Articles | Volume 20, issue 3
https://doi.org/10.5194/bg-20-505-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-505-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
Birmingham Institute for Forest Research, University of Birmingham,
Birmingham, United Kingdom
School of Geography, University of Birmingham, Birmingham, United Kingdom
Department of Earth Sciences, University of Gothenburg, Gothenburg,
Sweden
Catriona A. Macdonald
Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
David S. Ellsworth
Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
Yolima Carrillo
Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
Related authors
No articles found.
Aurora Patchett, Louise Rütting, Tobias Rütting, Samuel Bodé, Sara Hallin, Jaanis Juhanson, C. Florian Stange, Mats P. Björkman, Pascal Boeckx, Gunhild Rosqvist, and Robert G. Björk
EGUsphere, https://doi.org/10.5194/egusphere-2025-2179, https://doi.org/10.5194/egusphere-2025-2179, 2025
Short summary
Short summary
This study explores how different types of fungi and plant species affect nitrogen cycling in Arctic soils. By removing certain plants, we found that fungi associated with shrubs speed up nitrogen processes more than those with grasses. Dominant plant species enhance nitrogen recycling, while rare species increase nitrogen loss. These findings help predict how Arctic ecosystems respond to climate change, highlighting the importance of fungi and plant diversity in regulating ecosystem processes.
Emiko K. Stuart, Laura Castañeda-Gómez, Wolfram Buss, Jeff R. Powell, and Yolima Carrillo
Biogeosciences, 21, 1037–1059, https://doi.org/10.5194/bg-21-1037-2024, https://doi.org/10.5194/bg-21-1037-2024, 2024
Short summary
Short summary
We inoculated wheat plants with various types of fungi whose impacts on soil carbon are poorly understood. After several months of growth, we examined both their impacts on soil carbon and the underlying mechanisms using multiple methods. Overall the fungi benefitted the storage of carbon in soil, mainly by improving the stability of pre-existing carbon, but several pathways were involved. This study demonstrates their importance for soil carbon storage and, therefore, climate change mitigation.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021, https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Short summary
Land surface model (LSM) is a critical tool to study land responses to droughts and heatwaves, but lacking comprehensive observations limited past model evaluations. Here we use a novel dataset at a water-limited site, evaluate a typical LSM with a range of competing model hypotheses widely used in LSMs and identify marked uncertainty due to the differing process assumptions. We show the extensive observations constrain model processes and allow better simulated land responses to these extremes.
Cited articles
Achat, D. L., Augusto, L., Gallet-Budynek, A., and Loustau, D.: Future
challenges in coupled C–N–P cycle models for terrestrial ecosystems under
global change: a review, Biogeochemistry, 131, 173–202,
https://doi.org/10.1007/s10533-016-0274-9, 2016.
Adeleke, R., Nwangburuka, C., and Oboirien, B.: Origins, roles and fate of
organic acids in soils: A review, South Afr. J. Bot., 108,
393–406, https://doi.org/10.1016/j.sajb.2016.09.002, 2017.
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of
photosynthesis, canopy properties and plant production to rising CO2, New
Phytol., 165, 351–372,
https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005.
Allison, S. D. and Vitousek, P. M.: Responses of extracellular enzymes to
simple and complex nutrient inputs, Soil Biol. Biochem., 37,
937–944, https://doi.org/10.1016/j.soilbio.2004.09.014, 2005.
Andresen, L. C., Carrillo, Y., Macdonald, C. A., Castañeda-Gómez,
L., Bodé, S., and Rütting, T.: Nitrogen dynamics after two years of
elevated CO2 in phosphorus limited Eucalyptus woodland, Biogeochemistry, 150, 297–312,
https://doi.org/10.1007/s10533-020-00699-y, 2020.
Atkinson, G.: A multivariate analysis of alluvial terrace soils of the
clarendon and cranebrook formations, Nepean River, NSW, Soil Res., 26,
243–259, 1988.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models Using lme4, J. Stat. Soft., 67, 1–48,
https://doi.org/10.18637/jss.v067.i01, 2015.
Bell, C. W., Fricks, B. E., Rocca, J. D., Steinweg, J. M., McMahon, S. K.,
and Wallenstein, M. D.: High-throughput Fluorometric Measurement of
Potential Soil Extracellular Enzyme Activities, J. Visual.
Exp., 81, 50961, https://doi.org/10.3791/50961, 2013.
