Articles | Volume 21, issue 6
https://doi.org/10.5194/bg-21-1477-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-1477-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Distinct oxygenation modes of the Gulf of Oman over the past 43 000 years – a multi-proxy approach
Nicole Burdanowitz
CORRESPONDING AUTHOR
Institute for Geology, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Gerhard Schmiedl
Institute for Geology, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Birgit Gaye
Institute for Geology, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Philipp M. Munz
Department of Geosciences, Eberhard Karls Universität Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
Hartmut Schulz
Department of Geosciences, Eberhard Karls Universität Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
Related authors
Jan Maier, Nicole Burdanowitz, Gerhard Schmiedl, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2024-1072, https://doi.org/10.5194/egusphere-2024-1072, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We reconstruct sea surface temperatures (SSTs) of the past 43 ka in the Gulf of Oman. We find SST variations of up to seven degree with lower SSTs during Heinrich Events (HE), especially HE4, and higher SSTs during Dansgaard-Oeschger Events. Our record shows no profound cooling during the Last Glacial Maximum but abrupt variations during the Holocene. We surmise that SSTs variations are influenced by the southwest (northeast) Monsoon during warmer (colder) periods.
Medhavi Pandey, Haimanti Biswas, Daniel Birgel, Nicole Burdanowitz, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2024-845, https://doi.org/10.5194/egusphere-2024-845, 2024
Short summary
Short summary
We analyzed the sea surface temperature (SST) proxy and plankton biomarkers in sediments, that accumulate sinking materials signatures from surface waters in the Central Arabian Sea (21°–11° N, 64° E), a tropical basin impacted by monsoon. We noticed a north-south SST gradient and the biological proxies showed more organic matter from larger algae in the north. Smaller algae and zooplankton were high in the south. These trends were related to ocean-atmospheric processes and oxygen availability.
Nicole Burdanowitz, Tim Rixen, Birgit Gaye, and Kay-Christian Emeis
Clim. Past, 17, 1735–1749, https://doi.org/10.5194/cp-17-1735-2021, https://doi.org/10.5194/cp-17-1735-2021, 2021
Short summary
Short summary
To study the interaction of the westerlies and Indian summer monsoon (ISM) during the Holocene, we used paleoenvironmental reconstructions using a sediment core from the northeast Arabian Sea. We found a climatic transition period between 4.6 and 3 ka BP during which the ISM shifted southwards and the influence of Westerlies became prominent. Our data indicate a stronger influence of agriculture activities and enhanced soil erosion, adding to Bond event impact after this transition period.
Birgit Gaye, Anna Böll, Joachim Segschneider, Nicole Burdanowitz, Kay-Christian Emeis, Venkitasubramani Ramaswamy, Niko Lahajnar, Andreas Lückge, and Tim Rixen
Biogeosciences, 15, 507–527, https://doi.org/10.5194/bg-15-507-2018, https://doi.org/10.5194/bg-15-507-2018, 2018
Short summary
Short summary
The Arabian Sea has one of the most severe oxygen minima of the world's oceans between about 100 and 1200 m of water depth and is therefore a major oceanic nitrogen sink. Stable nitrogen isotopic ratios in sediments record changes in oxygen concentrations and were studied for the last 25 kyr. Oxygen concentrations dropped at the end of the last glacial and became further reduced during the Holocene, probably due to the increasing age of the low-oxygen water mass.
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024, https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Short summary
We use a physical and biogeochemical ocean model of the Mediterranean Sea to obtain a picture of the Last Glacial Maximum. The shallowing of the Strait of Gibraltar leads to a shallower pycnocline and more efficient nutrient export. Consistent with the sediment data, an increase in organic matter deposition is simulated, although this is based on lower biological production. This unexpected but plausible result resolves the apparent contradiction between planktonic and benthic proxy data.
Jan Maier, Nicole Burdanowitz, Gerhard Schmiedl, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2024-1072, https://doi.org/10.5194/egusphere-2024-1072, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We reconstruct sea surface temperatures (SSTs) of the past 43 ka in the Gulf of Oman. We find SST variations of up to seven degree with lower SSTs during Heinrich Events (HE), especially HE4, and higher SSTs during Dansgaard-Oeschger Events. Our record shows no profound cooling during the Last Glacial Maximum but abrupt variations during the Holocene. We surmise that SSTs variations are influenced by the southwest (northeast) Monsoon during warmer (colder) periods.
Medhavi Pandey, Haimanti Biswas, Daniel Birgel, Nicole Burdanowitz, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2024-845, https://doi.org/10.5194/egusphere-2024-845, 2024
Short summary
Short summary
We analyzed the sea surface temperature (SST) proxy and plankton biomarkers in sediments, that accumulate sinking materials signatures from surface waters in the Central Arabian Sea (21°–11° N, 64° E), a tropical basin impacted by monsoon. We noticed a north-south SST gradient and the biological proxies showed more organic matter from larger algae in the north. Smaller algae and zooplankton were high in the south. These trends were related to ocean-atmospheric processes and oxygen availability.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Birgit Gaye, Niko Lahajnar, Natalie Harms, Sophie Anna Luise Paul, Tim Rixen, and Kay-Christian Emeis
Biogeosciences, 19, 807–830, https://doi.org/10.5194/bg-19-807-2022, https://doi.org/10.5194/bg-19-807-2022, 2022
Short summary
Short summary
Amino acids were analyzed in a large number of samples of particulate and dissolved organic matter from coastal regions and the open ocean. A statistical analysis produced two new biogeochemical indicators. An indicator of sinking particle and sediment degradation (SDI) traces the degradation of organic matter from the surface waters into the sediments. A second indicator shows the residence time of suspended matter in the ocean (RTI).
Nicole Burdanowitz, Tim Rixen, Birgit Gaye, and Kay-Christian Emeis
Clim. Past, 17, 1735–1749, https://doi.org/10.5194/cp-17-1735-2021, https://doi.org/10.5194/cp-17-1735-2021, 2021
Short summary
Short summary
To study the interaction of the westerlies and Indian summer monsoon (ISM) during the Holocene, we used paleoenvironmental reconstructions using a sediment core from the northeast Arabian Sea. We found a climatic transition period between 4.6 and 3 ka BP during which the ISM shifted southwards and the influence of Westerlies became prominent. Our data indicate a stronger influence of agriculture activities and enhanced soil erosion, adding to Bond event impact after this transition period.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Miguel Ángel Fuertes, Hartmut Schulz, Yann Marcon, Nele Manon Vollmar, José-Abel Flores, and Frank Lamy
Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019, https://doi.org/10.5194/bg-16-3679-2019, 2019
Short summary
Short summary
Open ocean phytoplankton include coccolithophore algae, a key element in carbon cycle regulation with important feedbacks to the climate system. We document latitudinal variability in both coccolithophore assemblage and the mass variation in one particular species, Emiliania huxleyi, for a transect across the Drake Passage (in the Southern Ocean). Coccolithophore abundance, diversity and maximum depth habitat decrease southwards, coinciding with changes in the predominant E. huxleyi morphotypes.
Natalie C. Harms, Niko Lahajnar, Birgit Gaye, Tim Rixen, Kirstin Dähnke, Markus Ankele, Ulrich Schwarz-Schampera, and Kay-Christian Emeis
Biogeosciences, 16, 2715–2732, https://doi.org/10.5194/bg-16-2715-2019, https://doi.org/10.5194/bg-16-2715-2019, 2019
Short summary
Short summary
The Indian Ocean subtropical gyre is a large oligotrophic area that is likely to adjust to continued warming by increasing stratification, reduced nutrient supply and decreasing biological production. In this study, we investigated concentrations of nutrients and stable isotopes of nitrate. We determine the lateral influence of water masses entering the gyre from the northern Indian Ocean and from the Southern Ocean and quantify the input of nitrogen by N2 fixation into the surface layer.
Tim Rixen, Birgit Gaye, Kay-Christian Emeis, and Venkitasubramani Ramaswamy
Biogeosciences, 16, 485–503, https://doi.org/10.5194/bg-16-485-2019, https://doi.org/10.5194/bg-16-485-2019, 2019
Short summary
Short summary
Data obtained from sediment trap experiments in the Indian Ocean indicate that lithogenic matter ballast increases organic carbon flux rates on average by 45 % and by up to 62 % at trap locations in the river-influenced regions of the Indian Ocean. Such a strong lithogenic matter ballast effect implies that land use changes and the associated enhanced transport of lithogenic matter may significantly affect the CO2 uptake of the organic carbon pump in the receiving ocean areas.
Birgit Gaye, Anna Böll, Joachim Segschneider, Nicole Burdanowitz, Kay-Christian Emeis, Venkitasubramani Ramaswamy, Niko Lahajnar, Andreas Lückge, and Tim Rixen
Biogeosciences, 15, 507–527, https://doi.org/10.5194/bg-15-507-2018, https://doi.org/10.5194/bg-15-507-2018, 2018
Short summary
Short summary
The Arabian Sea has one of the most severe oxygen minima of the world's oceans between about 100 and 1200 m of water depth and is therefore a major oceanic nitrogen sink. Stable nitrogen isotopic ratios in sediments record changes in oxygen concentrations and were studied for the last 25 kyr. Oxygen concentrations dropped at the end of the last glacial and became further reduced during the Holocene, probably due to the increasing age of the low-oxygen water mass.
Sabine Prader, Ulrich Kotthoff, Francine M.G. McCarthy, Gerhard Schmiedl, Timme H. Donders, and David R. Greenwood
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-511, https://doi.org/10.5194/bg-2017-511, 2018
Manuscript not accepted for further review
Short summary
Short summary
The observed palaeovegetation movement signals probably correspond to several glacial phases of the middle Oligocene and Early Miocene and might be best reflected within peaks of the conifer forests. Glacial phases exposed shallow shelf areas and allowed the spreading of substrate-depending forest formations. Temperature estimates revealing relative stable humid warm temperate conditions. A Sporadic occurred extinct taxon widens the understanding of its distribution pattern during the Cenozoic.
Dorothea Bunzel, Gerhard Schmiedl, Sebastian Lindhorst, Andreas Mackensen, Jesús Reolid, Sarah Romahn, and Christian Betzler
Clim. Past, 13, 1791–1813, https://doi.org/10.5194/cp-13-1791-2017, https://doi.org/10.5194/cp-13-1791-2017, 2017
Short summary
Short summary
We investigated a sediment core from the Maldives to unravel the interaction between equatorial climate and ocean variability of the past 200 000 years. The sedimentological, geochemical and foraminiferal data records reveal enhanced dust, which was transported by intensified winter monsoon winds during glacial conditions. Precessional fluctuations of bottom water oxygen suggests an expansion of the Arabian Sea OMZ and a varying inflow of Antarctic Intermediate Water.
Valerie Menke, Werner Ehrmann, Yvonne Milker, Swaantje Brzelinski, Jürgen Möbius, Uwe Mikolajewicz, Bernd Zolitschka, Karin Zonneveld, Kay Christian Emeis, and Gerhard Schmiedl
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-139, https://doi.org/10.5194/cp-2017-139, 2017
Preprint withdrawn
Short summary
Short summary
This study examines changes in the marine ecosystem during the past 1300 years in the Gulf of Taranto (Italy) to unravel natural and anthropogenic forcing. Our data suggest, that processes at the sea floor are linked to the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation. During the past 200 years, the effects of rising northern hemisphere temperature and increasing anthropogenic activity enhanced nutrient and organic matter fluxes leading to more eutrophic conditions.
Tim Rixen, Birgit Gaye, Kay-Christian Emeis, and Venkitasubramani Ramaswamy
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-317, https://doi.org/10.5194/bg-2017-317, 2017
Manuscript not accepted for further review
Short summary
Short summary
Sediment trap experiments showed that in the river-influenced regions of the Indian Ocean lithogenic matter supplied from land controls the organic carbon export into the deep sea via its ballast effect in sinking particles. Carbonate produced by plankton is the main ballast material in the open ocean. The ballast effect increases the CO2 uptake of the organic carbon pump by enhancing the amount of nutrients used to bind CO2 and by favouring the sedimentation of organic matter.
Julie Lattaud, Denise Dorhout, Hartmut Schulz, Isla S. Castañeda, Enno Schefuß, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 13, 1049–1061, https://doi.org/10.5194/cp-13-1049-2017, https://doi.org/10.5194/cp-13-1049-2017, 2017
Short summary
Short summary
The study of past sedimentary records from coastal margins allows us to reconstruct variations in terrestrial input into the marine realm and to gain insight into continental climatic variability. The study of two sediment cores close to river mouths allowed us to show the potential of long-chain diols as riverine input proxy.
