Articles | Volume 21, issue 10
https://doi.org/10.5194/bg-21-2641-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-2641-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Xue Feng
Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
Ruzhen Wang
Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
Tianpeng Li
Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
Jiangping Cai
Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
Heyong Liu
Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
Hui Li
Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
Yong Jiang
CORRESPONDING AUTHOR
School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
Related authors
No articles found.
Qinglin Liu, Ailin Zhang, Xiangyi Li, Jinfei Yin, Yuxue Zhang, Osbert Jianxin Sun, and Yong Jiang
Biogeosciences, 22, 4123–4133, https://doi.org/10.5194/bg-22-4123-2025, https://doi.org/10.5194/bg-22-4123-2025, 2025
Short summary
Short summary
The arid region of the Qinghai–Tibet Plateau is a fragile ecosystem sensitive to environmental change. Changes in the soil carbon pool in this ecosystem will affect the terrestrial carbon cycle. The soil carbon pool in this region is mainly composed of soil inorganic carbon, and the response to environmental changes is clear. At the same time, the impact of environment on vegetation is also an important part of the carbon cycle of terrestrial organisms.
Cited articles
Bolan, N. S., Adriano, D. C., and Curtin, D.: Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability, Adv. Agron., 78, 5–272, https://doi.org/10.1016/S0065-2113(02)78006-1, 2003.
Bontti, E. E., Decant, J. P., Munson, S. M., Gathany, M. A., Przeszlowska, A., Haddix, M. L., Owens, S., Burke, I. C., Parton, W. J., and Harmon, M. E.: Litter decomposition in grasslands of central North America (US Great Plains), Glob. Chang Biol., 15, 1356–1363, https://doi.org/10.1111/j.1365-2486.2008.01815.x, 2009.
Chen, D., Lan, Z., Bai, X., Grace, J. B., and Bai, Y.: Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe, J. Ecol., 101, 1322–1334, https://doi.org/10.1111/1365-2745.12119, 2013a.
Chen, D., Wang, Y., Lan, Z., Li, J., Xing, W., Hu, S., and Bai, Y.: Biotic community shifts explain the contrasting responses of microbial and root respiration to experimental soil acidification, Soil Biol. Biochem., 90, 139–147, https://doi.org/10.1016/j.soilbio.2015.08.009, 2015.
Chen, J., Wang, W. H., Liu, T., Wu, F., and Zheng, H.: Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain, Plant Physiol. Bioch., 64, 41–51, https://doi.org/10.1016/j.plaphy.2012.12.012, 2013b.
Clark, C. M., Simkin, S. M., Allen, E. B., Bowman, W. D., Belnap, J., Brooks, M. L., Collins, S. L., Geiser, L. H., Gilliam, F, S., Jovan, F. S., Pardo, L. H., Schulz, B. K., Stevens, C. J., Suding, K. N., Throop, H. L., and Waller, D. M.: Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States, Nat. Plants, 5, 697–705, https://doi.org/10.1038/s41477-019-0442-8, 2019.
Cliquet, J. B. and Lemauviel-Lavenant, S.: Grassland species are more efficient in acquisition of S from the atmosphere when pedospheric S availability decreases, Plant Soil, 435, 69–80, https://doi.org/10.1007/s11104-018-3872-6, 2019.
Courbet, G., Gallardo, K., Vigani, G., Brunel-Muguet, S., Trouverie, J., Salon, C., and Ourry, A.: Disentangling the complexity and diversity of crosstalk between sulfur and other mineral nutrients in cultivated plants, J. Exp. Bot., 70, 4183–4196, https://doi.org/10.1093/jxb/erz214, 2019.
Curie, C. and Briat, J. F.: Iron transport and signaling in plants, Annu. Rev. Plant Biol., 54, 183–206, https://doi.org/10.1146/annurev.arplant.54.031902.135018, 2003.
De Battisti, D., Fowler, M. S., Jenkins, S. R., Skov, M. W., Bouma, T. J., Neyland, P. J., and Griffin, J. N.: Multiple trait dimensions mediate stress gradient effects on plant biomass allocation, with implications for coastal ecosystem services, J. Ecol., 108, 1227–1240, https://doi.org/10.1111/1365-2745.13393, 2020.