Bengtson, P., Barker, J., and Grayston, S. J.: Evidence of a strong coupling
between root exudation, C and N availability, and stimulated SOM
decomposition caused by rhizosphere priming effects, Ecol. Evol.,
2, 1843–1852, https://doi.org/10.1002/ece3.311, 2012.
Berg, B. and McClaugherty, C.: Nitrogen and phosphorus release from
decomposing litter in relation to the disappearance of lignin, Can.
J. Bot., 67, 1148–1156, https://doi.org/10.1139/b89-150, 1989.
Bernard, L., Basile-Doelsch, I., Derrien, D., Fanin, N., Fontaine, S.,
Guenet, B., Karimi, B., Marsden, C., and Maron, P.-A.: Advancing the
mechanistic understanding of the priming effect on soil organic matter
mineralization, Funct. Ecol., 36, 1355–1377,
https://doi.org/10.1111/1365-2435.14038, 2022.
Bünemann, E. K.: Assessment of gross and net mineralization rates of
soil organic phosphorus – A review, Soil Biol. Biochem., 89,
82–98, https://doi.org/10.1016/j.soilbio.2015.06.026, 2015.
Carrillo, Y., Dijkstra, F. A., LeCain, D., Morgan, J. A., Blumenthal, D.,
Waldron, S., and Pendall, E.: Disentangling root responses to climate change
in a semiarid grassland, Oecologia, 175, 699–711,
https://doi.org/10.1007/s00442-014-2912-z, 2014.
Carrillo, Y., Bell, C., Koyama, A., Canarini, A., Boot, C. M., Wallenstein,
M., Pendall, E., and Vries, F.: Plant traits, stoichiometry and microbes as
drivers of decomposition in the rhizosphere in a temperate grassland,
J. Ecol., 105, 1750–1765, https://doi.org/10.1111/1365-2745.12772, 2017.
Castañeda-Gómez, L., Walker, J. K. M., Powell, J. R., Ellsworth, D.
S., Pendall, E., and Carrillo, Y.: Impacts of elevated carbon dioxide on
carbon gains and losses from soil and associated microbes in a Eucalyptus
woodland, Soil Biol. Biochem., 143, 107734,
https://doi.org/10.1016/j.soilbio.2020.107734, 2020.
Castañeda-Gómez, L., Powell, J. R., Ellsworth, D. S., Pendall, E.,
and Carrillo, Y.: The influence of roots on mycorrhizal fungi, saprotrophic
microbes and carbon dynamics in a low-phosphorus Eucalyptus forest under
elevated CO2, Funct. Ecol., 35, 2056–2071, 2021.
Crews, T. E., Kitayama, K., Fownes, J. H., Riley, R. H., Herbert, D. A.,
Mueller-Dombois, D., and Vitousek, P. M.: Changes in Soil Phosphorus
Fractions and Ecosystem Dynamics across a Long Chronosequence in Hawaii,
Ecology, 76, 1407–1424, https://doi.org/10.2307/1938144, 1995.
Crous, K. Y., Ósvaldsson, A., and Ellsworth, D. S.: Is phosphorus
limiting in a mature Eucalyptus woodland? Phosphorus fertilisation
stimulates stem growth, Plant Soil, 391, 293–305,
https://doi.org/10.1007/s11104-015-2426-4, 2015.
De Graaff, M.-A., Groenigen, K.-J., Six, J., Hungate, B., and Kessel, C.:
Interactions between plant growth and soil nutrient cycling under elevated
CO2: a meta-analysis, Glob. Change Biol., 12, 2077–2091,
https://doi.org/10.1111/j.1365-2486.2006.01240.x, 2006.
De Graaff, M.-A., Jastrow, J. D., Gillette, S., Johns, A., and Wullschleger, S.
D.: Differential priming of soil carbon driven by soil depth and root
impacts on carbon availability, Soil Biol. Biochem., 69, 147–156,
https://doi.org/10.1016/j.soilbio.2013.10.047, 2014.
Dijkstra, F., Carrillo, Y., Pendall, E., and Morgan, J.: Rhizosphere
priming: a nutrient perspective, Front. Microbiol., 4, 216,
https://doi.org/10.3389/fmicb.2013.00216, 2013.
Drake, J. E., Gallet-Budynek, A., Hofmockel, K. S., Bernhardt, E. S.,
Billings, S. A., Jackson, R. B., Johnsen, K. S., Lichter, J., McCarthy, H.