Philipp M. Munz, Stephan Steinke, Anna Böll, Andreas Lückge, Jeroen Groeneveld, Michal Kucera, and Hartmut Schulz
Clim. Past, 13, 491–509, https://doi.org/10.5194/cp-13-491-2017, https://doi.org/10.5194/cp-13-491-2017, 2017
Short summary
Short summary
We present the results of several independent proxies of summer SST and upwelling SST from the Oman margin indicative of monsoon strength during the early Holocene. In combination with indices of carbonate preservation and bottom water redox conditions, we demonstrate that a persistent solar influence was modulating summer monsoon intensity. Furthermore, bottom water conditions are linked to atmospheric forcing, rather than changes of intermediate water masses.
Marc Theodor, Gerhard Schmiedl, Frans Jorissen, and Andreas Mackensen
Biogeosciences, 13, 6385–6404, https://doi.org/10.5194/bg-13-6385-2016, https://doi.org/10.5194/bg-13-6385-2016, 2016
Werner Ehrmann, Gerhard Schmiedl, Martin Seidel, Stefan Krüger, and Hartmut Schulz
Clim. Past, 12, 713–727, https://doi.org/10.5194/cp-12-713-2016, https://doi.org/10.5194/cp-12-713-2016, 2016
T. Rixen, A. Baum, B. Gaye, and B. Nagel
Biogeosciences, 11, 5733–5747, https://doi.org/10.5194/bg-11-5733-2014, https://doi.org/10.5194/bg-11-5733-2014, 2014
H. Schulz and U. von Rad
Biogeosciences, 11, 3107–3120, https://doi.org/10.5194/bg-11-3107-2014, https://doi.org/10.5194/bg-11-3107-2014, 2014
Y. Milker, M. Wilken, J. Schumann, D. Sakuna, P. Feldens, K. Schwarzer, and G. Schmiedl
Nat. Hazards Earth Syst. Sci., 13, 3113–3128, https://doi.org/10.5194/nhess-13-3113-2013, https://doi.org/10.5194/nhess-13-3113-2013, 2013
B. Gaye, B. Nagel, K. Dähnke, T. Rixen, N. Lahajnar, and K.-C. Emeis
Biogeosciences, 10, 7689–7702, https://doi.org/10.5194/bg-10-7689-2013, https://doi.org/10.5194/bg-10-7689-2013, 2013
Related subject area
Biogeochemistry: Sediment
The fate of fixed nitrogen in Santa Barbara Basin sediments during seasonal anoxia
How is particulate organic carbon transported through the river-fed Congo Submarine Canyon to the deep-sea?
Potential impacts of cable bacteria activity on hard-shelled benthic foraminifera: implications for their interpretation as bioindicators or paleoproxies
Seafloor sediment characterization to improve estimate of organic carbon standing stocks in continental shelves
Evidence of cryptic methane cycling and non-methanogenic methylamine consumption in the sulfate-reducing zone of sediment in the Santa Barbara Basin, California
Assessing global-scale organic matter reactivity patterns in marine sediments using a lognormal reactive continuum model
Deposit-feeding of Nonionellina labradorica (foraminifera) from an Arctic methane seep site and possible association with a methanotroph
Benthic silicon cycling in the Arctic Barents Sea: a reaction–transport model study
Long-term incubations provide insight into the mechanisms of anaerobic oxidation of methane in methanogenic lake sediments
Ideas and perspectives: Sea-level change, anaerobic methane oxidation, and the glacial–interglacial phosphorus cycle
Estimation of the natural background of phosphate in a lowland river using tidal marsh sediment cores
Geochemical consequences of oxygen diffusion from the oceanic crust into overlying sediments and its significance for biogeochemical cycles based on sediments of the northeast Pacific
Carbon sources of benthic fauna in temperate lakes across multiple trophic states
Deep-water inflow event increases sedimentary phosphorus release on a multi-year scale
Bioturbation has a limited effect on phosphorus burial in salt marsh sediments
Biogeochemical impact of cable bacteria on coastal Black Sea sediment
Organic carbon characteristics in ice-rich permafrost in alas and Yedoma deposits, central Yakutia, Siberia
The control of hydrogen sulfide on benthic iron and cadmium fluxes in the oxygen minimum zone off Peru
Quantity and distribution of methane entrapped in sediments of calcareous, Alpine glacier forefields
Assessing the potential for non-turbulent methane escape from the East Siberian Arctic Shelf
Vertical transport of sediment-associated metals and cyanobacteria by ebullition in a stratified lake
Evidence of changes in sedimentation rate and sediment fabric in a low-oxygen setting: Santa Monica Basin, CA
Authigenic formation of Ca–Mg carbonates in the shallow alkaline Lake Neusiedl, Austria
Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia
Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis
Impact of small-scale disturbances on geochemical conditions, biogeochemical processes and element fluxes in surface sediments of the eastern Clarion–Clipperton Zone, Pacific Ocean
Acetate turnover and methanogenic pathways in Amazonian lake sediments
Benthic alkalinity and dissolved inorganic carbon fluxes in the Rhône River prodelta generated by decoupled aerobic and anaerobic processes
Small-scale heterogeneity of trace metals including rare earth elements and yttrium in deep-sea sediments and porewaters of the Peru Basin, southeastern equatorial Pacific
Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf of Castellammare, southwestern Mediterranean)
Identifying the core bacterial microbiome of hydrocarbon degradation and a shift of dominant methanogenesis pathways in the oil and aqueous phases of petroleum reservoirs of different temperatures from China
Effects of eutrophication on sedimentary organic carbon cycling in five temperate lakes
Evidence for microbial iron reduction in the methanic sediments of the oligotrophic southeastern Mediterranean continental shelf
Fracture-controlled fluid transport supports microbial methane-oxidizing communities at Vestnesa Ridge
Hydrothermal alteration of aragonitic biocarbonates: assessment of micro- and nanostructural dissolution–reprecipitation and constraints of diagenetic overprint from quantitative statistical grain-area analysis
Large variations in iron input to an oligotrophic Baltic Sea estuary: impact on sedimentary phosphorus burial
Vivianite formation in methane-rich deep-sea sediments from the South China Sea
Benthic archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone
Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste
Modelling biogeochemical processes in sediments from the north-western Adriatic Sea: response to enhanced particulate organic carbon fluxes
Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment
Reviews and syntheses: to the bottom of carbon processing at the seafloor
Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks
Does denitrification occur within porous carbonate sand grains?
Sediment phosphorus speciation and mobility under dynamic redox conditions
Pore water geochemistry along continental slopes north of the East Siberian Sea: inference of low methane concentrations
Experimental diagenesis: insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment
Manganese and iron reduction dominate organic carbon oxidation in surface sediments of the deep Ulleung Basin, East Sea
Carbonate chemistry in sediment porewaters of the Rhône River delta driven by early diagenesis (northwestern Mediterranean)
Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea
Xuefeng Peng, David J. Yousavich, Annie Bourbonnais, Frank Wenzhöfer, Felix Janssen, Tina Treude, and David L. Valentine
Biogeosciences, 21, 3041–3052, https://doi.org/10.5194/bg-21-3041-2024, https://doi.org/10.5194/bg-21-3041-2024, 2024
Short summary
Short summary
Biologically available (fixed) nitrogen (N) is a limiting nutrient for life in the ocean. Under low-oxygen conditions, fixed N is either removed via denitrification or retained via dissimilatory nitrate reduction to ammonia (DNRA). Using in situ incubations in the Santa Barbara Basin, which undergoes seasonal anoxia, we found that benthic denitrification was the dominant nitrate reduction process, while nitrate availability and organic carbon content control the relative importance of DNRA.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
EGUsphere, https://doi.org/10.5194/egusphere-2024-900, https://doi.org/10.5194/egusphere-2024-900, 2024
Short summary
Short summary
Climate projections require to quantify the exchange of carbon between the atmosphere, land and oceans, yet the land-to-ocean flux of carbon is difficult to measure. Here, we quantify the carbon flux between the second largest river on Earth and the ocean. Carbon in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km-long canyon at up to 5 km of water depth. The carbon flux induced by avalanches is at least ten times greater than that induced by tides.
Maxime Daviray, Emmanuelle Geslin, Nils Risgaard-Petersen, Vincent V. Scholz, Marie Fouet, and Edouard Metzger
Biogeosciences, 21, 911–928, https://doi.org/10.5194/bg-21-911-2024, https://doi.org/10.5194/bg-21-911-2024, 2024
Short summary
Short summary
Coastal marine sediments are subject to major acidification processes because of climate change and human activities, but these processes can also result from biotic activity. We studied the sediment acidifcation effect on benthic calcareous foraminifera in intertidal mudflats. The strong pH decrease in sediments probably caused by cable bacteria led to calcareous test dissolution of living and dead foraminifera, threatening the test preservation and their robustness as environmental proxies.
Catherine Brenan, Markus Kienast, Vittorio Maselli, Christopher Algar, Benjamin Misiuk, and Craig J. Brown
EGUsphere, https://doi.org/10.5194/egusphere-2024-5, https://doi.org/10.5194/egusphere-2024-5, 2024
Short summary
Short summary
Quantifying how much organic carbon is stored in seafloor sediments is key to assessing how human activities can accelerate the process of carbon storage at the seabed, an important consideration for climate change. This study uses seafloor sediment maps to model organic carbon content. Carbon estimates were six time higher when assuming the absence of detailed sediment maps, demonstrating that high-resolution seafloor mapping is critically important for improved estimates of organic carbon.
Sebastian J. E. Krause, Jiarui Liu, David J. Yousavich, DeMarcus Robinson, David W. Hoyt, Qianhui Qin, Frank Wenzhöfer, Felix Janssen, David L. Valentine, and Tina Treude
Biogeosciences, 20, 4377–4390, https://doi.org/10.5194/bg-20-4377-2023, https://doi.org/10.5194/bg-20-4377-2023, 2023
Short summary
Short summary
Methane is a potent greenhouse gas, and hence it is important to understand its sources and sinks in the environment. Here we present new data from organic-rich surface sediments below an oxygen minimum zone off the coast of California (Santa Barbara Basin) demonstrating the simultaneous microbial production and consumption of methane, which appears to be an important process preventing the build-up of methane in these sediments and the emission into the water column and atmosphere.
Sinan Xu, Bo Liu, Sandra Arndt, Sabine Kasten, and Zijun Wu
Biogeosciences, 20, 2251–2263, https://doi.org/10.5194/bg-20-2251-2023, https://doi.org/10.5194/bg-20-2251-2023, 2023
Short summary
Short summary
We use a reactive continuum model based on a lognormal distribution (l-RCM) to inversely determine model parameters μ and σ at 123 sites across the global ocean. Our results show organic matter (OM) reactivity is more than 3 orders of magnitude higher in shelf than in abyssal regions. In addition, OM reactivity is higher than predicted in some specific regions, yet the l-RCM can still capture OM reactivity features in these regions.
Christiane Schmidt, Emmanuelle Geslin, Joan M. Bernhard, Charlotte LeKieffre, Mette Marianne Svenning, Helene Roberge, Magali Schweizer, and Giuliana Panieri
Biogeosciences, 19, 3897–3909, https://doi.org/10.5194/bg-19-3897-2022, https://doi.org/10.5194/bg-19-3897-2022, 2022
Short summary
Short summary
This study is the first to show non-selective deposit feeding in the foraminifera Nonionella labradorica and the possible uptake of methanotrophic bacteria. We carried out a feeding experiment with a marine methanotroph to examine the ultrastructure of the cell and degradation vacuoles using transmission electron microscopy (TEM). The results revealed three putative methanotrophs at the outside of the cell/test, which could be taken up via non-targeted grazing in seeps or our experiment.
James P. J. Ward, Katharine R. Hendry, Sandra Arndt, Johan C. Faust, Felipe S. Freitas, Sian F. Henley, Jeffrey W. Krause, Christian März, Allyson C. Tessin, and Ruth L. Airs
Biogeosciences, 19, 3445–3467, https://doi.org/10.5194/bg-19-3445-2022, https://doi.org/10.5194/bg-19-3445-2022, 2022
Short summary
Short summary
The seafloor plays an important role in the cycling of silicon (Si), a key nutrient that promotes marine primary productivity. In our model study, we disentangle major controls on the seafloor Si cycle to better anticipate the impacts of continued warming and sea ice melt in the Barents Sea. We uncover a coupling of the iron redox and Si cycles, dissolution of lithogenic silicates, and authigenic clay formation, comprising a Si sink that could have implications for the Arctic Ocean Si budget.
