Articles | Volume 21, issue 11
https://doi.org/10.5194/bg-21-2909-2024
https://doi.org/10.5194/bg-21-2909-2024
Research article
 | 
14 Jun 2024
Research article |  | 14 Jun 2024

From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery

Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn

Related authors

From Ground Photos to Aerial Insights: Automating Citizen Science Labeling for Tree Species Segmentation in UAV Images
Salim Soltani, Lauren E. Gillespie, Moises Exposito-Alonso, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
EGUsphere, https://doi.org/10.5194/egusphere-2025-662,https://doi.org/10.5194/egusphere-2025-662, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Impact of clouds on vegetation albedo quantified by coupling an atmosphere and a vegetation radiative transfer model
Kevin Wolf, Evelyn Jäkel, André Ehrlich, Michael Schäfer, Hannes Feilhauer, Andreas Huth, Alexandra Weigelt, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3614,https://doi.org/10.5194/egusphere-2024-3614, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Crowd-sourced trait data can be used to delimit global biomes
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
Biogeosciences, 21, 4909–4926, https://doi.org/10.5194/bg-21-4909-2024,https://doi.org/10.5194/bg-21-4909-2024, 2024
Short summary

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
Combined effects of topography, soil moisture, and snow cover regimes on growth responses of grasslands in a low- mountain range (Vosges, France)
Pierre-Alexis Herrault, Albin Ullmann, and Damien Ertlen
Biogeosciences, 22, 705–724, https://doi.org/10.5194/bg-22-705-2025,https://doi.org/10.5194/bg-22-705-2025, 2025
Short summary
Soil smoldering in temperate forests: a neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
Biogeosciences, 22, 213–242, https://doi.org/10.5194/bg-22-213-2025,https://doi.org/10.5194/bg-22-213-2025, 2025
Short summary
Enhancing environmental models with a new downscaling method for global radiation in complex terrain
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Albert Olioso, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
Biogeosciences, 22, 1–18, https://doi.org/10.5194/bg-22-1-2025,https://doi.org/10.5194/bg-22-1-2025, 2025
Short summary
On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024,https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Role of air-soil temperature on the LAI course and role of height-DBH on the maximum LAI during foliation of Platanus orientalis L. along an urban-rural greenway system
Melih Öztürk, Turgay Biricik, and Rıdvan Koruyan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3372,https://doi.org/10.5194/egusphere-2024-3372, 2024
Short summary

Cited articles

Affouard, A., Goëau, H., Bonnet, P., Lombardo, J.-C., and Joly, A.: Pl@ntnet app in the era of deep learning, in: ICLR: International Conference on Learning Representations, April 2017, Toulon, France, ffhal-01629195f, 2017. a, b
Bayraktar, E., Basarkan, M. E., and Celebi, N.: A low-cost UAV framework towards ornamental plant detection and counting in the wild, ISPRS J. Photogramm., 167, 1–11, https://doi.org/10.1016/j.isprsjprs.2020.06.012, 2020. a
Boone, M. E. and Basille, M.: Using iNaturalist to contribute your nature observations to science, EDIS, 2019, 5–5, 2019. a, b, c
Bouguettaya, A., Zarzour, H., Kechida, A., and Taberkit, A. M.: Deep learning techniques to classify agricultural crops through UAV imagery: A review, Neural Comput. Appl., 34, 9511–9536, 2022. a
Braga, G., J. R., Peripato, V., Dalagnol, R., P. Ferreira, M., Tarabalka, Y., OC Aragão, L. E., F. de Campos Velho, H., Shiguemori, E. H., and Wagner, F. H.: Tree crown delineation algorithm based on a convolutional neural network, Remote Sens., 12, 1288, https://doi.org/10.3390/rs12081288, 2020. a
Download
Short summary
In this research, we developed a novel method using citizen science data as alternative training data for computer vision models to map plant species in unoccupied aerial vehicle (UAV) images. We use citizen science plant photographs to train models and apply them to UAV images. We tested our approach on UAV images of a test site with 10 different tree species, yielding accurate results. This research shows the potential of citizen science data to advance our ability to monitor plant species.
Share
Altmetrics
Final-revised paper
Preprint