bernard, L., Basile-Doelsch, I., Derrien, D., Fanin, N., Fontaine, S.,
Guenet, B., Karimi, B., Marsden, C., and Maron, P.-A.: Advancing the
mechanistic understanding of the priming effect on soil organic matter
mineralization, Funct. Ecol., 36, 1355–1377,
https://doi.org/10.1111/1365-2435.14038, 2022.
Bünemann, E. K.: Assessment of gross and net mineralization rates of
soil organic phosphorus – A review, Soil Biol. Biochem., 89,
82–98, https://doi.org/10.1016/j.soilbio.2015.06.026, 2015.
Carrillo, Y., Dijkstra, F. A., LeCain, D., Morgan, J. A., Blumenthal, D.,
Waldron, S., and Pendall, E.: Disentangling root responses to climate change
in a semiarid grassland, Oecologia, 175, 699–711,
https://doi.org/10.1007/s00442-014-2912-z, 2014.
Carrillo, Y., Bell, C., Koyama, A., Canarini, A., Boot, C. M., Wallenstein,
M., Pendall, E., and Vries, F.: Plant traits, stoichiometry and microbes as
drivers of decomposition in the rhizosphere in a temperate grassland,
J. Ecol., 105, 1750–1765, https://doi.org/10.1111/1365-2745.12772, 2017.
Castañeda-Gómez, L., Walker, J. K. M., Powell, J. R., Ellsworth, D.
S., Pendall, E., and Carrillo, Y.: Impacts of elevated carbon dioxide on
carbon gains and losses from soil and associated microbes in a Eucalyptus
woodland, Soil Biol. Biochem., 143, 107734,
https://doi.org/10.1016/j.soilbio.2020.107734, 2020.
Castañeda-Gómez, L., Powell, J. R., Ellsworth, D. S., Pendall, E.,
and Carrillo, Y.: The influence of roots on mycorrhizal fungi, saprotrophic
microbes and carbon dynamics in a low-phosphorus Eucalyptus forest under
elevated CO2, Funct. Ecol., 35, 2056–2071, 2021.
Crews, T. E., Kitayama, K., Fownes, J. H., Riley, R. H., Herbert, D. A.,
Mueller-Dombois, D., and Vitousek, P. M.: Changes in Soil Phosphorus
Fractions and Ecosystem Dynamics across a Long Chronosequence in Hawaii,
Ecology, 76, 1407–1424, https://doi.org/10.2307/1938144, 1995.
Crous, K. Y., Ósvaldsson, A., and Ellsworth, D. S.: Is phosphorus
limiting in a mature Eucalyptus woodland? Phosphorus fertilisation
stimulates stem growth, Plant Soil, 391, 293–305,
https://doi.org/10.1007/s11104-015-2426-4, 2015.
De Graaff, M.-A., Groenigen, K.-J., Six, J., Hungate, B., and Kessel, C.:
Interactions between plant growth and soil nutrient cycling under elevated
CO2: a meta-analysis, Glob. Change Biol., 12, 2077–2091,
https://doi.org/10.1111/j.1365-2486.2006.01240.x, 2006.
De Graaff, M.-A., Jastrow, J. D., Gillette, S., Johns, A., and Wullschleger, S.
D.: Differential priming of soil carbon driven by soil depth and root
impacts on carbon availability, Soil Biol. Biochem., 69, 147–156,
https://doi.org/10.1016/j.soilbio.2013.10.047, 2014.
Dijkstra, F., Carrillo, Y., Pendall, E., and Morgan, J.: Rhizosphere
priming: a nutrient perspective, Front. Microbiol., 4, 216,
https://doi.org/10.3389/fmicb.2013.00216, 2013.
Drake, J. E., Gallet-Budynek, A., Hofmockel, K. S., Bernhardt, E. S.,
Billings, S. A., Jackson, R. B., Johnsen, K. S., Lichter, J., McCarthy, H.
R., McCormack, M. L., Moore, D. J. P., Oren, R., Palmroth, S., Phillips, R.
P., Pippen, J. S., Pritchard, S. G., Treseder, K. K., Schlesinger, W. H.,
DeLucia, E. H., and Finzi, A. C.: Increases in the flux of carbon
belowground stimulate nitrogen uptake and sustain the long-term enhancement
of forest productivity under elevated CO2, Ecol. Lett., 14, 349–357,
https://doi.org/10.1111/j.1461-0248.2011.01593.x, 2011.