Hanni Vigderovich, Werner Eckert, Michal Elul, Maxim Rubin-Blum, Marcus Elvert, and Orit Sivan
Biogeosciences, 19, 2313–2331, https://doi.org/10.5194/bg-19-2313-2022, https://doi.org/10.5194/bg-19-2313-2022, 2022
Short summary
Short summary
Anaerobic oxidation of methane (AOM) is one of the major processes limiting the release of the greenhouse gas methane from natural environments. Here we show that significant AOM exists in the methane zone of lake sediments in natural conditions and even after long-term (ca. 18 months) anaerobic slurry incubations with two stages. Methanogens were most likely responsible for oxidizing the methane, and humic substances and iron oxides are likely electron acceptors to support this oxidation.
Bjorn Sundby, Pierre Anschutz, Pascal Lecroart, and Alfonso Mucci
Biogeosciences, 19, 1421–1434, https://doi.org/10.5194/bg-19-1421-2022, https://doi.org/10.5194/bg-19-1421-2022, 2022
Short summary
Short summary
A glacial–interglacial methane-fuelled redistribution of reactive phosphorus between the oceanic and sedimentary phosphorus reservoirs can occur in the ocean when falling sea level lowers the pressure on the seafloor, destabilizes methane hydrates, and triggers the dissolution of P-bearing iron oxides. The mass of phosphate potentially mobilizable from the sediment is similar to the size of the current oceanic reservoir. Hence, this process may play a major role in the marine phosphorus cycle.
Florian Lauryssen, Philippe Crombé, Tom Maris, Elliot Van Maldegem, Marijn Van de Broek, Stijn Temmerman, and Erik Smolders
Biogeosciences, 19, 763–776, https://doi.org/10.5194/bg-19-763-2022, https://doi.org/10.5194/bg-19-763-2022, 2022
Short summary
Short summary
Surface waters in lowland regions have a poor surface water quality, mainly due to excess nutrients like phosphate. Therefore, we wanted to know the phosphate levels without humans, also called the pre-industrial background. Phosphate binds strongly to sediment particles, suspended in the river water. In this research we used sediments deposited by a river as an archive for surface water phosphate back to 1800 CE. Pre-industrial phosphate levels were estimated at one-third of the modern levels.
Gerard J. M. Versteegh, Andrea Koschinsky, Thomas Kuhn, Inken Preuss, and Sabine Kasten
Biogeosciences, 18, 4965–4984, https://doi.org/10.5194/bg-18-4965-2021, https://doi.org/10.5194/bg-18-4965-2021, 2021
Short summary
Short summary
Oxygen penetrates sediments not only from the ocean bottom waters but also from the basement. The impact of the latter is poorly understood. We show that this basement oxygen has a clear impact on the nitrogen cycle, the redox state, and the distribution of manganese, nickel cobalt and organic matter in the sediments. This is important for (1) global biogeochemical cycles, (2) understanding sedimentary life and (3) the interpretation of the sediment record to reconstruct the past.
Annika Fiskal, Eva Anthamatten, Longhui Deng, Xingguo Han, Lorenzo Lagostina, Anja Michel, Rong Zhu, Nathalie Dubois, Carsten J. Schubert, Stefano M. Bernasconi, and Mark A. Lever
Biogeosciences, 18, 4369–4388, https://doi.org/10.5194/bg-18-4369-2021, https://doi.org/10.5194/bg-18-4369-2021, 2021
Short summary
Short summary
Microbially produced methane can serve as a carbon source for freshwater macrofauna most likely through grazing on methane-oxidizing bacteria. This study investigates the contributions of different carbon sources to macrofaunal biomass. Our data suggest that the average contribution of methane-derived carbon is similar between different fauna but overall remains low. This is further supported by the low abundance of methane-cycling microorganisms.
Astrid Hylén, Sebastiaan J. van de Velde, Mikhail Kononets, Mingyue Luo, Elin Almroth-Rosell, and Per O. J. Hall
Biogeosciences, 18, 2981–3004, https://doi.org/10.5194/bg-18-2981-2021, https://doi.org/10.5194/bg-18-2981-2021, 2021
Short summary
Short summary
Sediments in oxygen-depleted ocean areas release high amounts of phosphorus, feeding algae that consume oxygen upon degradation, leading to further phosphorus release. Oxygenation is thought to trap phosphorus in the sediment and break this feedback. We studied the sediment phosphorus cycle in a previously anoxic area after an inflow of oxic water. Surprisingly, the sediment phosphorus release increased, showing that feedbacks between phosphorus release and oxygen depletion can be hard to break.
Sebastiaan J. van de Velde, Rebecca K. James, Ine Callebaut, Silvia Hidalgo-Martinez, and Filip J. R. Meysman
Biogeosciences, 18, 1451–1461, https://doi.org/10.5194/bg-18-1451-2021, https://doi.org/10.5194/bg-18-1451-2021, 2021
Short summary
Short summary
Some 540 Myr ago, animal life evolved in the ocean. Previous research suggested that when these early animals started inhabiting the seafloor, they retained phosphorus in the seafloor, thereby limiting photosynthesis in the ocean. We studied salt marsh sediments with and without animals and found that their impact on phosphorus retention is limited, which implies that their impact on the global environment might have been less drastic than previously assumed.
Martijn Hermans, Nils Risgaard-Petersen, Filip J. R. Meysman, and Caroline P. Slomp
Biogeosciences, 17, 5919–5938, https://doi.org/10.5194/bg-17-5919-2020, https://doi.org/10.5194/bg-17-5919-2020, 2020
Short summary
Short summary
This paper demonstrates that the recently discovered cable bacteria are capable of using a mineral, known as siderite, as a source for the formation of iron oxides. This work also demonstrates that the activity of cable bacteria can lead to a distinct subsurface layer in the sediment that can be used as a marker for their activity.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Lutz Schirrmeister, Alexander N. Fedorov, Pavel Y. Konstantinov, Matthias Fuchs, Loeka L. Jongejans, Juliane Wolter, Thomas Opel, and Jens Strauss
Biogeosciences, 17, 3797–3814, https://doi.org/10.5194/bg-17-3797-2020, https://doi.org/10.5194/bg-17-3797-2020, 2020
Short summary
Short summary
To extend the knowledge on circumpolar deep permafrost carbon storage, we examined two deep permafrost deposit types (Yedoma and alas) in central Yakutia. We found little but partially undecomposed organic carbon as a result of largely changing sedimentation processes. The carbon stock of the examined Yedoma deposits is about 50 % lower than the general Yedoma domain mean, implying a very hetererogeneous Yedoma composition, while the alas is approximately 80 % below the thermokarst deposit mean.
Anna Plass, Christian Schlosser, Stefan Sommer, Andrew W. Dale, Eric P. Achterberg, and Florian Scholz
Biogeosciences, 17, 3685–3704, https://doi.org/10.5194/bg-17-3685-2020, https://doi.org/10.5194/bg-17-3685-2020, 2020
Short summary
Short summary
We compare the cycling of Fe and Cd in sulfidic sediments of the Peruvian oxygen minimum zone. Due to the contrasting solubility of their sulfide minerals, the sedimentary Fe release and Cd burial fluxes covary with spatial and temporal distributions of H2S. Depending on the solubility of their sulfide minerals, sedimentary trace metal fluxes will respond differently to ocean deoxygenation/expansion of H2S concentrations, which may change trace metal stoichiometry of upwelling water masses.
Biqing Zhu, Manuel Kübler, Melanie Ridoli, Daniel Breitenstein, and Martin H. Schroth
Biogeosciences, 17, 3613–3630, https://doi.org/10.5194/bg-17-3613-2020, https://doi.org/10.5194/bg-17-3613-2020, 2020
Short summary
Short summary
We provide evidence that the greenhouse gas methane (CH4) is enclosed in calcareous glacier-forefield sediments across Switzerland. Geochemical analyses confirmed that this ancient CH4 has its origin in the calcareous parent bedrock. Our estimate of the total quantity of CH4 enclosed in sediments across Switzerland indicates a large CH4 mass (~105 t CH4). We produced evidence that CH4 is stable in its enclosed state, but additional experiments are needed to elucidate its long-term fate.
Matteo Puglini, Victor Brovkin, Pierre Regnier, and Sandra Arndt
Biogeosciences, 17, 3247–3275, https://doi.org/10.5194/bg-17-3247-2020, https://doi.org/10.5194/bg-17-3247-2020, 2020
Short summary
Short summary
A reaction-transport model to assess the potential non-turbulent methane flux from the East Siberian Arctic sediments to water columns is applied here. We show that anaerobic oxidation of methane (AOM) is an efficient filter except for high values of sedimentation rate and advective flow, which enable considerable non-turbulent steady-state methane fluxes. Significant transient methane fluxes can also occur during the building-up phase of the AOM-performing biomass microbial community.
Kyle Delwiche, Junyao Gu, Harold Hemond, and Sarah P. Preheim
Biogeosciences, 17, 3135–3147, https://doi.org/10.5194/bg-17-3135-2020, https://doi.org/10.5194/bg-17-3135-2020, 2020
Short summary
Short summary
In this study, we investigate whether bubbles transport sediments containing arsenic and cyanobacteria from the bottom to the top of a polluted lake. We measured arsenic and cyanobacteria from bubble traps in the lake and from an experimental bubble column in the laboratory. We found that bubble transport was not an important source of arsenic in the surface waters but that bubbles could transport enough cyanobacteria to the surface to exacerbate harmful algal blooms.
Nathaniel Kemnitz, William M. Berelson, Douglas E. Hammond, Laura Morine, Maria Figueroa, Timothy W. Lyons, Simon Scharf, Nick Rollins, Elizabeth Petsios, Sydnie Lemieux, and Tina Treude
Biogeosciences, 17, 2381–2396, https://doi.org/10.5194/bg-17-2381-2020, https://doi.org/10.5194/bg-17-2381-2020, 2020
Short summary
Short summary
Our paper shows how sedimentation in a very low oxygen setting provides a unique record of environmental change. We look at the past 250 years through the filter of sediment accumulation via radioisotope dating and other physical and chemical analyses of these sediments. We conclude, remarkably, that there has been very little change in net sediment mass accumulation through the past 100–150 years, yet just prior to 1900 CE, sediments were accumulating at 50 %–70 % of today's rate.
Dario Fussmann, Avril Jean Elisabeth von Hoyningen-Huene, Andreas Reimer, Dominik Schneider, Hana Babková, Robert Peticzka, Andreas Maier, Gernot Arp, Rolf Daniel, and Patrick Meister
Biogeosciences, 17, 2085–2106, https://doi.org/10.5194/bg-17-2085-2020, https://doi.org/10.5194/bg-17-2085-2020, 2020
Short summary
Short summary
Dolomite (CaMg(CO3)2) is supersaturated in many aquatic settings (e.g., seawater) on modern Earth but does not precipitate directly from the fluid, a fact known as the dolomite problem. The widely acknowledged concept of dolomite precipitation involves microbial extracellular polymeric substances (EPSs) and anoxic conditions as important drivers. In contrast, results from Lake Neusiedl support an alternative concept of Ca–Mg carbonate precipitation under aerobic and alkaline conditions.
Aurèle Vuillemin, André Friese, Richard Wirth, Jan A. Schuessler, Anja M. Schleicher, Helga Kemnitz, Andreas Lücke, Kohen W. Bauer, Sulung Nomosatryo, Friedhelm von Blanckenburg, Rachel Simister, Luis G. Ordoñez, Daniel Ariztegui, Cynthia Henny, James M. Russell, Satria Bijaksana, Hendrik Vogel, Sean A. Crowe, Jens Kallmeyer, and the Towuti Drilling Project
Science team
Biogeosciences, 17, 1955–1973, https://doi.org/10.5194/bg-17-1955-2020, https://doi.org/10.5194/bg-17-1955-2020, 2020
Short summary
Short summary
Ferruginous lakes experience restricted primary production due to phosphorus trapping by ferric iron oxides under oxic conditions. We report the presence of large crystals of vivianite, a ferrous iron phosphate, in sediments from Lake Towuti, Indonesia. We address processes of P retention linked to diagenesis of iron phases. Vivianite crystals had light Fe2+ isotope signatures and contained mineral inclusions consistent with antecedent processes of microbial sulfate and iron reduction.