R., McCormack, M. L., Moore, D. J. P., Oren, R., Palmroth, S., Phillips, R.
P., Pippen, J. S., Pritchard, S. G., Treseder, K. K., Schlesinger, W. H.,
DeLucia, E. H., and Finzi, A. C.: Increases in the flux of carbon
belowground stimulate nitrogen uptake and sustain the long-term enhancement
of forest productivity under elevated CO2, Ecol. Lett., 14, 349–357,
https://doi.org/10.1111/j.1461-0248.2011.01593.x, 2011.
Drake, J. E., Macdonald, C. A., Tjoelker, M. G., Crous, K. Y., Gimeno, T.
E., Singh, B. K., Reich, P. B., Anderson, I. C., and Ellsworth, D. S.:
Short-term carbon cycling responses of a mature eucalypt woodland to gradual
stepwise enrichment of atmospheric CO2 concentration, Glob. Change Biol.,
22, 380–390, https://doi.org/10.1111/gcb.13109, 2016.
Ellsworth, D. S., Anderson, I. C., Crous, K. Y., Cooke, J., Drake, J. E.,
Gherlenda, A. N., Gimeno, T. E., Macdonald, C. A., Medlyn, B. E., Powell, J.
R., Tjoelker, M. G., and Reich, P. B.: Elevated CO2 does not increase
eucalypt forest productivity on a low-phosphorus soil, Nat. Clim. Change, 7, 279–282, https://doi.org/10.1038/nclimate3235, 2017.
Filion, M., Dutilleul, P., and Potvin, C.: Optimum experimental design for
Free-Air Carbon dioxide Enrichment (FACE) studies, Glob. Change Biol., 6,
843–854, https://doi.org/10.1046/j.1365-2486.2000.00353.x, 2000.
Finzi, A. C., Abramoff, R. Z., Spiller, K. S., Brzostek, E. R., Darby, B.
A., Kramer, M. A., and Phillips, R. P.: Rhizosphere processes are
quantitatively important components of terrestrial carbon and nutrient
cycles, Glob. Change Biol., 21, 2082–2094,
https://doi.org/10.1111/gcb.12816, 2015.
Fisher, J. B., Badgley, G., and Blyth, E.: Global nutrient limitation in
terrestrial vegetation, Global Biogeochem. Cy., 26, GB3007,
https://doi.org/10.1029/2011GB004252, 2012.
Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., and Rumpel, C.:
Stability of organic carbon in deep soil layers controlled by fresh carbon
supply, Nature, 450, 277–280, https://doi.org/10.1038/nature06275, 2007.
Fox, J. and Weisberg, S.: An R Companion to Applied Regression, 3rd Edn.,
Sage, Thousand Oaks CA, SAGE Publishing,
ISBN: 9781544336466, 2019.
Gérard, F.: Clay minerals, iron/aluminum oxides, and their contribution
to phosphate sorption in soils – A myth revisited, Geoderma, 262,
213–226, https://doi.org/10.1016/j.geoderma.2015.08.036, 2016.
Gilroy, S. and Jones, D. L.: Through form to function: root hair development
and nutrient uptake, Trend. Plant Sci., 5, 56–60,
https://doi.org/10.1016/S1360-1385(99)01551-4, 2000.
Hasegawa, S., Macdonald, C. A., and Power, S. A.: Elevated carbon dioxide
increases soil nitrogen and phosphorus availability in a phosphorus-limited
Eucalyptus woodland, Glob. Change Biol., 22, 1628–1643,
https://doi.org/10.1111/gcb.13147, 2016.
Hasegawa, S., Piñeiro, J., Ochoa-Hueso, R., Haigh, A. M., Rymer, P. D.,
Barnett, K. L., and Power, S. A.: Elevated CO2 concentrations reduce C4
cover and decrease diversity of understorey plant community in a Eucalyptus
woodland, J. Ecol., 106, 1483–1494,
https://doi.org/10.1111/1365-2745.12943, 2018.
Hobley, E. U. and Wilson, B.: The depth distribution of organic carbon in
the soils of eastern Australia, Ecosphere, 7, 01214,
https://doi.org/10.1002/ecs2.1214, 2016.
Hothorn, T., Bretz, F., and Westfall, P.: Simultaneous Inference in General
Parametric Models, Biometrical J., 50, 346–363, 2008.