Delpiano, C. A., Prieto, I., Loayza, A. P., Carvajal, D. E., and Squeo, F. A.: Different responses of leaf and root traits to changes in soil nutrient availability do not converge into a community-level plant economics spectrum, Plant Soil, 450, 463–478, https://doi.org/10.1007/s11104-020-04515-2, 2020.
DeMalach, N. and Kadmon, R.: Light competition explains diversity decline better than niche dimensionality, Funct. Ecol., 31, 1834–1838, https://doi.org/10.1111/1365-2435.12841, 2017.
Duan, L., Yu, Q., Zhang, Q., Wang, Z., Pan, Y., Larssen, T., Tang, J., and Mulder, J.: Acid deposition in Asia: Emissions, deposition, and ecosystem effects, Atmos. Environ., 146, 55–69, https://doi.org/10.1016/j.atmosenv.2016.07.018, 2016.
Duddigan, S., Fraser, T., Green, I., Diaz, A., Sizmur, T., and Tibbett, M.: Plant, soil and faunal responses to a contrived pH gradient, Plant Soil, 462, 505–524, https://doi.org/10.1007/s11104-021-04879-z, 2021.
Encinas-Valero, M., Esteban, R., Hereş, A. M., Vivas, M., Fakhet, D., Aranjuelo, I., Solla, A., Moreno, G., and Curiel Yuste, J.: Holm oak decline is determined by shifts in fine root phenotypic plasticity in response to belowground stress, New Phytol., 235, 2237–2251, https://doi.org/10.1111/nph.18182, 2022.
Feng, X., Wang, R., Yu, Q., Cao, Y., Zhang, Y., Yang, L., Dijkstra, F. A., and Jiang, Y.: Decoupling of plant and soil metal nutrients as affected by nitrogen addition in a meadow steppe, Plant Soil, 443, 337–351, https://doi.org/10.1007/s11104-019-04217-4, 2019.
Forieri, I., Wirtz, M., and Hell, R.: Toward new perspectives on the interaction of iron and sulfur metabolism in plants, Front. Plant Sci., 4, 357, https://doi.org/10.3389/fpls.2013.00357, 2013.
Garrison, M. T., Moore, J. A., Shaw, T. M., and Mika, P. G.: Foliar nutrient and tree growth response of mixed-conifer stands to three fertilization treatments in northeast Oregon and north central Washington, Forest Ecol. Manag., 132, 183–198, https://doi.org/10.1016/S0378-1127(99)00228-5, 2000.
Geng, Y., Wang, L., Jin, D., Liu, H., and He, J.: Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits, Oecologia, 175, 445–455, https://doi.org/10.1007/s00442-014-2919-5, 2014.
Göransson, P., Falkengren-Grerup, U., and Andersson, S.: Deschampsia cespitosa and soil acidification: general and trait-specific responses to acid and aluminium stress in a solution experiment, Nord. J. Bot., 29, 97–104, https://doi.org/10.1111 /j.1756-1051.2010.00793.x, 2011.
Grassein, F., Lemauviel- Lavenant, S., Lavorel, S., Bahn, M., Bardgett, R. D., Desclos-Theveniau, M., and Laîné, P.: Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting European grass species, Ann. Bot., 115, 107–115, https://doi.org/10.1093/aob/mcu233, 2015.
Gusewell, S.: N: P ratios in terrestrial plants: Variation and functional significance, New Phytol., 164, 243–266, https://doi.org/10.1111/j.1469-8137.2004.01192.x, 2004.
Haling, R. E., Richardson, A. E., Culvenor, R. A., Lambers, H., and Simpson, R. J.: Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity, Plant Soil, 335, 457–468, doi.org/10.1007/s11104-010-0433-z, 2010.
Hammond, J.P., Broadley, M. R., and White, P. J.: Genetic responses to phosphorus deficiency, Ann. Bot., 94, 323–332, https://doi.org/10.1093/aob/mch156, 2004.