Sonja Geilert, Patricia Grasse, Kristin Doering, Klaus Wallmann, Claudia Ehlert, Florian Scholz, Martin Frank, Mark Schmidt, and Christian Hensen
Biogeosciences, 17, 1745–1763, https://doi.org/10.5194/bg-17-1745-2020, https://doi.org/10.5194/bg-17-1745-2020, 2020
Short summary
Short summary
Marine silicate weathering is a key process of the marine silica cycle; however, its controlling processes are not well understood. In the Guaymas Basin, silicate weathering has been studied under markedly differing ambient conditions. Environmental settings like redox conditions or terrigenous input of reactive silicates appear to be major factors controlling marine silicate weathering. These factors need to be taken into account in future oceanic mass balances of Si and in modeling studies.
Jessica B. Volz, Laura Haffert, Matthias Haeckel, Andrea Koschinsky, and Sabine Kasten
Biogeosciences, 17, 1113–1131, https://doi.org/10.5194/bg-17-1113-2020, https://doi.org/10.5194/bg-17-1113-2020, 2020
Short summary
Short summary
Potential future deep-sea mining of polymetallic nodules at the seafloor is expected to severely harm the marine environment. However, the consequences on deep-sea ecosystems are still poorly understood. This study on surface sediments from man-made disturbance tracks in the Pacific Ocean shows that due to the removal of the uppermost sediment layer and thereby the loss of organic matter, the geochemical system in the sediments is disturbed for millennia before reaching a new equilibrium.
Ralf Conrad, Melanie Klose, and Alex Enrich-Prast
Biogeosciences, 17, 1063–1069, https://doi.org/10.5194/bg-17-1063-2020, https://doi.org/10.5194/bg-17-1063-2020, 2020
Short summary
Short summary
Lake sediments release the greenhouse gas CH4. Acetate is an important precursor. Although Amazonian lake sediments all contained acetate-consuming methanogens, measurement of the turnover of labeled acetate showed that some sediments converted acetate not to CH4 plus CO2, as expected, but only to CO2. Our results indicate the operation of acetate-oxidizing microorganisms couples the oxidation process to syntrophic methanogenic partners and/or to the reduction of organic compounds.
Jens Rassmann, Eryn M. Eitel, Bruno Lansard, Cécile Cathalot, Christophe Brandily, Martial Taillefert, and Christophe Rabouille
Biogeosciences, 17, 13–33, https://doi.org/10.5194/bg-17-13-2020, https://doi.org/10.5194/bg-17-13-2020, 2020
Short summary
Short summary
In this paper, we use a large set of measurements made using in situ and lab techniques to elucidate the cause of dissolved inorganic carbon fluxes in sediments from the Rhône delta and its companion compound alkalinity, which carries the absorption capacity of coastal waters with respect to atmospheric CO2. We show that sediment processes (sulfate reduction, FeS precipitation and accumulation) are crucial in generating the alkalinity fluxes observed in this study by in situ incubation chambers.
Sophie A. L. Paul, Matthias Haeckel, Michael Bau, Rajina Bajracharya, and Andrea Koschinsky
Biogeosciences, 16, 4829–4849, https://doi.org/10.5194/bg-16-4829-2019, https://doi.org/10.5194/bg-16-4829-2019, 2019
Short summary
Short summary
We studied the upper 10 m of deep-sea sediments, including pore water, in the Peru Basin to understand small-scale variability of trace metals. Our results show high spatial variability related to topographical variations, which in turn impact organic matter contents, degradation processes, and trace metal cycling. Another interesting finding was the influence of dissolving buried nodules on the surrounding sediment and trace metal cycling.
Sarah Paradis, Antonio Pusceddu, Pere Masqué, Pere Puig, Davide Moccia, Tommaso Russo, and Claudio Lo Iacono
Biogeosciences, 16, 4307–4320, https://doi.org/10.5194/bg-16-4307-2019, https://doi.org/10.5194/bg-16-4307-2019, 2019
Short summary
Short summary
Chronic deep bottom trawling in the Gulf of Castellammare (SW Mediterranean) erodes large volumes of sediment, exposing over-century-old sediment depleted in organic matter. Nevertheless, the arrival of fresh and nutritious sediment recovers superficial organic matter in trawling grounds and leads to high turnover rates, partially and temporarily mitigating the impacts of bottom trawling. However, this deposition is ephemeral and it will be swiftly eroded by the passage of the next trawler.
Zhichao Zhou, Bo Liang, Li-Ying Wang, Jin-Feng Liu, Bo-Zhong Mu, Hojae Shim, and Ji-Dong Gu
Biogeosciences, 16, 4229–4241, https://doi.org/10.5194/bg-16-4229-2019, https://doi.org/10.5194/bg-16-4229-2019, 2019
Short summary
Short summary
This study shows a core bacterial microbiome with a small proportion of shared operational taxonomic units of common sequences among all oil reservoirs. Dominant methanogenesis shifts from the hydrogenotrophic pathway in water phase to the acetoclastic pathway in the oil phase at high temperatures, but the opposite is true at low temperatures. There are also major functional metabolism differences between the two phases for amino acids, hydrocarbons, and carbohydrates.
Annika Fiskal, Longhui Deng, Anja Michel, Philip Eickenbusch, Xingguo Han, Lorenzo Lagostina, Rong Zhu, Michael Sander, Martin H. Schroth, Stefano M. Bernasconi, Nathalie Dubois, and Mark A. Lever
Biogeosciences, 16, 3725–3746, https://doi.org/10.5194/bg-16-3725-2019, https://doi.org/10.5194/bg-16-3725-2019, 2019
Hanni Vigderovich, Lewen Liang, Barak Herut, Fengping Wang, Eyal Wurgaft, Maxim Rubin-Blum, and Orit Sivan
Biogeosciences, 16, 3165–3181, https://doi.org/10.5194/bg-16-3165-2019, https://doi.org/10.5194/bg-16-3165-2019, 2019
Short summary
Short summary
Microbial iron reduction participates in important biogeochemical cycles. In the last decade iron reduction has been observed in many aquatic sediments below its classical zone, in the methane production zone, suggesting a link between the two cycles. Here we present evidence for microbial iron reduction in the methanogenic depth of the oligotrophic SE Mediterranean continental shelf using mainly geochemical and microbial sedimentary profiles and suggest possible mechanisms for this process.
Haoyi Yao, Wei-Li Hong, Giuliana Panieri, Simone Sauer, Marta E. Torres, Moritz F. Lehmann, Friederike Gründger, and Helge Niemann
Biogeosciences, 16, 2221–2232, https://doi.org/10.5194/bg-16-2221-2019, https://doi.org/10.5194/bg-16-2221-2019, 2019
Short summary
Short summary
How methane is transported in the sediment is important for the microbial community living on methane. Here we report an observation of a mini-fracture that facilitates the advective gas transport of methane in the sediment, compared to the diffusive fluid transport without a fracture. We found contrasting bio-geochemical signals in these different transport modes. This finding can help to fill the gap in the fracture network system in modulating methane dynamics in surface sediments.
Laura A. Casella, Sixin He, Erika Griesshaber, Lourdes Fernández-Díaz, Martina Greiner, Elizabeth M. Harper, Daniel J. Jackson, Andreas Ziegler, Vasileios Mavromatis, Martin Dietzel, Anton Eisenhauer, Sabino Veintemillas-Verdaguer, Uwe Brand, and Wolfgang W. Schmahl
Biogeosciences, 15, 7451–7484, https://doi.org/10.5194/bg-15-7451-2018, https://doi.org/10.5194/bg-15-7451-2018, 2018
Short summary
Short summary
Biogenic carbonates record past environmental conditions. Fossil shell chemistry and microstructure change as metastable biogenic carbonates are replaced by inorganic calcite. Simulated diagenetic alteration at 175 °C of different shell microstructures showed that (nacreous) shell aragonite and calcite were partially replaced by coarse inorganic calcite crystals due to dissolution–reprecipitation reactions. EBSD maps allowed for qualitative assessment of the degree of diagenetic overprint.
Wytze K. Lenstra, Matthias Egger, Niels A. G. M. van Helmond, Emma Kritzberg, Daniel J. Conley, and Caroline P. Slomp
Biogeosciences, 15, 6979–6996, https://doi.org/10.5194/bg-15-6979-2018, https://doi.org/10.5194/bg-15-6979-2018, 2018
Short summary
Short summary
We show that burial rates of phosphorus (P) in an estuary in the northern Baltic Sea are very high. We demonstrate that at high sedimentation rates, P retention in the sediment is related to the formation of vivianite. With a reactive transport model, we assess the sensitivity of sedimentary vivianite formation. We suggest that enrichments of iron and P in the sediment are linked to periods of enhanced riverine input of Fe, which subsequently strongly enhances P burial in coastal sediments.
Jiarui Liu, Gareth Izon, Jiasheng Wang, Gilad Antler, Zhou Wang, Jie Zhao, and Matthias Egger
Biogeosciences, 15, 6329–6348, https://doi.org/10.5194/bg-15-6329-2018, https://doi.org/10.5194/bg-15-6329-2018, 2018
Short summary
Short summary
Our work provides new insights into the biogeochemical cycling of iron, methane and phosphorus. We found that vivianite, an iron-phosphate mineral, is pervasive in methane-rich sediments, suggesting that iron reduction at depth is coupled to phosphorus and methane cycling on a much greater spatial scale than previously assumed. Acting as an important burial mechanism for iron and phosphorus, vivianite authigenesis may be an under-considered process in both modern and ancient settings alike.
Marc A. Besseling, Ellen C. Hopmans, R. Christine Boschman, Jaap S. Sinninghe Damsté, and Laura Villanueva
Biogeosciences, 15, 4047–4064, https://doi.org/10.5194/bg-15-4047-2018, https://doi.org/10.5194/bg-15-4047-2018, 2018
Short summary
Short summary
Benthic archaea comprise a significant part of the total prokaryotic biomass in marine sediments. Here, we compared the archaeal diversity and intact polar lipid (IPL) composition in both surface and subsurface sediments with different oxygen regimes in the Arabian Sea oxygen minimum zone. The oxygenated sediments were dominated by Thaumarchaeota and IPL-GDGT-0. The anoxic sediment contained highly diverse archaeal communities and high relative abundances of IPL-GDGT-1 to -4.
Georgina Robinson, Thomas MacTavish, Candida Savage, Gary S. Caldwell, Clifford L. W. Jones, Trevor Probyn, Bradley D. Eyre, and Selina M. Stead
Biogeosciences, 15, 1863–1878, https://doi.org/10.5194/bg-15-1863-2018, https://doi.org/10.5194/bg-15-1863-2018, 2018
Short summary
Short summary
This study examined the effect of adding carbon to a sediment-based effluent treatment system to treat nitrogen-rich aquaculture waste. The research was conducted in incubation chambers to measure the exchange of gases and nutrients across the sediment–water interface and examine changes in the sediment microbial community. Adding carbon increased the amount of nitrogen retained in the treatment system, thereby reducing the levels of nitrogen needing to be discharged to the environment.
Daniele Brigolin, Christophe Rabouille, Bruno Bombled, Silvia Colla, Salvatrice Vizzini, Roberto Pastres, and Fabio Pranovi
Biogeosciences, 15, 1347–1366, https://doi.org/10.5194/bg-15-1347-2018, https://doi.org/10.5194/bg-15-1347-2018, 2018
Short summary
Short summary
We present the result of a study carried out in the north-western Adriatic Sea by combining two different types of models with field sampling. A mussel farm was taken as a local source of perturbation to the natural flux of particulate organic carbon to the sediment. Differences in fluxes were primarily associated with mussel physiological conditions. Although restricted, these changes in particulate organic carbon fluxes induced visible effects on sediment biogeochemistry.
Volker Brüchert, Lisa Bröder, Joanna E. Sawicka, Tommaso Tesi, Samantha P. Joye, Xiaole Sun, Igor P. Semiletov, and Vladimir A. Samarkin
Biogeosciences, 15, 471–490, https://doi.org/10.5194/bg-15-471-2018, https://doi.org/10.5194/bg-15-471-2018, 2018
Short summary
Short summary
We determined the aerobic and anaerobic degradation rates of land- and marine-derived organic material in East Siberian shelf sediment. Marine plankton-derived organic carbon was the main source for the oxic dissolved carbon dioxide production, whereas terrestrial organic material significantly contributed to the production of carbon dioxide under anoxic conditions. Our direct degradation rate measurements provide new constraints for the present-day Arctic marine carbon budget.
Jack J. Middelburg
Biogeosciences, 15, 413–427, https://doi.org/10.5194/bg-15-413-2018, https://doi.org/10.5194/bg-15-413-2018, 2018
Short summary
Short summary
Organic carbon processing at the seafloor is studied by geologists to better understand the sedimentary record, by biogeochemists to quantify burial and respiration, by organic geochemists to elucidate compositional changes, and by ecologists to follow carbon transfers within food webs. These disciplinary approaches have their strengths and weaknesses. This award talk provides a synthesis, highlights the role of animals in sediment carbon processing and presents some new concepts.