Drake, J. E., Macdonald, C. A., Tjoelker, M. G., Crous, K. Y., Gimeno, T.
E., Singh, B. K., Reich, P. B., Anderson, I. C., and Ellsworth, D. S.:
Short-term carbon cycling responses of a mature eucalypt woodland to gradual
stepwise enrichment of atmospheric CO2 concentration, Glob. Change Biol.,
22, 380–390, https://doi.org/10.1111/gcb.13109, 2016.
Ellsworth, D. S., Anderson, I. C., Crous, K. Y., Cooke, J., Drake, J. E.,
Gherlenda, A. N., Gimeno, T. E., Macdonald, C. A., Medlyn, B. E., Powell, J.
R., Tjoelker, M. G., and Reich, P. B.: Elevated CO2 does not increase
eucalypt forest productivity on a low-phosphorus soil, Nat. Clim. Change, 7, 279–282, https://doi.org/10.1038/nclimate3235, 2017.
Filion, M., Dutilleul, P., and Potvin, C.: Optimum experimental design for
Free-Air Carbon dioxide Enrichment (FACE) studies, Glob. Change Biol., 6,
843–854, https://doi.org/10.1046/j.1365-2486.2000.00353.x, 2000.
Finzi, A. C., Abramoff, R. Z., Spiller, K. S., Brzostek, E. R., Darby, B.
A., Kramer, M. A., and Phillips, R. P.: Rhizosphere processes are
quantitatively important components of terrestrial carbon and nutrient
cycles, Glob. Change Biol., 21, 2082–2094,
https://doi.org/10.1111/gcb.12816, 2015.
Fisher, J. B., Badgley, G., and Blyth, E.: Global nutrient limitation in
terrestrial vegetation, Global Biogeochem. Cy., 26, GB3007,
https://doi.org/10.1029/2011GB004252, 2012.
Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., and Rumpel, C.:
Stability of organic carbon in deep soil layers controlled by fresh carbon
supply, Nature, 450, 277–280, https://doi.org/10.1038/nature06275, 2007.
Fox, J. and Weisberg, S.: An R Companion to Applied Regression, 3rd Edn.,
Sage, Thousand Oaks CA, SAGE Publishing,
ISBN: 9781544336466, 2019.
Gérard, F.: Clay minerals, iron/aluminum oxides, and their contribution
to phosphate sorption in soils – A myth revisited, Geoderma, 262,
213–226, https://doi.org/10.1016/j.geoderma.2015.08.036, 2016.
Gilroy, S. and Jones, D. L.: Through form to function: root hair development
and nutrient uptake, Trend. Plant Sci., 5, 56–60,
https://doi.org/10.1016/S1360-1385(99)01551-4, 2000.
Hasegawa, S., Macdonald, C. A., and Power, S. A.: Elevated carbon dioxide
increases soil nitrogen and phosphorus availability in a phosphorus-limited
Eucalyptus woodland, Glob. Change Biol., 22, 1628–1643,
https://doi.org/10.1111/gcb.13147, 2016.
Hasegawa, S., Piñeiro, J., Ochoa-Hueso, R., Haigh, A. M., Rymer, P. D.,
Barnett, K. L., and Power, S. A.: Elevated CO2 concentrations reduce C4
cover and decrease diversity of understorey plant community in a Eucalyptus
woodland, J. Ecol., 106, 1483–1494,
https://doi.org/10.1111/1365-2745.12943, 2018.
Hobley, E. U. and Wilson, B.: The depth distribution of organic carbon in
the soils of eastern Australia, Ecosphere, 7, 01214,
https://doi.org/10.1002/ecs2.1214, 2016.
Hothorn, T., Bretz, F., and Westfall, P.: Simultaneous Inference in General
Parametric Models, Biometrical J., 50, 346–363, 2008.
Iversen, C. M.: Digging deeper: fine-root responses to rising atmospheric
CO2 concentration in forested ecosystems, New Phytol., 186, 346–357,
https://doi.org/10.1111/j.1469-8137.2009.03122.x, 2010.