Hao, M., Messier, C., Geng, Y., Zhang, C., Zhao, X., and von Gadow, K.: Functional traits influence biomass and productivity through multiple mechanisms in a temperate secondary forest, Eur. J. For. Res., 139, 959–968, https://doi.org/10.1007/s10342-020-01298-0, 2020.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106, FAO, Rome, https://www.fao.org/soils-portal/soil-survey/soil-classification/world-reference-base/en/ (last access: 28 May 2024), 2014.
Jaggi, R. C., Aulakh, M. S., and Sharma, R.: Impacts of elemental S applied under various temperature and moisture regimes on pH and available P in acidic, neutral and alkaline soils, Biol. Fert. Soils, 41, 52–58, https://doi.org/10.1007/s00374-004-0792-9, 2005.
Jung, K., Kwak, J. H, Gilliam, F. S., and Chang, S. X.: Simulated N and S deposition affected soil chemistry and understory plant communities in a boreal forest in western Canada, J. Plant Ecol., 11, 511–523, https://doi.org/10.1093/jpe/rtx030, 2018.
Kandlikar, G. S., Kleinhesselink, A. R., and Kraft, N. J.: Functional traits predict species responses to environmental variation in a California grassland annual plant community, J. Ecol., 110, 833–844, https://doi.org/10.1111/1365-2745.13845, 2022.
Kemmitt, S. J., Wright, D., and Jones, D. L.: Soil acidification used as a management strategy to reduce nitrate losses from agricultural land, Soil Biol. Biochem., 37, 867–875, https://doi.org/10.1016/j.soilbio.2004.10.001, 2005.
Laughlin, D. C.: Nitrification is linked to dominant leaf traits rather than functional diversity, J. Ecol., 99, 1091–1099, https://doi.org/10.1111/j.1365-2745.2011.01856.x, 2011.
Leifeld, J., Bassin, S., Conen, F., Hajdas, I., Egli, M., and Fuhrer, J.: Control of soil pH on turnover of belowground organic matter in subalpine grassland, Biogeochemistry, 112, 59–69, https://doi.org/10.1007/s10533-011-9689-5, 2013.
Li, T., Wang, R., Cai, J., Meng, Y., Wang, Z., Feng, X., Liu, H., Turco, R. F., and Jiang, Y.: Enhanced carbon acquisition and use efficiency alleviate microbial carbon relative to nitrogen limitation under soil acidification, Ecol. Process., 10, 1–13, https://doi.org/10.1186/s13717-021-00309-1, 2021.
Li, Y., Sun, J., Tian, D., Wang, J., Ha, D., Qu, Y., Jing, G., and Niu, S.: Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification, Sci. Total Environ., 615, 1535–1546, https://doi.org/10.1016/j.scitotenv.2017.09.131, 2018.
Meng, C., Tian, D., Zeng, H., Li, Z., Yi, C., and Niu, S.: Global soil acidification impacts on belowground processes, Environ. Res. Lett., 14, 074003, doi.org/10.1088/1748-9326/ab239c, 2019.
Mitchell, R. J., Hewison, R. L., Fielding, D. A., Fisher, J. M., Gilbert, D. J., Hurskainen, S., Pakeman, R.J., Potts, J. M., and Riach, D.: Decline in atmospheric sulphur deposition and changes in climate are the major drivers of long-term change in grassland plant communities in Scotland, Environ. Pollut., 235, 956–964, doi.org/10.1016/j.envpol.2017.12.086, 2018.
Mueller, K. E., Eissenstat, D. M., Hobbie, S. E., Oleksyn, J., Jagodzinski, A. M., Reich, P. B., Chadwick, O. A., and Chorover, J.: Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment, Biogeochemistry, 111, 601–614, https://doi.org/10.1007/s10533-011-9695-7, 2012.
Pérez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S, Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., Buchmann, N., Funes, G., Quetier, F., Hodgson, J. G., Thompson, K., Morgan, H. D., ter Steege, H., van der Heijden, M. G. A., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M. V., Conti, G., Staver, A. C., Aquino, S., and Cornelissen, J. H. C.: New handbook for standardised measurement of plant functional traits worldwide, Aust. Bot., 61, 167–234, https://doi.org/10.1071/BT12225, 2013.