Craig Smeaton, William E. N. Austin, Althea L. Davies, Agnes Baltzer, John A. Howe, and John M. Baxter
Biogeosciences, 14, 5663–5674, https://doi.org/10.5194/bg-14-5663-2017, https://doi.org/10.5194/bg-14-5663-2017, 2017
Short summary
Short summary
Fjord sediments are recognised as hotspots for the burial and long-term storage of carbon. In this study, we use the Scottish fjords as a natural laboratory. Using geophysical and geochemical analysis in combination with upscaling techniques, we have generated the first full national sedimentary C inventory for a fjordic system. The results indicate that the Scottish fjords on a like-for-like basis are more effective as C stores than their terrestrial counterparts, including Scottish peatlands.
Perran Louis Miall Cook, Adam John Kessler, and Bradley David Eyre
Biogeosciences, 14, 4061–4069, https://doi.org/10.5194/bg-14-4061-2017, https://doi.org/10.5194/bg-14-4061-2017, 2017
Short summary
Short summary
Nitrogen is the key nutrient that typically limits productivity in coastal waters. One of the key controls on the amount of bioavailable nitrogen is the process of denitrification, which converts nitrate (bioavailable) into nitrogen gas. Previous studies suggest high rates of denitrification may take place within carbonate sediments, and one explanation for this is that this process may take place within the sand grains. Here we show evidence to support this hypothesis.
Chris T. Parsons, Fereidoun Rezanezhad, David W. O'Connell, and Philippe Van Cappellen
Biogeosciences, 14, 3585–3602, https://doi.org/10.5194/bg-14-3585-2017, https://doi.org/10.5194/bg-14-3585-2017, 2017
Short summary
Short summary
Phosphorus (P) has accumulated in sediments due to past human activities. The re-release of this P to water contributes to the growth of harmful algal blooms. Our research improves our mechanistic understanding of how P is partitioned between different chemical forms and between sediment and water under dynamic conditions. We demonstrate that P trapped within iron minerals may be less mobile during anoxic conditions than previously thought due to reversible changes to P forms within sediment.
Clint M. Miller, Gerald R. Dickens, Martin Jakobsson, Carina Johansson, Andrey Koshurnikov, Matt O'Regan, Francesco Muschitiello, Christian Stranne, and Carl-Magnus Mörth
Biogeosciences, 14, 2929–2953, https://doi.org/10.5194/bg-14-2929-2017, https://doi.org/10.5194/bg-14-2929-2017, 2017
Short summary
Short summary
Continental slopes north of the East Siberian Sea are assumed to hold large amounts of methane. We present pore water chemistry from the 2014 SWERUS-C3 expedition. These are among the first results generated from this vast climatically sensitive region, and they imply that abundant methane, including gas hydrates, do not characterize the East Siberian Sea slope or rise. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based assumption.
Laura A. Casella, Erika Griesshaber, Xiaofei Yin, Andreas Ziegler, Vasileios Mavromatis, Dirk Müller, Ann-Christine Ritter, Dorothee Hippler, Elizabeth M. Harper, Martin Dietzel, Adrian Immenhauser, Bernd R. Schöne, Lucia Angiolini, and Wolfgang W. Schmahl
Biogeosciences, 14, 1461–1492, https://doi.org/10.5194/bg-14-1461-2017, https://doi.org/10.5194/bg-14-1461-2017, 2017
Short summary
Short summary
Mollusc shells record past environments. Fossil shell chemistry and microstructure change as metastable biogenic aragonite transforms to stable geogenic calcite. We simulated this alteration of Arctica islandica shells by hydrothermal treatments. Below 175 °C the shell aragonite survived for weeks. At 175 °C the replacement of the original material starts after 4 days and yields submillimetre-sized calcites preserving the macroscopic morphology as well as the original internal micromorphology.
Jung-Ho Hyun, Sung-Han Kim, Jin-Sook Mok, Hyeyoun Cho, Tongsup Lee, Verona Vandieken, and Bo Thamdrup
Biogeosciences, 14, 941–958, https://doi.org/10.5194/bg-14-941-2017, https://doi.org/10.5194/bg-14-941-2017, 2017
Short summary
Short summary
The surface sediments of the Ulleung Basin (UB) in the East Sea are characterized by high organic carbon contents (> 2.5 %, dry wt.) and very high concentrations of Mn oxides (> 200 μmol cm−3) and Fe oxides (up to 100 μmol cm−3). For the first time in deep offshore sediments on the Asian margin with water depth over 2000 m, we report that Mn reduction and Fe reduction were the dominant organic carbon (Corg) oxidation pathways, comprising 45 % and 20 % of total Corg oxidation, respectively.
Jens Rassmann, Bruno Lansard, Lara Pozzato, and Christophe Rabouille
Biogeosciences, 13, 5379–5394, https://doi.org/10.5194/bg-13-5379-2016, https://doi.org/10.5194/bg-13-5379-2016, 2016
Short summary
Short summary
In situ O2 and pH measurements as well as determination of porewater concentrations of dissolved inorganic carbon, total alkalinity, sulfate and calcium have been measured in the sediments of the Rhône prodelta. Biogeochemical activity decreased with distance from the river mouth. Oxic processes decreased the carbonate saturation state (Ω) by lowering pH, whereas anaerobic organic matter degradation, dominated by sulfate reduction, was accompanied by increasing Ω and carbonate precipitation.
Matthias Egger, Peter Kraal, Tom Jilbert, Fatimah Sulu-Gambari, Célia J. Sapart, Thomas Röckmann, and Caroline P. Slomp
Biogeosciences, 13, 5333–5355, https://doi.org/10.5194/bg-13-5333-2016, https://doi.org/10.5194/bg-13-5333-2016, 2016
Short summary
Short summary
By combining detailed geochemical analyses with diagenetic modeling, we provide new insights into how methane dynamics may strongly overprint burial records of iron, sulfur and phosphorus in marine systems subject to changes in organic matter loading or water column salinity. A better understanding of these processes will improve our ability to read ancient sediment records and thus to predict the potential consequences of global warming and human-enhanced inputs of nutrients to the ocean.
Cited articles
Acharya, S. S. and Panigrahi, M. K.: Eastward shift and maintenance of Arabian Sea oxygen minimum zone: Understanding the paradox, Deep-Sea Res. Pt. I, 115, 240–252, https://doi.org/10.1016/j.dsr.2016.07.004, 2016.
Allard, J. L., Hughes, P. D., and Woodward, J. C.: Heinrich Stadial aridity forced Mediterranean-wide glacier retreat in the last cold stage, Nat. Geosci., 14, 197–205, https://doi.org/10.1038/s41561-021-00703-6, 2021.
Altabet, M. A., Francois, R., Murray, D. W., and Prell, W. L.: Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios, Nature, 373, 506–509, https://doi.org/10.1038/373506a0, 1995.
Altabet, M. A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., and Francois, R.: The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific, Deep-Sea Res. Pt. I, 46, 655–679, https://doi.org/10.1016/S0967-0637(98)00084-3, 1999.
Altabet, M. A., Higginson, M. J., and Murray, D. W.: The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2, Nature, 415, 159–162, https://doi.org/10.1038/415159a, 2002.
Andruleit, H., Stäger, S., Rogalla, U., and Cepek, P.: Living coccolithophores in the northern Arabian Sea: Ecological tolerances and environmental control, Mar. Micropaleontol., 49, 157–181, https://doi.org/10.1016/S0377-8398(03)00049-5, 2003.
Arz, H. W., Lamy, F., Ganopolski, A., Nowaczyk, N., and Pätzold, J.: Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability, Quaternary Sci. Rev., 26, 312–321, https://doi.org/10.1016/j.quascirev.2006.07.016, 2007.
Beal, L. M., Ffield, A., and Gordon, A. L.: Spreading of Red Sea overflow waters in the Indian Ocean, J. Geophys. Res.-Oceans, 105, 8549–8564, https://doi.org/10.1029/1999JC900306, 2000.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Böll, A., Lückge, A., Munz, P., Forke, S., Schulz, H., Ramaswamy, V., Rixen, T., Gaye, B., and Emeis, K. C.: Late Holocene primary productivity and sea surface temperature variations in the northeastern Arabian Sea: Implications for winter monsoon variability, Paleoceanography, 29, 778–794, https://doi.org/10.1002/2013PA002579, 2014.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent solar influence on North Atlantic climate during the Holocene, Science, 294, 2130–2136, https://doi.org/10.1126/science.1065680, 2001.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Bower, A. S., Hunt, H. D., and Price, J. F.: Character and dynamics of the Red Sea and Persian Gulf outflows, J. Geophys. Res.-Oceans, 105, 6387–6414, https://doi.org/10.1029/1999JC900297, 2000.
Bray, E. . and Evans, E. .: Distribution of n-paraffins as a clue to recognition of source beds, Geochim. Cosmochim. Ac., 22, 2–15, https://doi.org/10.1016/0016-7037(61)90069-2, 1961.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal waters, Science (80-.), 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018.
Bronough, D.: ncdf4.helpers: Helper Functions for Use with the “ncdf4” Package, R package version 0.3-6, CRAN [code], https://cran.r-project.org/package=ncdf4.helpers (last access: 8 August 2023), 2021.
Buizert, C. and Schmittner, A.: Southern Ocean control of glacial AMOC stability and Dansgaard–Oeschger interstadial duration, Paleoceanography, 30, 1595–1612, https://doi.org/10.1002/2015PA002795, 2015.
Bunn, A., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., and Zang, C.: dplR: Dendrochronology Program Library in R, R package version 1.7.4, CRAN [code], https://cran.r-project.org/package=dplR (last access: 27 June 2023), 2022.
Bunn, A. G.: A dendrochronology program library in R (dplR), Dendrochronologia, 26, 115–124, https://doi.org/10.1016/j.dendro.2008.01.002, 2008.
Bunn, A. G.: Statistical and visual crossdating in R using the dplR library, Dendrochronologia, 28, 251–258, https://doi.org/10.1016/j.dendro.2009.12.001, 2010.
Burdanowitz, N., Gaye, B., Hilbig, L., Lahajnar, N., Lückge, A., Rixen, T., and Emeis, K. C.: Holocene monsoon and sea level-related changes of sedimentation in the northeastern Arabian Sea, Deep. Res. Pt. II, 166, 6–18, https://doi.org/10.1016/j.dsr2.2019.03.003, 2019.
Burdanowitz, N., Rixen, T., Gaye, B., and Emeis, K.-C.: Signals of Holocene climate transition amplified by anthropogenic land-use changes in the westerly–Indian monsoon realm, Clim. Past, 17, 1735–1749, https://doi.org/10.5194/cp-17-1735-2021, 2021.
Burdanowitz, N., Schmiedl, G., Gaye, B., Munz, P., and Schulz, H.: Age model and geochemistry data of sediment core GeoTü SL167, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.964226, 2024.
Busecke, J. J. M., Resplandy, L., Ditkovsky, S. J., and John, J. G.: Diverging Fates of the Pacific Ocean Oxygen Minimum Zone and Its Core in a Warming World, AGU Adv., 3, e2021AV000470, https://doi.org/10.1029/2021AV000470, 2022.
Bush, R. T. and McInerney, F. A.: Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy, Geochim. Cosmochim. Ac., 117, 161–179, https://doi.org/10.1016/j.gca.2013.04.016, 2013.
Buzas, M. A. and Gibson, T. G.: Species Diversity: Benthonic Foraminifera in Western North Atlantic, Science (80-.), 163, 72–75, https://doi.org/10.1126/science.163.3862.72, 1969.
Carr, A. S., Boom, A., Grimes, H. L., Chase, B. M., Meadows, M. E., and Harris, A.: Leaf wax n-alkane distributions in arid zone South African flora: Environmental controls, chemotaxonomy and palaeoecological implications, Org. Geochem., 67, 72–84, https://doi.org/10.1016/j.orggeochem.2013.12.004, 2014.
Casciotti, K. L.: Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle, Annu. Rev. Mar. Sci., 8, 379–407, https://doi.org/10.1146/annurev-marine-010213-135052, 2016.
Clift, P. D. and Plumb, R. A.: The Asian Monsoon: Causes, History and Effects, Cambridge University Press, Cambridge, ISBN 9781107630192, 2008.
Collister, J. W., Rieley, G., Stern, B., Eglinton, G., and Fry, B.: Compound-specific δ 13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms, Org. Geochem., 21, 619–627, https://doi.org/10.1016/0146-6380(94)90008-6, 1994.