Iversen, C. M.: Digging deeper: fine-root responses to rising atmospheric
CO2 concentration in forested ecosystems, New Phytol., 186, 346–357,
https://doi.org/10.1111/j.1469-8137.2009.03122.x, 2010.
Iversen, C. M., Ledford, J., and Norby, R. J.: CO2 enrichment increases
carbon and nitrogen input from fine roots in a deciduous forest, New
Phytol., 179, 837–847,
https://doi.org/10.1111/j.1469-8137.2008.02516.x, 2008.
Iversen, C. M., Hooker, T. D., Classen, A. T., and Norby, R. J.: Net
mineralization of N at deeper soil depths as a potential mechanism for
sustained forest production under elevated CO2, Glob. Change Biol., 17,
1130–1139, https://doi.org/10.1111/j.1365-2486.2010.02240.x, 2011.
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E.,
and Schulze, E. D.: A global analysis of root distributions for terrestrial
biomes, Oecologia, 108, 389–411, https://doi.org/10.1007/BF00333714, 1996.
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C.,
Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda-Gómez, L.,
Collins, L., Crous, K. Y., Kauwe, M. G., Santos, B. M., Emmerson, K. M.,
Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson, S. N.,
Kännaste, A., Macdonald, C. A., Mahmud, K., Moore, B. D., Nazaries, L.,
Neilson, E. H. J., Nielsen, U. N., Niinemets, Ü., Noh, N. J.,
Ochoa-Hueso, R., Pathare, V. S., Pendall, E., Pihlblad, J., Piñeiro, J.,
Powell, J. R., Power, S. A., Reich, P. B., Renchon, A. A., Riegler, M.,
Rinnan, R., and Rymer: The fate of carbon in a mature forest under carbon
dioxide enrichment, Nature, 580, 227–231,
https://doi.org/10.1038/s41586-020-2128-9, 2020.
Jilling, A., Keiluweit, M., Contosta, A. R., Frey, S., Schimel, J.,
Schnecker, J., Smith, R. G., Tiemann, L., and Grandy, A. S.: Minerals in the
rhizosphere: overlooked mediators of soil nitrogen availability to plants
and microbes, Biogeochemistry, 139, 103–122,
https://doi.org/10.1007/s10533-018-0459-5, 2018.
Jobbágy, E. G. and Jackson, R. B.: The distribution of soil nutrients
with depth: Global patterns and the imprint of plants, Biogeochemistry, 53,
51–77, https://doi.org/10.1023/a:1010760720215, 2001.
Jones, D. L. and Darrah, P. R.: Role of root derived organic acids in the
mobilization of nutrients from the rhizosphere, Plant Soil, 166,
247–257, https://doi.org/10.1007/bf00008338, 1994.
Kirkham, D. and Bartholomew, W. V.: Equations for Following Nutrient
Transformations in Soil, Utilizing Tracer Data: II, Soil Sci. Soc.
Am. J., 19, 189–192,
https://doi.org/10.2136/sssaj1955.03615995001900020020x, 1955.
Kuzyakov, Y.: Priming effects: Interactions between living and dead organic
matter, Soil Biol. Biochem., 42, 1363–1371,
https://doi.org/10.1016/j.soilbio.2010.04.003, 2010.
Kuzyakov, Y. and Blagodatskaya, E.: Microbial hotspots and hot moments in
soil: Concept & review, Soil Biol. Biochem., 83, 184–199,
https://doi.org/10.1016/j.soilbio.2015.01.025, 2015.
Kuzyakov, Y. and Cheng, W.: Photosynthesis controls of rhizosphere
respiration and organic matter decomposition, Soil Biol. Biochem.,
33, 1915–1925, https://doi.org/10.1016/S0038-0717(01)00117-1, 2001.
Kuzyakov, Y., Friedel, J. K., and Stahr, K.: Review of mechanisms and
quantification of priming effects, Soil Biol. Biochem., 32,
1485–1498, https://doi.org/10.1016/S0038-0717(00)00084-5, 2000.
Kuzyakov, Y., Horwath, W. R., Dorodnikov, M., and Blagodatskaya, E.: Review
and synthesis of the effects of elevated atmospheric CO2 on soil processes:
No changes in pools, but increased fluxes and accelerated cycles, Soil
Biol. Biochem., 128, 66–78,
https://doi.org/10.1016/j.soilbio.2018.10.005, 2019.