Pittman, J. K.: Managing the manganese: molecular mechanisms of manganese transport and homeostasis, New Phytol., 167, 733–742, https://doi.org/10.1111/j.1469-8137.2005.01453.x, 2005.
Rabêlo, F. H. S., Lux, A., Rossi, M. L., Martinelli, A. P., Cuypers, A., and Lavres, J.: Adequate S supply reduces the damage of high Cd exposure in roots and increases N, S and Mn uptake by Massai grass grown in hydroponics, Environ. Exp. Bot., 148, 35–46, https://doi.org/10.1016/j.envexpbot.2018.01.005, 2018.
Reich, P. B.: The world-wide “fast-slow” plant economics spectrum: a traits manifesto, J. Ecol., 102, 275–301, https://doi.org/10.1111/1365-2745.12211, 2014.
Roem, W. J. and Berendse, F.: Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities, Biol. Conserv., 92, 151–161, https://doi.org/10.1016/S0006-3207(99)00049-X, 2000.
Stevens, C. J., Thompson, K., Grime, J. P., Long, C. J., and Gowing, D. J.: Contribution of acidification and eutrophication to declines in species richness of calcifuge grasslands along a gradient of atmospheric nitrogen deposition, Funct. Ecol., 24, 478–484, https://doi.org/10.1111/j.1365-2435.2009.01663.x, 2010.
Thomaes, A., De Keersmaeker, L., De Schrijver, A., Baeten, L., Vandekerkhove, K., Verstraeten, G., and Verheye, K.: Can soil acidity and light help to explain tree species effects on forest herb layer performance in post-agricultural forests?, Plant Soil, 373, 183–199, https://doi.org/10.1007/s11104-013-1786-x, 2013.
Tian, D. and Niu, S.: A global analysis of soil acidification caused by nitrogen addition, Environ. Res. Lett., 10, 024019, https://doi.org/10.1088/1748-9326/10/2/024019, 2015.
Tian, Q., Liu, N., Bai, W., Li, L., Chen. J., Reich, P. B., Yu Q., Guo, D., Smith, M. D., Knapp, A. K., Cheng, W., Lu, P., Gao, Y., Yang, A., Wang, T., Li, X, Wang, Z., Ma, Y., and Zhang, W.: A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe, Ecology, 97, 65–74, https://doi.org/10.1890/15-0917.1, 2016.
Tian, Q., Lu, P., Ma, P., Zhou, H., Yang, M., Zhai, X. Chen M., Wang, H., Li W., Bai, W., Lambers, H., and Zhang, W.: Processes at the soil-root interface determine the different responses of nutrient limitation and metal toxicity in forbs and grasses to nitrogen enrichment, J. Ecol., 109, 927–938, https://doi.org/10.1111/1365-2745.13519, 2021.
Tian, Q., Lu, P., Zhai, X., Zhang, R., Zheng, Y., Wang, H., Nie, B., Bai, W., Niu, S., Shi, P., Yang, Y., Yang, D., Stevens, C., Lambers, H., and Zhang, W.: An integrated belowground trait-based understanding of nitrogen-driven plant diversity loss, Glob. Change Biol., 28, 3651–3664, https://doi.org/10.1111/gcb.16147, 2022.
Tibbett, M., Gil-Martínez, M., Fraser, T., Green, I. D., Duddigan, S., De Oliveira, V. H., Raulund-Rasmussen, K., Sizmur, T. and Diaz, A.: Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration, Catena, 180, 401–415, https://doi.org/10.1016/j.catena.2019.03.013, 2019.
van Dobben, H. and de Vries, W.: Relation between forest vegetation, atmospheric deposition and site conditions at regional and European scales, Environ. Pollut., 158, 921–933, https://doi.org/10.1016/j.envpol.2009.09.015, 2010.
Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., and Garnier, E.: Let the concept of trait be functional!, Oikos, 116, 882–892, https://doi.org/10.1111/j.0030-1299.2007.15559.x, 2007.