Cooper, R. J., Pedentchouk, N., Hiscock, K. M., Disdle, P., Krueger, T., and Rawlins, B. G.: Apportioning sources of organic matter in streambed sediments: An integrated molecular and compound-specific stable isotope approach, Sci. Total Environ., 520, 187–197, https://doi.org/10.1016/j.scitotenv.2015.03.058, 2015.
Cranwell, P. A.: Extractable and bound lipid components in a freshwater sediment, Geochim. Cosmochim. Ac., 42, 1523–1532, https://doi.org/10.1016/0016-7037(78)90023-6, 1978.
Cranwell, P. A.: Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment, Org. Geochem., 3, 79–89, http://www.sciencedirect.com/science/article/pii/0146638081900024 (last access: 20 January 2014), 1981.
Cullen, H. M., DeMenocal, P. B., Hemming, S., Hemming, G., Brown, F. H., Guilderson, T., and Sirocko, F.: Climate change and the collapse of the Akkadian empire: Evidence from the deep sea, Geology, 28, 379–382, https://doi.org/10.1130/0091-7613(2000)28<379:CCATCO>2.0.CO;2, 2000.
Davis, B. A. S. and Brewer, S.: Orbital forcing and role of the latitudinal insolation/temperature gradient, Clim. Dynam., 32, 143–165, https://doi.org/10.1007/s00382-008-0480-9, 2009.
de Marez, C., L'Hégaret, P., Morvan, M., and Carton, X.: On the 3D structure of eddies in the Arabian Sea, Deep-Sea Res. Pt. I, 150, 103057, https://doi.org/10.1016/j.dsr.2019.06.003, 2019.
Debenay, J.-P.: A Guide to 1,000 Foraminifera from Southwestern Pacific, New Caledonia, Publications Scientifiques du Muséum, Muséum national d'Histoire naturelle, Paris, 2012.
Den Dulk, M.: Benthic foraminiferal response to Late Quaternary variations in surface water productivity and oxygenation in the northern Arabian Sea, Geol. Ultraiectina, 188, 1–205, 2000.
Deplazes, G., Lückge, A., Peterson, L. C., Timmermann, A., Hamann, Y., Hughen, K. A., Röhl, U., Laj, C., Cane, M. A., Sigman, D. M., and Haug, G. H.: Links between tropical rainfall and North Atlantic climate during the last glacial period, Nat. Geosci., 6, 213–217, https://doi.org/10.1038/ngeo1712, 2013.
Deplazes, G., Lückge, A., Stuut, J. B. W., Pätzold, J., Kuhlmann, H., Husson, D., Fant, M., and Haug, G. H.: Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard–Oeschger oscillations, Paleoceanography, 29, 99–114, https://doi.org/10.1002/2013PA002509, 2014.
Dummann, W., Steinig, S., Hofmann, P., Lenz, M., Kusch, S., Flögel, S., Herrle, J. O., Hallmann, C., Rethemeyer, J., Kasper, H. U., and Wagner, T.: Driving mechanisms of organic carbon burial in the Early Cretaceous South Atlantic Cape Basin (DSDP Site 361), Clim. Past, 17, 469–490, https://doi.org/10.5194/cp-17-469-2021, 2021.
Dutt, S., Gupta, A. K., Clemens, S. C., Cheng, H., Singh, R. K., Kathayat, G., and Edwards, R. L.: Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years B. P., Geophys. Res. Lett., 42, 5526–5532, https://doi.org/10.1002/2015GL064015, 2015.
Eglinton, G. and Hamilton, R.: Leaf epicuticular waxes, Science, 156, 1322–1335, 1967.
Eglinton, T. I. and Eglinton, G.: Molecular proxies for paleoclimatology, Earth Planet. Sc. Lett., 275, 1–16, https://doi.org/10.1016/j.epsl.2008.07.012, 2008.
Esri: ArcGIS Desktop: Release 10.8. Redlands, Environmental Systems Research Institute [software], https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview (last access: 8 May 2020), 2019.
Farrington, J. W., Davis, A. C., Sulanowski, J., McCaffrey, M. A., McCarthy, M., Clifford, C. H., Dickinson, P., and Volkman, J. K.: Biogeochemistry of lipids in surface sediments of the Peru Upwelling Area at 15° S, Org. Geochem., 13, 607–617, https://doi.org/10.1016/0146-6380(88)90080-0, 1988.
Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R. L., Mudelsee, M., Göktürk, O. M., Fankhauser, A., Pickering, R., Raible, C. C., Matter, A., Kramers, J., and Tüysüz, O.: Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey, Geophys. Res. Lett., 36, L19707, https://doi.org/10.1029/2009GL040050, 2009.
Fontanier, C., Jorissen, F. J., Licari, L., Alexandre, A., Anschutz, P., and Carbonel, P.: Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats, Deep-Sea Res. Pt. I, 49, 751–785, https://doi.org/10.1016/S0967-0637(01)00078-4, 2002.
Freeman, K. H., Wakeham, S. G., and Hayes, J. M.: Predictive isotopic biogeochemistry: Hydrocarbons from anoxic marine basins, Org. Geochem., 21, 629–644, https://doi.org/10.1016/0146-6380(94)90009-4, 1994.
Friederich, G. E., Ledesma, J., Ulloa, O., and Chavez, F. P.: Air–sea carbon dioxide fluxes in the coastal southeastern tropical Pacific, Prog. Oceanogr., 79, 156–166, https://doi.org/10.1016/j.pocean.2008.10.001, 2008.
Gaye, B., Böll, A., Segschneider, J., Burdanowitz, N., Emeis, K.-C., Ramaswamy, V., Lahajnar, N., Lückge, A., and Rixen, T.: Glacial–interglacial changes and Holocene variations in Arabian Sea denitrification, Biogeosciences, 15, 507–527, https://doi.org/10.5194/bg-15-507-2018, 2018.
Gaye-Haake, B., Lahajnar, N., Emeis, K. C., Unger, D., Rixen, T., Suthhof, A., Ramaswamy, V., Schulz, H., Paropkari, A. L., Guptha, M. V. S., and Ittekkot, V.: Stable nitrogen isotopic ratios of sinking particles and sediments from the northern Indian Ocean, Mar. Chem., 96, 243–255, https://doi.org/10.1016/j.marchem.2005.02.001, 2005.
GEBCO – General Bathymetric Chart of the Oceans: Gridded bathymetric data sets are global terrain models for ocean and land. A global 30 arc-second interval grid, The GEBCO_2014 Grid, version 20150318, BODC – British Oceanographic Data Centre, http://www.gebco.net (last access: 23 August 2021), 2014.
Gooday, A. J. B. T.: Benthic foraminifera (protista) as tools in deep-water palaeoceanography: Environmental influences on faunal characteristics, Adv. Mar. Biol., 46, 1–90, https://doi.org/10.1016/S0065-2881(03)46002-1, 2003.
Gouhier, T. C., Grinsted, A., and Simko, V.: R package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses, R package version 0.20.21, CRAN [code], https://github.com/tgouhier/biwavelet (last access: 8 August 2023), 2021.
Gruber, N.: The Dynamics of the Marine Nitrogen Cycle and its Influence on Atmospheric CO2 Variations, in: The Ocean Carbon Cycle and Climate, NATO Science Series, vol. 40, edited by: Follows, M. and Oguz, T., Springer Netherlands, Dordrecht, 97–148, https://doi.org/10.1007/978-1-4020-2087-2_4, 2004.
Haake, B., Ittekkot, V., Rixen, T., Ramaswamy, V., Nair, R. R., and Curry, W. B.: Seasonality and interannual variability of particle fluxes to the deep Arabian sea, Deep-Sea Res. Pt. I, 40, 1323–1344, https://doi.org/10.1016/0967-0637(93)90114-I, 1993.
Helly, J. J. and Levin, L. A.: Global distribution of naturally occurring marine hypoxia on continental margins, Deep-Sea Res. Pt. I, 51, 1159–1168, https://doi.org/10.1016/j.dsr.2004.03.009, 2004.
Herrmann, N., Boom, A., Carr, A. S., Chase, B. M., Granger, R., Hahn, A., Zabel, M., and Schefuß, E.: Sources, transport and deposition of terrestrial organic material: A case study from southwestern Africa, Quaternary Sci. Rev., 149, 215–229, https://doi.org/10.1016/j.quascirev.2016.07.028, 2016.
Hunt, K. M. R., Turner, A. G., and Shaffrey, L. C.: The evolution, seasonality and impacts of western disturbances, Q. J. Roy. Meteor. Soc., 144, 278–290, https://doi.org/10.1002/qj.3200, 2018.
Ivanochko, T. S., Ganeshram, R. S., Brummer, G.-J. A., Ganssen, G., Jung, S. J. A., Moreton, S. G., and Kroon, D.: Variations in tropical convection as an amplifier of global climate change at the millennial scale, Earth Planet. Sc. Lett., 235, 302–314, https://doi.org/10.1016/j.epsl.2005.04.002, 2005.
Jaglan, S., Gupta, A. K., Clemens, S. C., Dutt, S., Cheng, H., and Singh, R. K.: Abrupt Indian summer monsoon shifts aligned with Heinrich events and D-O cycles since MIS 3, Palaeogeogr. Palaeocl., 583, 110658, https://doi.org/10.1016/j.palaeo.2021.110658, 2021.
Jones, R. W.: The Challenger Foraminifera, Oxford University Press, Oxford, ISBN 0198540965, 1994.
Jorissen, F. J., de Stigter, H. C., and Widmark, J. G. V: A conceptual model explaining benthic foraminiferal microhabitats, Mar. Micropaleontol., 26, 3–15, https://doi.org/10.1016/0377-8398(95)00047-X, 1995.
Jung, M., Ilmberger, J., Mangini, A., and Emeis, K.-C.: Why some Mediterranean sapropels survived burn-down (and others did not), Mar. Geol., 141, 51–60, https://doi.org/10.1016/S0025-3227(97)00031-5, 1997.
Jung, S. J. A., Kroon, D., Ganssen, G., Peeters, F., and Ganeshram, R.: Enhanced Arabian Sea intermediate water flow during glacial North Atlantic cold phases, Earth Planet. Sc. Lett., 280, 220–228, https://doi.org/10.1016/j.epsl.2009.01.037, 2009.
Junium, C. K., Arthur, M. A., and Freeman, K. H.: Compound-specific δ15N and chlorin preservation in surface sediments of the Peru Margin with implications for ancient bulk δ15N records, Geochim. Cosmochim. Ac., 160, 306–318, https://doi.org/10.1016/j.gca.2014.12.018, 2015.
Kessarkar, P. M., Purnachadra Rao, V., Naqvi, S. W. A., and Karapurkar, S. G.: Variation in the Indian summer monsoon intensity during the Bølling-Ållerød and Holocene, Paleoceanography, 28, 413–425, https://doi.org/10.1002/palo.20040, 2013.
Koho, K. A., García, R., de Stigter, H. C., Epping, E., Koning, E., Kouwenhoven, T. J., and van der Zwaan, G. J.: Sedimentary labile organic carbon and pore water redox control on species distribution of benthic foraminifera: A case study from Lisbon–Setúbal Canyon (southern Portugal), Prog. Oceanogr., 79, 55–82, https://doi.org/10.1016/j.pocean.2008.07.004, 2008.
Kranner, M., Harzhauser, M., Beer, C., Auer, G., and Piller, W. E.: Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index, Sci. Rep.-UK, 12, 1376, https://doi.org/10.1038/s41598-022-05295-8, 2022.
Kumar, S. P. and Prasad, T. G.: Formation and spreading of Arabian Sea high-salinity water mass, J. Geophys. Res.-Oceans, 104, 1455–1464, https://doi.org/10.1029/1998JC900022, 1999.
Kuniyoshi, Y., Abe-Ouchi, A., Sherriff-Tadano, S., Chan, W.-L., and Saito, F.: Effect of Climatic Precession on Dansgaard–Oeschger-Like Oscillations, Geophys. Res. Lett., 49, e2021GL095695, https://doi.org/10.1029/2021GL095695, 2022.
L'Hégaret, P., Duarte, R., Carton, X., Vic, C., Ciani, D., Baraille, R., and Corréard, S.: Mesoscale variability in the Arabian Sea from HYCOM model results and observations: impact on the Persian Gulf Water path, Ocean Sci., 11, 667–693, https://doi.org/10.5194/os-11-667-2015, 2015.
Lachkar, Z., Lévy, M., and Smith, K. S.: Strong Intensification of the Arabian Sea Oxygen Minimum Zone in Response to Arabian Gulf Warming, Geophys. Res. Lett., 46, 5420–5429, https://doi.org/10.1029/2018GL081631, 2019.