Iversen, C. M., Ledford, J., and Norby, R. J.: CO2 enrichment increases
carbon and nitrogen input from fine roots in a deciduous forest, New
Phytol., 179, 837–847,
https://doi.org/10.1111/j.1469-8137.2008.02516.x, 2008.
Iversen, C. M., Hooker, T. D., Classen, A. T., and Norby, R. J.: Net
mineralization of N at deeper soil depths as a potential mechanism for
sustained forest production under elevated CO2, Glob. Change Biol., 17,
1130–1139, https://doi.org/10.1111/j.1365-2486.2010.02240.x, 2011.
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E.,
and Schulze, E. D.: A global analysis of root distributions for terrestrial
biomes, Oecologia, 108, 389–411, https://doi.org/10.1007/BF00333714, 1996.
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C.,
Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda-Gómez, L.,
Collins, L., Crous, K. Y., Kauwe, M. G., Santos, B. M., Emmerson, K. M.,
Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson, S. N.,
Kännaste, A., Macdonald, C. A., Mahmud, K., Moore, B. D., Nazaries, L.,
Neilson, E. H. J., Nielsen, U. N., Niinemets, Ü., Noh, N. J.,
Ochoa-Hueso, R., Pathare, V. S., Pendall, E., Pihlblad, J., Piñeiro, J.,
Powell, J. R., Power, S. A., Reich, P. B., Renchon, A. A., Riegler, M.,
Rinnan, R., and Rymer: The fate of carbon in a mature forest under carbon
dioxide enrichment, Nature, 580, 227–231,
https://doi.org/10.1038/s41586-020-2128-9, 2020.
Jilling, A., Keiluweit, M., Contosta, A. R., Frey, S., Schimel, J.,
Schnecker, J., Smith, R. G., Tiemann, L., and Grandy, A. S.: Minerals in the
rhizosphere: overlooked mediators of soil nitrogen availability to plants
and microbes, Biogeochemistry, 139, 103–122,
https://doi.org/10.1007/s10533-018-0459-5, 2018.
Jobbágy, E. G. and Jackson, R. B.: The distribution of soil nutrients
with depth: Global patterns and the imprint of plants, Biogeochemistry, 53,
51–77, https://doi.org/10.1023/a:1010760720215, 2001.
Jones, D. L. and Darrah, P. R.: Role of root derived organic acids in the
mobilization of nutrients from the rhizosphere, Plant Soil, 166,
247–257, https://doi.org/10.1007/bf00008338, 1994.
Kirkham, D. and Bartholomew, W. V.: Equations for Following Nutrient
Transformations in Soil, Utilizing Tracer Data: II, Soil Sci. Soc.
Am. J., 19, 189–192,
https://doi.org/10.2136/sssaj1955.03615995001900020020x, 1955.
Kuzyakov, Y.: Priming effects: Interactions between living and dead organic
matter, Soil Biol. Biochem., 42, 1363–1371,
https://doi.org/10.1016/j.soilbio.2010.04.003, 2010.
Kuzyakov, Y. and Blagodatskaya, E.: Microbial hotspots and hot moments in
soil: Concept & review, Soil Biol. Biochem., 83, 184–199,
https://doi.org/10.1016/j.soilbio.2015.01.025, 2015.
Kuzyakov, Y. and Cheng, W.: Photosynthesis controls of rhizosphere
respiration and organic matter decomposition, Soil Biol. Biochem.,
33, 1915–1925, https://doi.org/10.1016/S0038-0717(01)00117-1, 2001.
Kuzyakov, Y., Friedel, J. K., and Stahr, K.: Review of mechanisms and
quantification of priming effects, Soil Biol. Biochem., 32,
1485–1498, https://doi.org/10.1016/S0038-0717(00)00084-5, 2000.
Kuzyakov, Y., Horwath, W. R., Dorodnikov, M., and Blagodatskaya, E.: Review
and synthesis of the effects of elevated atmospheric CO2 on soil processes:
No changes in pools, but increased fluxes and accelerated cycles, Soil
Biol. Biochem., 128, 66–78,
https://doi.org/10.1016/j.soilbio.2018.10.005, 2019.