Laclau, J.-P., Silva, E., Rodrigues Lambais, G., Bernoux, M., le Maire, G.,
Stape, J. L., Bouillet, J.-P., Gonçalves, J. leonardo, Jourdan, C., and
Nouvellon, Y.: Dynamics of soil exploration by fine roots down to a depth of
10 m throughout the entire rotation in Eucalyptus grandis plantations,
Front. Plant Sci., 4, 243, https://doi.org/10.3389/fpls.2013.00243, 2013.
Lambers, H., Raven, J. A., Shaver, G. R., and Smith, S. E.: Plant
nutrient-acquisition strategies change with soil age, Trends Ecol.
Evol., 23, 95–103, https://doi.org/10.1016/j.tree.2007.10.008, 2008.
Lane, J. M., Delavaux, C. S., Van Koppen, L., Lu, P., Cade-Menun, B. J.,
Tremblay, J., and Bainard, L. D.: Soil sample storage conditions impact
extracellular enzyme activity and bacterial amplicon diversity metrics in a
semi-arid ecosystem, Soil Biol. Biochem., 175, 108858,
https://doi.org/10.1016/j.soilbio.2022.108858, 2022.
Li, C., Zhao, L., Sun, P., Zhao, F., Kang, D., Yang, G., Han, X., Feng, Y.,
and Ren, G.: Deep Soil C, N, and P Stocks and Stoichiometry in Response to
Land Use Patterns in the Loess Hilly Region of China, PLoS ONE, 11,
e0159075, https://doi.org/10.1371/journal.pone.0159075, 2016.
Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A. C., Hartwig, U.,
Hungate, B., McMurtrie, R. E., Oren, R., Parton, W. J., Pataki, D. E., Shaw,
M. R., Zak, D. R., and Field, C. B.: Progressive nitrogen limitation of
ecosystem responses to rising atmospheric carbon dioxide, Bioscience, 54,
731–739, https://doi.org/10.1641/0006-3568(2004)054, 2004.
McGill, W. B. and Cole, C. V.: Comparative aspects of cycling of organic C,
N, S and P through soil organic matter, Geoderma, 26, 267–286,
https://doi.org/10.1016/0016-7061(81)90024-0, 1981.
Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S., and Richter, A.:
Stoichiometric imbalances between terrestrial decomposer communities and
their resources: mechanisms and implications of microbial adaptations to
their resources, Front. Microbiol., 5, 22,
https://doi.org/10.3389/fmicb.2014.00022, 2014.
Norby, R. J. and Zak, D. R.: Ecological Lessons from Free-Air CO2 Enrichment
(FACE) Experiments, Ann. Rev. Ecol. Evol. Syst.,
42, 181–203, https://doi.org/10.1146/annurev-ecolsys-102209-144647, 2011.
Ochoa-Hueso, R., Hughes, J., Delgado-Baquerizo, M., Drake, J. E., Tjoelker,
M. G., Piñeiro, J., and Power, S. A.: Rhizosphere-driven increase in
nitrogen and phosphorus availability under elevated atmospheric CO2 in a
mature Eucalyptus woodland, Plant Soil, 1–13,
https://doi.org/10.1007/s11104-017-3212-2, 2017.
Ochoa-Hueso, R., Piñeiro, J., Hasegawa, S., Illanas, S., Miranda, H.,
Reverter, M., and Power, S. A.: Spatial homogenization of understorey plant
communities under eCO2 in a mature Eucalyptus woodland, J. Ecol.,
109, 1386–1395, https://doi.org/10.1111/1365-2745.13564, 2021.
Ohno, T. and Zibilske, L. M.: Determination of Low Concentrations of
Phosphorus in Soil Extracts Using Malachite Green, Soil Sci. Soc.
Am. J., 55, 892–895,
https://doi.org/10.2136/sssaj1991.03615995005500030046x, 1991.
Olander, L. P. and Vitousek, P. M.: Regulation of soil phosphatase and
chitinase activityby N and P availability, Biogeochemistry, 49, 175–191,
https://doi.org/10.1023/A:1006316117817, 2000.
Pathare, V. S., Crous, K. Y., Cooke, J., Creek, D., Ghannoum, O., and
Ellsworth, D. S.: Water availability affects seasonal CO2-induced
photosynthetic enhancement in herbaceous species in a periodically dry
woodland, Glob. Change Biol., 23, 5164–5178, https://doi.org/10.1111/gcb.13778, 2017.