Lambeck, K.: Shoreline reconstructions for the Persian Gulf since the last glacial maximum, Earth Planet. Sc. Lett., 142, 43–57, https://doi.org/10.1016/0012-821x(96)00069-6, 1996.
Lauterbach, S., Witt, R., Plessen, B., Dulski, P., Prasad, S., Mingram, J., Gleixner, G., Hettler-Riedel, S., Stebich, M., Schnetger, B., Schwalb, A., and Schwarz, A.: Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years, Holocene, 24, 970–984, https://doi.org/10.1177/0959683614534741, 2014.
Lemieux-Dudon, B., Blayo, E., Petit, J.-R., Waelbroeck, C., Svensson, A., Ritz, C., Barnola, J.-M., Narcisi, B. M., and Parrenin, F.: Consistent dating for Antarctic and Greenland ice cores, Quaternary Sci. Rev., 29, 8–20, https://doi.org/10.1016/j.quascirev.2009.11.010, 2010.
Leuschner, D. C. and Sirocko, F.: The low-latitude monsoon climate during Dansgaard–Oeschger cycles and Heinrich Events, Quaternary Sci. Rev., 19, 243–254, https://doi.org/10.1016/S0277-3791(99)00064-5, 2000.
Levin, L. A.: Oxygen minimum zone Benthos: Adaptation and community response to hypoxia, Oceanogr. Mar. Biol., 41, 1–45, 2003.
Liu, H. Y., Lin, Z. S., Qi, X. Z., Li, Y. X., Yu, M. T., Yang, H., and Shen, J.: Possible link between Holocene East Asian monsoon and solar activity obtained from the EMD method, Nonlin. Processes Geophys., 19, 421–430, https://doi.org/10.5194/npg-19-421-2012, 2012.
Lu, W., Costa, K. M., and Oppo, D. W.: Reconstructing the Oxygen Depth Profile in the Arabian Sea During the Last Glacial Period, Paleoceanography and Paleoclimatology, 38, e2023PA004632, https://doi.org/10.1029/2023pa004632, 2023.
Madhupratap, M., Kumar, S. P., Bhattathiri, P. M. A., Kumar, M. D., Raghukumar, S., Nair, K. K. C., and Ramaiah, N.: Mechanism of the biological response to winter cooling in the northeastern Arabian Sea, Nature, 384, 549–552, https://doi.org/10.1038/384549a0, 1996.
Menzel, P., Gaye, B., Mishra, P. K., Anoop, A., Basavaiah, N., Marwan, N., Plessen, B., Prasad, S., Riedel, N., Stebich, M., and Wiesner, M. G.: Linking Holocene drying trends from Lonar Lake in monsoonal central India to North Atlantic cooling events, Palaeogeogr. Palaeocl., 410, 164–178, https://doi.org/10.1016/j.palaeo.2014.05.044, 2014.
Meyers, P. A. and Ishiwatari, R.: Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments, Org. Geochem., 20, 867–900, https://doi.org/10.1016/0146-6380(93)90100-P, 1993.
Möbius, J., Gaye, B., Lahajnar, N., Bahlmann, E., and Emeis, K.-C.: Influence of diagenesis on sedimentary δ15N in the Arabian Sea over the last 130 kyr, Mar. Geol., 284, 127–138, https://doi.org/10.1016/j.margeo.2011.03.013, 2011.
Montoya, J. P.: Nitrogen Stable Isotopes in Marine Environments, in: Nitrogen in the Marine Environment, edited by: Capone, D. G., Bronk, D. A., Mulholland, M. R., and Carpenter, E. J., Academic Press, San Diego, 1277–1302, https://doi.org/10.1016/B978-0-12-372522-6.00029-3, 2008.
Morrison, J. M., Codispoti, L. A., Gaurin, S., Jones, B., Manghnani, V., and Zheng, Z.: Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study, Deep-Sea Res. Pt. II, 45, 2053–2101, https://doi.org/10.1016/S0967-0645(98)00063-0, 1998.
Munz, P. M., Steinke, S., Böll, A., Lückge, A., Groeneveld, J., Kucera, M., and Schulz, H.: Decadal resolution record of Oman upwelling indicates solar forcing of the Indian summer monsoon (9–6 ka), Clim. Past, 13, 491–509, https://doi.org/10.5194/cp-13-491-2017, 2017.
Murray, J. W.: Ecology and palaeoecology of benthic foraminifera, Longman Scientific & Technical, New York, ISBN 9780582051225, 1991.
Naeher, S., Geraga, M., Papatheodorou, G., Ferentinos, G., Kaberi, H., and Schubert, C. J.: Environmental variations in a semi-enclosed embayment (Amvrakikos Gulf, Greece) – reconstructions based on benthic foraminifera abundance and lipid biomarker pattern, Biogeosciences, 9, 5081–5094, https://doi.org/10.5194/bg-9-5081-2012, 2012.
Naqvi, S. W. A., Bange, H. W., Farías, L., Monteiro, P. M. S., Scranton, M. I., and Zhang, J.: Marine hypoxia/anoxia as a source of CH4 and N2O, Biogeosciences, 7, 2159–2190, https://doi.org/10.5194/bg-7-2159-2010, 2010.
NASA: Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data, NASA OB.DAAC, Greenbelt, MD, USA, https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2022, 2022
Neff, U., Burns, S. J., Mangini, A., Mudelsee, M., Fleitmann, D., and Matter, A.: Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago, Nature, 411, 290–293, https://doi.org/10.1038/35077048, 2001.
North Greenland Ice Core Project members: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004.
Obrochta, S. P., Miyahara, H., Yokoyama, Y., and Crowley, T. J.: A re-examination of evidence for the North Atlantic “ 1500-year cycle” at Site 609, Quaternary Sci. Rev., 55, 23–33, https://doi.org/10.1016/j.quascirev.2012.08.008, 2012.
Ogihara, S.: Is the lycopane/n-C31ratio an effective proxy of palaeoxicity of bottom water for the Japan Sea? – Unusual distribution of lycopane in the surface sediment from the Japan Sea collected by the MD179 cruise, J. Asian Earth Sci., 90, 250–253, https://doi.org/10.1016/j.jseaes.2013.12.012, 2014.
Orsi, W. D., Coolen, M. J. L., Wuchter, C., He, L., More, K. D., Irigoien, X., Chust, G., Johnson, C., Hemingway, J. D., Lee, M., Galy, V., and Giosan, L.: Climate oscillations reflected within the microbiome of Arabian Sea sediments, Sci. Rep.-UK, 7, 6040, https://doi.org/10.1038/s41598-017-05590-9, 2017.
Overpeck, J., Anderson, D., Trumbore, S., and Prell, W.: The southwest Indian Monsoon over the last 18000 years, Clim. Dynam., 12, 213–225, https://doi.org/10.1007/BF00211619, 1996.
Pahnke, K. and Zahn, R.: Southern Hemisphere Water Mass Conversion Linked with North Atlantic Climate Variability, Science (80-.), 307, 1741–1746, https://doi.org/10.1126/science.1102163, 2005.
Pancost, R. D. and Boot, C. S.: The palaeoclimatic utility of terrestrial biomarkers in marine sediments, Mar. Chem., 92, 239–261, https://doi.org/10.1016/j.marchem.2004.06.029, 2004.
Pathak, V. K., Kharwar, A., and Rai, A. K.: Benthic foraminiferal response to changes in the northwestern Arabian Sea oxygen minimum zone (OMZ) during past ∼ 145 kyr, J. Earth Syst. Sci., 130, 163, https://doi.org/10.1007/s12040-021-01659-2, 2021.
Paulmier, A. and Ruiz-Pino, D.: Oxygen minimum zones (OMZs) in the modern ocean, Prog. Oceanogr., 80, 113–128, https://doi.org/10.1016/j.pocean.2008.08.001, 2009.
Paulmier, A., Ruiz-Pino, D., and Garçon, V.: CO2 maximum in the oxygen minimum zone (OMZ), Biogeosciences, 8, 239–252, https://doi.org/10.5194/bg-8-239-2011, 2011.
Pichevin, L., Bard, E., Martinez, P., and Billy, I.: Evidence of ventilation changes in the Arabian Sea during the late Quaternary: Implication for denitrification and nitrous oxide emission, Global Biogeochem. Cy., 21, GB4008, https://doi.org/10.1029/2006GB002852, 2007.
Pous, S. P., Carton, X., and Lazure, P.: Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman—Results from the GOGP99 Experiment: 2. Gulf of Oman, J. Geophys. Res.-Oceans, 109, https://doi.org/10.1029/2003JC002146, 2004.
Prasad, T. G., Ikeda, M., and Kumar, S. P.: Seasonal spreading of the Persian Gulf Water mass in the Arabian Sea, J. Geophys. Res.-Oceans, 106, 17059–17071, https://doi.org/10.1029/2000JC000480, 2001.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org/ (last access: 16 May 2023), 2023.
Reichart, G. J., den Dulk, M., Visser, H. J., van der Weijden, C. H., and Zachariasse, W. J.: A 225 kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the Murray Ridge (northern Arabian Sea), Palaeogeogr. Palaeocl., 134, 149–169, https://doi.org/10.1016/S0031-0182(97)00071-0, 1997.
Reichart, G. J., Lourens, L. J., and Zachariasse, W. J.: Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years, Paleoceanography, 13, 607–621, https://doi.org/10.1029/98PA02203, 1998.
Reimer, P. J. and Reimer, R. W.: A Marine Reservoir Correction Database and On-Line Interface, Radiocarbon, 43, 461–463, https://doi.org/10.1017/S0033822200038339, 2001.
Rixen, T., Baum, A., Gaye, B., and Nagel, B.: Seasonal and interannual variations in the nitrogen cycle in the Arabian Sea, Biogeosciences, 11, 5733–5747, https://doi.org/10.5194/bg-11-5733-2014, 2014.
Rixen, T., Cowie, G., Gaye, B., Goes, J., do Rosário Gomes, H., Hood, R. R., Lachkar, Z., Schmidt, H., Segschneider, J., and Singh, A.: Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean, Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, 2020.
Rohling, E. J., Grant, K., Hemleben, C., Kucera, M., Roberts, A. P., Schmeltzer, I., Schulz, H., Siccha, M., Siddall, M., and Trommer, G.: New constraints on the timing of sea level fluctuations during early to middle marine isotope stage 3, Paleoceanography, 23, https://doi.org/10.1029/2008PA001617, 2008.
Rommerskirchen, F., Plader, A., Eglinton, G., Chikaraishi, Y., and Rullkötter, J.: Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes, Org. Geochem., 37, 1303–1332, https://doi.org/10.1016/j.orggeochem.2005.12.013, 2006.
Russell, J. M. and Johnson, T. C.: Late Holocene climate change in the North Atlantic and equatorial Africa: Millennial-scale ITCZ migration, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL023295, 2005.
Russell, J. M., Johnson, T. C., and Talbot, M. R.: A 725 yr cycle in the climate of central Africa during the late Holocene, Geology, 31, 677–680, https://doi.org/10.1130/G19449.1, 2003.
Sabino, M., Schefuß, E., Natalicchio, M., Dela Pierre, F., Birgel, D., Bortels, D., Schnetger, B., and Peckmann, J.: Climatic and hydrologic variability in the northern Mediterranean across the onset of the Messinian salinity crisis, Palaeogeogr. Palaeocl., 545, 109632, https://doi.org/10.1016/j.palaeo.2020.109632, 2020.
Sabino, M., Dela Pierre, F., Natalicchio, M., Birgel, D., Gier, S., and Peckmann, J.: The response of water column and sedimentary environments to the advent of the Messinian salinity crisis: insights from an onshore deep-water section (Govone, NW Italy), Geol. Mag., 158, 825–841, https://doi.org/10.1017/S0016756820000874, 2021.
Saravanan, P., Gupta, A. K., Zheng, H., Majumder, J., Panigrahi, M. K., and Kharya, A.: A 23000 year old record of paleoclimatic and environmental changes from the eastern Arabian Sea, Mar. Micropaleontol., 160, 101905, https://doi.org/10.1016/j.marmicro.2020.101905, 2020.
Sarkar, A., Ramesh, R., Somayajulu, B. L. K., Agnihotri, R., Jull, A. J. T., and Burr, O. S.: High resolution Holocene monsoon record from the eastern Arabian Sea, Earth Planet. Sc. Lett., 177, 209–218, https://doi.org/10.1016/S0012-821X(00)00053-4, 2000.