Laclau, J.-P., Silva, E., Rodrigues Lambais, G., Bernoux, M., le Maire, G.,
Stape, J. L., Bouillet, J.-P., Gonçalves, J. leonardo, Jourdan, C., and
Nouvellon, Y.: Dynamics of soil exploration by fine roots down to a depth of
10 m throughout the entire rotation in Eucalyptus grandis plantations,
Front. Plant Sci., 4, 243, https://doi.org/10.3389/fpls.2013.00243, 2013.
Lambers, H., Raven, J. A., Shaver, G. R., and Smith, S. E.: Plant
nutrient-acquisition strategies change with soil age, Trends Ecol.
Evol., 23, 95–103, https://doi.org/10.1016/j.tree.2007.10.008, 2008.
Lane, J. M., Delavaux, C. S., Van Koppen, L., Lu, P., Cade-Menun, B. J.,
Tremblay, J., and Bainard, L. D.: Soil sample storage conditions impact
extracellular enzyme activity and bacterial amplicon diversity metrics in a
semi-arid ecosystem, Soil Biol. Biochem., 175, 108858,
https://doi.org/10.1016/j.soilbio.2022.108858, 2022.
Li, C., Zhao, L., Sun, P., Zhao, F., Kang, D., Yang, G., Han, X., Feng, Y.,
and Ren, G.: Deep Soil C, N, and P Stocks and Stoichiometry in Response to
Land Use Patterns in the Loess Hilly Region of China, PLoS ONE, 11,
e0159075, https://doi.org/10.1371/journal.pone.0159075, 2016.
Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A. C., Hartwig, U.,
Hungate, B., McMurtrie, R. E., Oren, R., Parton, W. J., Pataki, D. E., Shaw,
M. R., Zak, D. R., and Field, C. B.: Progressive nitrogen limitation of
ecosystem responses to rising atmospheric carbon dioxide, Bioscience, 54,
731–739, https://doi.org/10.1641/0006-3568(2004)054, 2004.
McGill, W. B. and Cole, C. V.: Comparative aspects of cycling of organic C,
N, S and P through soil organic matter, Geoderma, 26, 267–286,
https://doi.org/10.1016/0016-7061(81)90024-0, 1981.
Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S., and Richter, A.:
Stoichiometric imbalances between terrestrial decomposer communities and
their resources: mechanisms and implications of microbial adaptations to
their resources, Front. Microbiol., 5, 22,
https://doi.org/10.3389/fmicb.2014.00022, 2014.
Norby, R. J. and Zak, D. R.: Ecological Lessons from Free-Air CO2 Enrichment
(FACE) Experiments, Ann. Rev. Ecol. Evol. Syst.,
42, 181–203, https://doi.org/10.1146/annurev-ecolsys-102209-144647, 2011.
Ochoa-Hueso, R., Hughes, J., Delgado-Baquerizo, M., Drake, J. E., Tjoelker,
M. G., Piñeiro, J., and Power, S. A.: Rhizosphere-driven increase in
nitrogen and phosphorus availability under elevated atmospheric CO2 in a
mature Eucalyptus woodland, Plant Soil, 1–13,
https://doi.org/10.1007/s11104-017-3212-2, 2017.
Ochoa-Hueso, R., Piñeiro, J., Hasegawa, S., Illanas, S., Miranda, H.,
Reverter, M., and Power, S. A.: Spatial homogenization of understorey plant
communities under eCO2 in a mature Eucalyptus woodland, J. Ecol.,
109, 1386–1395, https://doi.org/10.1111/1365-2745.13564, 2021.
Ohno, T. and Zibilske, L. M.: Determination of Low Concentrations of
Phosphorus in Soil Extracts Using Malachite Green, Soil Sci. Soc.
Am. J., 55, 892–895,
https://doi.org/10.2136/sssaj1991.03615995005500030046x, 1991.
Olander, L. P. and Vitousek, P. M.: Regulation of soil phosphatase and
chitinase activityby N and P availability, Biogeochemistry, 49, 175–191,
https://doi.org/10.1023/A:1006316117817, 2000.
Pathare, V. S., Crous, K. Y., Cooke, J., Creek, D., Ghannoum, O., and
Ellsworth, D. S.: Water availability affects seasonal CO2-induced
photosynthetic enhancement in herbaceous species in a periodically dry
woodland, Glob. Change Biol., 23, 5164–5178, https://doi.org/10.1111/gcb.13778, 2017.