Phillips, R. P., Finzi, A. C., and Bernhardt, E. S.: Enhanced root exudation
induces microbial feedbacks to N cycling in a pine forest under long-term
CO2 fumigation, Ecol. Lett., 14, 187–194,
https://doi.org/10.1111/j.1461-0248.2010.01570.x, 2011.
Piñeiro, J., Ochoa-Hueso, R., Drake, J. E., Tjoelker, M. G., and Power,
S. A.: Water availability drives fine root dynamics in a Eucalyptus woodland
under elevated atmospheric CO2 concentration, Funct. Ecol., 34, 2389–2402,
https://doi.org/10.1111/1365-2435.13660, 2020.
Putz, M., Schleusner, P., Rütting, T., and Hallin, S.: Relative
abundance of denitrifying and DNRA bacteria and their activity determine
nitrogen retention or loss in agricultural soil, Soil Biol.
Biochem., 123, 97–104, https://doi.org/10.1016/j.soilbio.2018.05.006,
2018.
Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R.,
Berhe, A. A., Blankinship, J. C., Crow, S. E., Druhan, J. L., Hicks Pries,
C. E., Marin-Spiotta, E., Plante, A. F., Schädel, C., Schimel, J. P.,
Sierra, C. A., Thompson, A., and Wagai, R.: Beyond clay: towards an improved
set of variables for predicting soil organic matter content,
Biogeochemistry, 137, 297–306, https://doi.org/10.1007/s10533-018-0424-3,
2018.
Rayment, G. E. and Lyons, D. J.: Soil Chemical Methods: Australasia, CSIRO
Publishing,
ISBN: 9780643101364, 2011.
Ross, G. M., Horn, S., Macdonald, C. A., Powell, J. R., Reynolds, J. K.,
Ryan, M. M., Cook, J. M., and Nielsen, U. N.: Metabarcoding mites: Three
years of elevated CO2 has no effect on oribatid assemblages in a Eucalyptus
woodland, Pedobiologia, 81–82, 150667,
https://doi.org/10.1016/j.pedobi.2020.150667, 2020.
Rumpel, C. and Kögel-Knabner, I.: Deep soil organic matter – a key but
poorly understood component of terrestrial C cycle, Plant Soil, 338,
143–158, https://doi.org/10.1007/s11104-010-0391-5, 2011.
Rütting, T., Clough, T. J., MÜLler, C., Lieffering, M., and Newton,
P. C. D.: Ten years of elevated atmospheric carbon dioxide alters soil
nitrogen transformations in a sheep-grazed pasture, Glob. Change Biol.,
16, 2530–2542, https://doi.org/10.1111/j.1365-2486.2009.02089.x, 2010.
Rütting, T., Huygens, D., Staelens, J., Müller, C., and Boeckx, P.:
Advances in 15N-tracing experiments: new labelling and data analysis
approaches, Biochem. Soc. Trans., 39, 279–283,
https://doi.org/10.1042/bst0390279, 2011.
Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing CO2 on
the terrestrial carbon cycle, P. Natl. Acad.
Sci. USA, 112, 436–441, https://doi.org/10.1073/pnas.1407302112, 2015.
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S.
D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E.,
Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S.,
Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., Zak,
D. R., and Zeglin, L. H.: Stoichiometry of soil enzyme activity at global
scale, Ecol. Lett., 11, 1252–1264,
https://doi.org/10.1111/j.1461-0248.2008.01245.x, 2008.
Sinsabaugh, R. L., Hill, B. H., and Follstad Shah, J. J.: Ecoenzymatic
stoichiometry of microbial organic nutrient acquisition in soil and
sediment, Nature, 462, 795–798, https://doi.org/10.1038/nature08632, 2009.
Sistla, S. A. and Schimel, J. P.: Stoichiometric flexibility as a regulator
of carbon and nutrient cycling in terrestrial ecosystems under change, New
Phytol., 196, 68–78, https://doi.org/10.1111/j.1469-8137.2012.04234.x,
2012.
Spohn, M.: Element cycling as driven by stoichiometric homeostasis of soil
microorganisms, Basic Appl. Ecol., 17, 471–478,
https://doi.org/10.1016/j.baae.2016.05.003, 2016.