Schmidt, H., Czeschel, R., and Visbeck, M.: Seasonal variability of the Arabian Sea intermediate circulation and its impact on seasonal changes of the upper oxygen minimum zone, Ocean Sci., 16, 1459–1474, https://doi.org/10.5194/os-16-1459-2020, 2020.
Schmiedl, G., de Bovée, F., Buscail, R., Charrière, B., Hemleben, C., Medernach, L., and Picon, P.: Trophic control of benthic foraminiferal abundance and microhabitat in the bathyal Gulf of Lions, western Mediterranean Sea, Mar. Micropaleontol., 40, 167–188, https://doi.org/10.1016/S0377-8398(00)00038-4, 2000.
Schmiedl, G., Kuhnt, T., Ehrmann, W., Emeis, K.-C., Hamann, Y., Kotthoff, U., Dulski, P., and Pross, J.: Climatic forcing of eastern Mediterranean deep-water formation and benthic ecosystems during the past 22 000 years, Quaternary Sci. Rev., 29, 3006–3020, https://doi.org/10.1016/j.quascirev.2010.07.002, 2010.
Schmiedl, G., Milker, Y., and Mackensen, A.: Climate forcing of regional deep-sea biodiversity documented by benthic foraminifera, Earth-Sci. Rev., 244, 104540, https://doi.org/10.1016/j.earscirev.2023.104540, 2023a.
Schmiedl, G., Milker, Y., and Mackensen, A.: Benthic foraminifera census data of sediment core GeoTü SL167, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.960060, 2023b.
Schott, F. A. and McCreary, J. P.: The monsoon circulation of the Indian Ocean, Prog. Oceanogr., 51, 1–123, https://doi.org/10.1016/S0079-6611(01)00083-0, 2001.
Schulte, S., Rostek, F., Bard, E., Rullkötter, J., and Marchal, O.: Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea, Earth Planet. Sc. Lett., 173, 205–221, https://doi.org/10.1016/S0012-821X(99)00232-0, 1999.
Schulte, S., Mangelsdorf, K., and Rullkötter, J.: Organic matter preservation on the Pakistan continental margin as revealed by biomarker geochemistry, Org. Geochem., 31, 1005–1022, https://doi.org/10.1016/S0146-6380(00)00108-X, 2000.
Schulz, H., van Rad, U., and Erlenkeuser, H.: Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years, Nature, 393, 54–57, https://doi.org/10.1038/31750, 1998.
Schulz, M.: On the 1470-year pacing of Dansgaard–Oeschger warm events, Paleoceanography, 17, 4–9, https://doi.org/10.1029/2000PA000571, 2002.
Schulz, M. and Mudelsee, M.: REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series, Comput. Geosci., 28, 421–426, https://doi.org/10.1016/S0098-3004(01)00044-9, 2002.
Schumacher, S., Jorissen, F. J., Dissard, D., Larkin, K. E., and Gooday, A. J.: Live (Rose Bengal stained) and dead benthic foraminifera from the oxygen minimum zone of the Pakistan continental margin (Arabian Sea), Mar. Micropaleontol., 62, 45–73, https://doi.org/10.1016/j.marmicro.2006.07.004, 2007.
Sergiou, S., Geraga, M., Rohling, E. J., Rodríguez-Sanz, L., Hadjisolomou, E., Paraschos, F., Sakellariou, D., and Bailey, G.: Influences of sea level changes and the South Asian Monsoon on southern Red Sea oceanography over the last 30 ka, Quaternary Res., 110, 114–132, https://doi.org/10.1017/qua.2022.16, 2022.
Shenoi, S., Shetye, S. R., Gouveia, A. D., and Michael, G. S.: Salinity extrema in the Arabian Sea, Mitt. Geol.-Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderband, 76, 37–49, 1993.
Siddall, M., Rohling, E. J., Almogi-Labin, A., Hemleben, C., Meischner, D., Schmelzer, I., and Smeed, D. A.: Sea-level fluctuations during the last glacial cycle, Nature, 423, 853–858, https://doi.org/10.1038/nature01690, 2003.
Sigman, D. M. and Fripiat, F.: Nitrogen Isotopes in the Ocean, in: Encyclopedia of Ocean Sciences, 3rd Edn., edited by: Cochran, J. K., Bokuniewicz, H. J., and Yager, P. L., Academic Press, Oxford, 263–278, https://doi.org/10.1016/B978-0-12-409548-9.11605-7, 2019.
Sigman, D. M., Altabet, M. A., McCorkle, D. C., Francois, R., and Fischer, G.: The δ15N of nitrate in the Southern Ocean: Nitrogen cycling and circulation in the ocean interior, J. Geophys. Res.-Oceans, 105, 19599–19614, https://doi.org/10.1029/2000JC000265, 2000.
Singh, A. D., Jung, S. J. A., Darling, K., Ganeshram, R., Ivanochko, T., and Kroon, D.: Productivity collapses in the Arabian Sea during glacial cold phases, Paleoceanography, 26, 1–10, https://doi.org/10.1029/2009PA001923, 2011.
Sinninghe Damsté, J. S., Kuypers, M. M. M., Schouten, S., Schulte, S., and Rullkötter, J.: The lycopane/C31 n-alkane ratio as a proxy to assess palaeoxicity during sediment deposition, Earth Planet. Sc. Lett., 209, 215–226, https://doi.org/10.1016/S0012-821X(03)00066-9, 2003.
Sirocko, F., Sarnthein, M., Lange, H., and Erlenkeuser, H.: Atmospheric summer circulation and coastal upwelling in the Arabian Sea during the Holocene and the last glaciation, Quaternary Res., 36, 72–93, https://doi.org/10.1016/0033-5894(91)90018-Z, 1991.
Sirocko, F., Garbe-Schönberg, Dieter and Devey, C.: Processes controlling trace element geochemistry of Arabian Sea sediments during the last 25,000 years, Global Planet. Change, 26, 217–303, https://doi.org/10.1016/S0921-8181(00)00046-1, 2000.
Southon, J., Kashgarian, M., Fontugne, M., Metivier, B., and W-S Yim, W.: Marine Reservoir Corrections for the Indian Ocean and Southeast Asia, Radiocarbon, 44, 167–180, https://doi.org/10.1017/S0033822200064778, 2002.
Staubwasser, M., Sirocko, F., Grootes, P. M., and Segl, M.: Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability, Geophys. Res. Lett., 30, 1425, https://doi.org/10.1029/2002GL016822, 2003.
Steig, E. J., Jones, T. R., Schauer, A. J., Kahle, E. C., Morris, V. A., Vaughn, B. H., Davidge, L., and White, J. W. C.: Continuous-Flow Analysis of δ17O, δ18O, and δD of H2O on an Ice Core from the South Pole, Front. Earth Sci., 9, 640292, https://doi.org/10.3389/feart.2021.640292, 2021.
Stocker, T. F. and Johnsen, S. J.: A minimum thermodynamic model for the bipolar seesaw, Paleoceanography, 18, 1087, https://doi.org/10.1029/2003PA000920, 2003.
Stoffers, P. and Ross, D. A.: Late Pleistocene and Holocene sedimentation in the Persian Gulf—Gulf of Oman, Sediment. Geol., 23, 181–208, https://doi.org/10.1016/0037-0738(79)90014-9, 1979.
Stuiver, M. and Braziunas, T. F.: Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships, Holocene, 3, 289–305, https://doi.org/10.1177/095968369300300401, 1993.
Suthhof, A., Ittekkot, V., and Gaye-Hakke, B.: Millennial-scale oscillation of denitrification intensity in the Arabian Sea during the late Quaternary and its potential influence on atmospheric N20 and global climate, Global Biogeochem. Cy., 15, 637–649, 2001.
Szarek, R.: Biodiversity and biogeography of recent benthic foraminiferal assemblages in the south-western South China Sea (Sunda Shelf), University of Kiel, Kiel, Germany, https://nbn-resolving.org/urn:nbn:de:gbv:8-diss-5374 (last access: 15 January 2024), 2001.
Tesdal, J.-E., Galbraith, E. D., and Kienast, M.: Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records, Biogeosciences, 10, 101–118, https://doi.org/10.5194/bg-10-101-2013, 2013.
Thamban, M., Kawahata, H., and Rao, V. P.: Indian summer monsoon variability during the holocene as recorded in sediments of the Arabian Sea: Timing and implications, J. Oceanogr., 63, 1009–1020, https://doi.org/10.1007/s10872-007-0084-8, 2007.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, 1998.
van Bentum, E. C., Hetzel, A., Brumsack, H.-J., Forster, A., Reichart, G.-J., and Sinninghe Damsté, J. S.: Reconstruction of water column anoxia in the equatorial Atlantic during the Cenomanian–Turonian oceanic anoxic event using biomarker and trace metal proxies, Palaeogeogr. Palaeocl., 280, 489–498, https://doi.org/10.1016/j.palaeo.2009.07.003, 2009.
Vogts, A., Moossen, H., Rommerskirchen, F., and Rullkötter, J.: Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species, Org. Geochem., 40, 1037–1054, https://doi.org/10.1016/j.orggeochem.2009.07.011, 2009.
von Rad, U., Schaaf, M., Michels, K. H., Schulz, H., Berger, W. H., and Sirocko, F.: A 5000-yr Record of Climate Change in Varved Sediments from the Oxygen Minimum Zone off Pakistan, Northeastern Arabian Sea, Quaternary Res., 51, 39–53, https://doi.org/10.1006/qres.1998.2016, 1999.
Wakeham, S. G.: Organic biogeochemistry in the oxygen-deficient ocean: A review, Org. Geochem., 149, 104096, https://doi.org/10.1016/j.orggeochem.2020.104096, 2020.
Wakeham, S. G., Freeman, K. H., Pease, T. K., and Hayes, J. M.: A photoautotrophic source for lycopane in marine water columns, Geochim. Cosmochim. Ac., 57, 159–165, https://doi.org/10.1016/0016-7037(93)90476-D, 1993.
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., and Pflaumann, U.: East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea, Mar. Geol., 156, 245–284, https://doi.org/10.1016/S0025-3227(98)00182-0, 1999.
Wang, P., Clemens, S., Beaufort, L., Braconnot, P., Ganssen, G., Jian, Z., Kershaw, P., and Sarnthein, M.: Evolution and variability of the Asian monsoon system: State of the art and outstanding issues, Quaternary Sci. Rev., 24, 595–629, https://doi.org/10.1016/j.quascirev.2004.10.002, 2005.
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., and Li, X.: The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate, Science, 308, 854–857, https://doi.org/10.1126/science.1106296, 2005.
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C.-C., and Dorale, J. A.: A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China, Science (80-.), 294, 2345–2348, https://doi.org/10.1126/science.1064618, 2001.
Wang, Z., DiMarco, S. F., Jochens, A. E., and Ingle, S.: High salinity events in the northern Arabian Sea and Sea of Oman, Deep-Sea Res. Pt. I, 74, 14–24, https://doi.org/10.1016/j.dsr.2012.12.004, 2013.
Xu, D., Lu, H., Chu, G., Wu, N., Shen, C., Wang, C., and Mao, L.: 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record, Sci. Rep.-UK, 4, 3611, https://doi.org/10.1038/srep03611, 2014.
Zhou, Y., Gong, H., and Zhou, F.: Responses of Horizontally Expanding Oceanic Oxygen Minimum Zones to Climate Change Based on Observations, Geophys. Res. Lett., 49, e2022GL097724, https://doi.org/10.1029/2022GL097724, 2022.
Co-editor-in-chief
This excellent publication uses a multiproxy approach consisting of benthic formaminifera, lipid biomarkers and stable isotopes to study changing redox conditions in the Gulf of Oman during the past 43 kyrs. In large detail, the authors reconstruct periods dominated by either oxygenated conditions or largely oxygen depleted conditions. This high-resolution reconstruction revealed dominantly oxygenated conditions during Marine Isotope Stage 3 with deoxygenation events dominating most of the warmer Dansgaard-Oeschger events.
This excellent publication uses a multiproxy approach consisting of benthic formaminifera, lipid...
Short summary
We analyse benthic foraminifera, nitrogen isotopes and lipids in a sediment core from the Gulf of Oman to investigate how the oxygen minimum zone (OMZ) and bottom water (BW) oxygenation have reacted to climatic changes since 43 ka. The OMZ and BW deoxygenation was strong during the Holocene, but the OMZ was well ventilated during the LGM period. We found an unstable mode of oscillating oxygenation states, from moderately oxygenated in cold stadials to deoxygenated in warm interstadials in MIS 3.
We analyse benthic foraminifera, nitrogen isotopes and lipids in a sediment core from the Gulf...
Altmetrics
Final-revised paper
Preprint