Phillips, R. P., Finzi, A. C., and Bernhardt, E. S.: Enhanced root exudation
induces microbial feedbacks to N cycling in a pine forest under long-term
CO2 fumigation, Ecol. Lett., 14, 187–194,
https://doi.org/10.1111/j.1461-0248.2010.01570.x, 2011.
Piñeiro, J., Ochoa-Hueso, R., Drake, J. E., Tjoelker, M. G., and Power,
S. A.: Water availability drives fine root dynamics in a Eucalyptus woodland
under elevated atmospheric CO2 concentration, Funct. Ecol., 34, 2389–2402,
https://doi.org/10.1111/1365-2435.13660, 2020.
Putz, M., Schleusner, P., Rütting, T., and Hallin, S.: Relative
abundance of denitrifying and DNRA bacteria and their activity determine
nitrogen retention or loss in agricultural soil, Soil Biol.
Biochem., 123, 97–104, https://doi.org/10.1016/j.soilbio.2018.05.006,
2018.
Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R.,
Berhe, A. A., Blankinship, J. C., Crow, S. E., Druhan, J. L., Hicks Pries,
C. E., Marin-Spiotta, E., Plante, A. F., Schädel, C., Schimel, J. P.,
Sierra, C. A., Thompson, A., and Wagai, R.: Beyond clay: towards an improved
set of variables for predicting soil organic matter content,
Biogeochemistry, 137, 297–306, https://doi.org/10.1007/s10533-018-0424-3,
2018.
Rayment, G. E. and Lyons, D. J.: Soil Chemical Methods: Australasia, CSIRO
Publishing,
ISBN: 9780643101364, 2011.
Ross, G. M., Horn, S., Macdonald, C. A., Powell, J. R., Reynolds, J. K.,
Ryan, M. M., Cook, J. M., and Nielsen, U. N.: Metabarcoding mites: Three
years of elevated CO2 has no effect on oribatid assemblages in a Eucalyptus
woodland, Pedobiologia, 81–82, 150667,
https://doi.org/10.1016/j.pedobi.2020.150667, 2020.
Rumpel, C. and Kögel-Knabner, I.: Deep soil organic matter – a key but
poorly understood component of terrestrial C cycle, Plant Soil, 338,
143–158, https://doi.org/10.1007/s11104-010-0391-5, 2011.
Rütting, T., Clough, T. J., MÜLler, C., Lieffering, M., and Newton,
P. C. D.: Ten years of elevated atmospheric carbon dioxide alters soil
nitrogen transformations in a sheep-grazed pasture, Glob. Change Biol.,
16, 2530–2542, https://doi.org/10.1111/j.1365-2486.2009.02089.x, 2010.
Rütting, T., Huygens, D., Staelens, J., Müller, C., and Boeckx, P.:
Advances in 15N-tracing experiments: new labelling and data analysis
approaches, Biochem. Soc. Trans., 39, 279–283,
https://doi.org/10.1042/bst0390279, 2011.
Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing CO2 on
the terrestrial carbon cycle, P. Natl. Acad.
Sci. USA, 112, 436–441, https://doi.org/10.1073/pnas.1407302112, 2015.
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S.
D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E.,
Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S.,
Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., Zak,
D. R., and Zeglin, L. H.: Stoichiometry of soil enzyme activity at global
scale, Ecol. Lett., 11, 1252–1264,
https://doi.org/10.1111/j.1461-0248.2008.01245.x, 2008.
Sinsabaugh, R. L., Hill, B. H., and Follstad Shah, J. J.: Ecoenzymatic
stoichiometry of microbial organic nutrient acquisition in soil and
sediment, Nature, 462, 795–798, https://doi.org/10.1038/nature08632, 2009.
Sistla, S. A. and Schimel, J. P.: Stoichiometric flexibility as a regulator
of carbon and nutrient cycling in terrestrial ecosystems under change, New
Phytol., 196, 68–78, https://doi.org/10.1111/j.1469-8137.2012.04234.x,
2012.
Spohn, M.: Element cycling as driven by stoichiometric homeostasis of soil
microorganisms, Basic Appl. Ecol., 17, 471–478,
https://doi.org/10.1016/j.baae.2016.05.003, 2016.