Spohn, M. and Widdig, M.: Turnover of carbon and phosphorus in the microbial
biomass depending on phosphorus availability, Soil Biol. Biochem.,
113, 53–59, https://doi.org/10.1016/j.soilbio.2017.05.017, 2017.
Stange, F. C., Spott, O., Apelt, B., and Russow, R. W. B.: Automated and
rapid online determination of 15N abundance and concentration of ammonium,
nitrite, or nitrate in aqueous samples by the SPINMAS technique, Isotop.
Environ. Health Stud., 43, 227–236,
https://doi.org/10.1080/10256010701550658, 2007.
Terrer, C., Vicca, S., Stocker, B. D., Hungate, B. A., Phillips, R. P.,
Reich, P. B., Finzi, A. C., and Prentice, I. C.: Ecosystem responses to
elevated CO2 governed by plant–soil interactions and the cost of nitrogen
acquisition, New Phytol., 217, 507–522,
https://doi.org/10.1111/nph.14872, 2018.
Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C.,
Vicca, S., Fisher, J. B., Reich, P. B., Stocker, B. D., Hungate, B. A.,
Peñuelas, J., McCallum, I., Soudzilovskaia, N. A., Cernusak, L. A.,
Talhelm, A. F., Sundert, K., Piao, S., Newton, P. C. D., Hovenden, M. J.,
Blumenthal, D. M., Liu, Y. Y., Müller, C., Winter, K., Field, C. B.,
Viechtbauer, W., Lissa, C. J., Hoosbeek, M. R., Watanabe, M., Koike, T.,
Leshyk, V. O., Polley, H. W., and Franklin, O.: Nitrogen and phosphorus
constrain the CO2 fertilization of global plant biomass, Nat. Clim.
Change, 9, 684–689, https://doi.org/10.1038/s41558-019-0545-2, 2019.
Vance, E. D., Brookes, P. C., and Jenkinson, D. S.: An extraction method for
measuring soil microbial biomass C, Soil Biol. Biochem., 19,
703–707, https://doi.org/10.1016/0038-0717(87)90052-6, 1987.
van Groenigen, K. J., Osenberg, C. W., Terrer, C., Carrillo, Y., Dijkstra,
F. A., Heath, J., Nie, M., Pendall, E., Phillips, R. P., and Hungate, B. A.:
Faster turnover of new soil carbon inputs under increased atmospheric CO2,
Glob. Chang Biol., 23, 4420–4429, https://doi.org/10.1111/gcb.13752, 2017.
Walker, T. W. and Syers, J. K.: The fate of phosphorus during pedogenesis,
Geoderma, 15, 1–19, https://doi.org/10.1016/0016-7061(76)90066-5, 1976.
Wang, Z. and Wang, C.: Magnitude and mechanisms of nitrogen-mediated
responses of tree biomass production to elevated CO2: A global synthesis,
J. Ecol., 109, 4038–4055,
https://doi.org/10.1111/1365-2745.13774, 2021.
Zhao, F., Zhang, L., Sun, J., Ren, C., HAN, X., Yang, G., Pang, G., Bai, H.,
and Wang, J.: Effect of Soil C, N and P Stoichiometry on Soil Organic C
Fractions After Afforestation, Pedosphere, 27, 705–713,
https://doi.org/10.1016/S1002-0160(17)60479-X, 2017.
Zhu, B., Gutknecht, J. L. M., Herman, D. J., Keck, D. C., Firestone, M. K.,
and Cheng, W.: Rhizosphere priming effects on soil carbon and nitrogen
mineralization, Soil Biol. Biochem., 76, 183–192,
https://doi.org/10.1016/j.soilbio.2014.04.033, 2014.
Co-editor-in-chief
This paper advances our understanding of forest responses to elevated CO2 by considering implications for nutrient availability across the soil profile and the particular role of nutrient recycling in the rhizosphere versus soil organic matter mineralization.
This paper advances our understanding of forest responses to elevated CO2 by considering...
Short summary
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited by soil nutrients. This study explores how mature trees stimulate soil availability of nitrogen and phosphorus with free-air carbon dioxide enrichment after 5 years of fumigation. We found that both nutrient availability and processes feeding available pools increased in the rhizosphere, and phosphorus increased at depth. This appears to not be by decomposition but by faster recycling of nutrients.
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited...
Altmetrics
Final-revised paper
Preprint