Vitousek, P. M. and Howarth, R. W.: Nitrogen limitation on land and in the sea-how can it occur?, Biogeochemistry, 13, 87–115, https://doi.org/10.1007/BF00002772, 1991.
Wang, P., Guo, J., Xu, X., Yan, X., Zhang, K., Qiu, Y., Zhao, Q., Huang, K., Luo, X., Yang, F., Guo, H., and Hu, S.: Soil acidification alters root morphology, increases root biomass but reduces root decomposition in an alpine grassland, Environ. Pollut., 265, 115016, https://doi.org/10.1016/j.envpol.2020.115016, 2020.
Yang, F., Zhang, Z., Barberán, A., Yang, Y., Hu, S., and Guo, H.: Nitrogen-induced acidification plays a vital role driving ecosystem functions: Insights from a 6-year nitrogen enrichment experiment in a Tibetan alpine meadow, Soil Biol. Biochem., 153, 108107, https://doi.org/10.1016/j.soilbio.2020.108107, 2021.
Yang, G., Lü, X., Stevens, C. J., Zhang, G., Wang, H., Wang, Z., Zhang, Z., Liu, Z., and Han, X.: Mowing mitigates the negative impacts of N addition on plant species diversity, Oecologia, 189, 769–779, https://doi.org/10.1007/s00442-019-04353-9, 2019.
Yang, Y., Ji, C., Ma, W., Wang, S., Wang, S., Han, W., Mohammat, A., Robinson, D., and Smith, P.: Significant soil acidification across northern China's grasslands during 1980s–2000s, Glob. Change Biol., 18, 2292–2300, https://doi.org/10.1111/j.1365-2486.2012.02694.x, 2012.
Yu, H., He, N., Wang, Q., Zhu, J., Gao, Y., Zhang, Y., Jia, Y., and Yu, G.: Development of atmospheric acid deposition in China from the 1990s to the 2010s, Environ. Pollut., 231, 182–190, https://doi.org/10.1016/j.envpol.2017.08.014, 2017.
Yu, Q., Chen, Q., Elser, J. J., He, N., Wu, H., Zhang, G., Wu, J., Bai, Y., and Han, X.: Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability, Ecol. Lett., 13, 1390–1399, https://doi.org/10.1111/j.1461-0248.2010.01532.x, 2010.
Zhang, B., Cadotte, M. W., Chen, S., Tan, X., You, C., Ren, T., Chen, M., Wang, S., Li, W., Chu, C., Jiang, L., Bai, Y., Huang, J., and Han, X.: Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation, Ecology, 100, e02828, https://doi.org/10.1002/ecy.2828, 2019.
Zhang, D., Peng, Y., Li, F., Yang, G., Wang, J., Yu, J., Zhou, G., and Yang, Y.: Above- and belowground resource acquisition strategies determine plant species responses to nitrogen enrichment, Ann. Bot., 128, 31–44, https://doi.org/10.1093/aob/mcab032, 2021.
Zhang, Q., Zhu, J., Wang, Q., Xu, L., Li, M., Dai, G., Mulder J., Xi Y., and He, N.: Soil acidification in China's forests due to atmospheric acid deposition from 1980 to 2050, Sci. Bull., 67, 914–917, https://doi.org/10.1016/j.scib.2022.01.004, 2022.
Zuchi, S., Cesco S., and Astolfi S.: High S supply improves Fe accumulation in durum wheat plants grown under Fe limitation, Environ. Exp. Bot., 77, 25–32, https://doi.org/10.1016/j.envexpbot.2011.11.001, 2012.
Short summary
Plant functional traits have been considered as reflecting adaptations to environmental variations, indirectly affecting ecosystem productivity. How soil acidification affects above- and belowground biomass by altering leaf and root traits remains poorly understood. We found divergent trait responses driven by soil environmental conditions in two dominant species, resulting in a decrease in aboveground biomass and an increase in belowground biomass.
Plant functional traits have been considered as reflecting adaptations to environmental...
Altmetrics
Final-revised paper
Preprint