Spohn, M. and Widdig, M.: Turnover of carbon and phosphorus in the microbial
biomass depending on phosphorus availability, Soil Biol. Biochem.,
113, 53–59, https://doi.org/10.1016/j.soilbio.2017.05.017, 2017.
Stange, F. C., Spott, O., Apelt, B., and Russow, R. W. B.: Automated and
rapid online determination of 15N abundance and concentration of ammonium,
nitrite, or nitrate in aqueous samples by the SPINMAS technique, Isotop.
Environ. Health Stud., 43, 227–236,
https://doi.org/10.1080/10256010701550658, 2007.
Terrer, C., Vicca, S., Stocker, B. D., Hungate, B. A., Phillips, R. P.,
Reich, P. B., Finzi, A. C., and Prentice, I. C.: Ecosystem responses to
elevated CO2 governed by plant–soil interactions and the cost of nitrogen
acquisition, New Phytol., 217, 507–522,
https://doi.org/10.1111/nph.14872, 2018.
Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C.,
Vicca, S., Fisher, J. B., Reich, P. B., Stocker, B. D., Hungate, B. A.,
Peñuelas, J., McCallum, I., Soudzilovskaia, N. A., Cernusak, L. A.,
Talhelm, A. F., Sundert, K., Piao, S., Newton, P. C. D., Hovenden, M. J.,
Blumenthal, D. M., Liu, Y. Y., Müller, C., Winter, K., Field, C. B.,
Viechtbauer, W., Lissa, C. J., Hoosbeek, M. R., Watanabe, M., Koike, T.,
Leshyk, V. O., Polley, H. W., and Franklin, O.: Nitrogen and phosphorus
constrain the CO2 fertilization of global plant biomass, Nat. Clim.
Change, 9, 684–689, https://doi.org/10.1038/s41558-019-0545-2, 2019.
Vance, E. D., Brookes, P. C., and Jenkinson, D. S.: An extraction method for
measuring soil microbial biomass C, Soil Biol. Biochem., 19,
703–707, https://doi.org/10.1016/0038-0717(87)90052-6, 1987.
van Groenigen, K. J., Osenberg, C. W., Terrer, C., Carrillo, Y., Dijkstra,
F. A., Heath, J., Nie, M., Pendall, E., Phillips, R. P., and Hungate, B. A.:
Faster turnover of new soil carbon inputs under increased atmospheric CO2,
Glob. Chang Biol., 23, 4420–4429, https://doi.org/10.1111/gcb.13752, 2017.
Walker, T. W. and Syers, J. K.: The fate of phosphorus during pedogenesis,
Geoderma, 15, 1–19, https://doi.org/10.1016/0016-7061(76)90066-5, 1976.
Wang, Z. and Wang, C.: Magnitude and mechanisms of nitrogen-mediated
responses of tree biomass production to elevated CO2: A global synthesis,
J. Ecol., 109, 4038–4055,
https://doi.org/10.1111/1365-2745.13774, 2021.
Zhao, F., Zhang, L., Sun, J., Ren, C., HAN, X., Yang, G., Pang, G., Bai, H.,
and Wang, J.: Effect of Soil C, N and P Stoichiometry on Soil Organic C
Fractions After Afforestation, Pedosphere, 27, 705–713,
https://doi.org/10.1016/S1002-0160(17)60479-X, 2017.
Zhu, B., Gutknecht, J. L. M., Herman, D. J., Keck, D. C., Firestone, M. K.,
and Cheng, W.: Rhizosphere priming effects on soil carbon and nitrogen
mineralization, Soil Biol. Biochem., 76, 183–192,
https://doi.org/10.1016/j.soilbio.2014.04.033, 2014.
Co-editor-in-chief
This paper advances our understanding of forest responses to elevated CO2 by considering implications for nutrient availability across the soil profile and the particular role of nutrient recycling in the rhizosphere versus soil organic matter mineralization.
This paper advances our understanding of forest responses to elevated CO2 by considering...
Short summary
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited by soil nutrients. This study explores how mature trees stimulate soil availability of nitrogen and phosphorus with free-air carbon dioxide enrichment after 5 years of fumigation. We found that both nutrient availability and processes feeding available pools increased in the rhizosphere, and phosphorus increased at depth. This appears to not be by decomposition but by faster recycling of nutrients.
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited...
Altmetrics
Final-revised paper
Preprint