Articles | Volume 21, issue 12
https://doi.org/10.5194/bg-21-3075-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-3075-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems
Armando Molina
CORRESPONDING AUTHOR
Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Campus Yanuncay, Cuenca, Ecuador
Veerle Vanacker
CORRESPONDING AUTHOR
Earth and Life Institute, Centre for Earth and Climate Research, Université catholique de Louvain, 3 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
Oliver Chadwick
Department of Geography, University of California, Santa Barbara, Santa Barbara, CA 93106-4060, USA
Santiago Zhiminaicela
Subgerencia de Operaciones, Agua Potable y Saneamiento, Empresa Pública Municipal de Telecomunicaciones, Agua Potable, Alcantarillado y Saneamiento de Cuenca (ETAPA EP), Cuenca, Ecuador
Marife Corre
Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
Edzo Veldkamp
Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
Related authors
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, https://doi.org/10.5194/hess-27-1507-2023, 2023
Short summary
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
Veerle Vanacker, Armando Molina, Miluska A. Rosas, Vivien Bonnesoeur, Francisco Román-Dañobeytia, Boris F. Ochoa-Tocachi, and Wouter Buytaert
SOIL, 8, 133–147, https://doi.org/10.5194/soil-8-133-2022, https://doi.org/10.5194/soil-8-133-2022, 2022
Short summary
Short summary
The Andes region is prone to natural hazards due to its steep topography and climatic variability. Anthropogenic activities further exacerbate environmental hazards and risks. This systematic review synthesizes the knowledge on the effectiveness of nature-based solutions. Conservation of natural vegetation and implementation of soil and water conservation measures had significant and positive effects on soil erosion mitigation and topsoil organic carbon concentrations.
Maxime Thomas, Thomas Moenaert, Julien Radoux, Baptiste Delhez, Eléonore du Bois d'Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Matthias B. Siewert, Carl-Magnus Mörth, Michael W. Palace, Ruth K. Varner, Franklin B. Sullivan, Christina Herrick, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3788, https://doi.org/10.5194/egusphere-2025-3788, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines the rate of permafrost degradation, in the form of the transition from intact well-drained palsa to fully thawed and inundated fen at the Stordalen mire, Abisko, Sweden. Across the 14 hectares of the palsa mire, we demonstrate a 5-fold acceleration of the degradation in 2019–2021 compared to previous periods (1970–2014) which might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), and an increase of ~1.3%/year of GHG emissions.
Yanfei Li, Maud Henrion, Angus Moore, Sébastien Lambot, Sophie Opfergelt, Veerle Vanacker, François Jonard, and Kristof Van Oost
EGUsphere, https://doi.org/10.5194/egusphere-2025-1595, https://doi.org/10.5194/egusphere-2025-1595, 2025
Short summary
Short summary
Combining Unmanned Aerial Vehicle (UAV) remote sensing with in-situ monitoring provides high spatial-temporal insights into CO2 fluxes from temperate peatlands. Dynamic factors (soil temperature and moisture) are the primary drivers contributing to 29% of the spatial and 43% of the seasonal variation. UAVs are effective tools for mapping daily soil respiration. CO2 fluxes from hot spots & moments contribute 20% and 30% of total CO2 fluxes, despite representing only 10% of the area and time.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Guantao Chen, Edzo Veldkamp, Muhammad Damris, Bambang Irawan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 21, 513–529, https://doi.org/10.5194/bg-21-513-2024, https://doi.org/10.5194/bg-21-513-2024, 2024
Short summary
Short summary
We established an oil palm management experiment in a large-scale oil palm plantation in Jambi, Indonesia. We recorded oil palm fruit yield and measured soil CO2, N2O, and CH4 fluxes. After 4 years of treatment, compared with conventional fertilization with herbicide weeding, reduced fertilization with mechanical weeding did not reduce yield and soil greenhouse gas emissions, which highlights the legacy effects of over a decade of conventional management prior to the start of the experiment.
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, https://doi.org/10.5194/hess-27-1507-2023, 2023
Short summary
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Veerle Vanacker, Armando Molina, Miluska A. Rosas, Vivien Bonnesoeur, Francisco Román-Dañobeytia, Boris F. Ochoa-Tocachi, and Wouter Buytaert
SOIL, 8, 133–147, https://doi.org/10.5194/soil-8-133-2022, https://doi.org/10.5194/soil-8-133-2022, 2022
Short summary
Short summary
The Andes region is prone to natural hazards due to its steep topography and climatic variability. Anthropogenic activities further exacerbate environmental hazards and risks. This systematic review synthesizes the knowledge on the effectiveness of nature-based solutions. Conservation of natural vegetation and implementation of soil and water conservation measures had significant and positive effects on soil erosion mitigation and topsoil organic carbon concentrations.
Najeeb Al-Amin Iddris, Marife D. Corre, Martin Yemefack, Oliver van Straaten, and Edzo Veldkamp
Biogeosciences, 17, 5377–5397, https://doi.org/10.5194/bg-17-5377-2020, https://doi.org/10.5194/bg-17-5377-2020, 2020
Short summary
Short summary
We quantified the changes in stem and soil nitrous oxide (N2O) fluxes with forest conversion to cacao agroforestry in the Congo Basin, Cameroon. All forest and cacao trees consistently emitted N2O, contributing 8–38 % of the total (soil and stem) emissions. Forest conversion to extensively managed (>–20 years old) cacao agroforestry had no effect on stem and soil N2O fluxes. Our results highlight the importance of including tree-mediated fluxes in the ecosystem-level N2O budget.
Greta Formaglio, Edzo Veldkamp, Xiaohong Duan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 17, 5243–5262, https://doi.org/10.5194/bg-17-5243-2020, https://doi.org/10.5194/bg-17-5243-2020, 2020
Short summary
Short summary
The intensive management of large-scale oil palm plantations may result in high nutrient leaching losses which reduce soil fertility and potentially pollute water bodies. The reduction in management intensity with lower fertilization rates and with mechanical weeding instead of the use of herbicide results in lower nutrient leaching losses while maintaining high yield. Lower leaching results from lower nutrient inputs from fertilizer and from higher retention by enhanced cover vegetation.
Cited articles
Amundson, R.: An Introduction to the Biogeochemistry of Soils, Cambridge, UK, Cambridge University Press, ISBN 978-1-108-83126-0, 2021.
Amundson, R., Richter, D. D., Humphreys, G. S., Jobbaìgy, E. G., and Gaillardet, J.: Coupling between Biota and Earth Materials in the Critical Zone, Elements, 3, 327–332, https://doi.org/10.2113/gselements.3.5.327, 2007.
Bader, M. Y. and Ruijten, J. J. A.: A topography-based model of forest cover at the alpine tree line in the tropical Andes, J. Biogeogr., 35, 711–723, https://doi.org/10.1111/j.1365-2699.2007.01818.x, 2008.
Beate, B., Monzier, M., Spikings, R., Cotton, J., Silva, J., Bourdon, E., and Eissen, J. P.: Mio-Pliocene adakite generation related to flat subduction in southern Ecuador: The Quimsacocha volcanic center, Earth Planet. Sc. Lett., 192, 561–570, https://doi.org/10.1016/S0012-821X(01)00466-6, 2001.
Bol, R., Julich, D., Brödlin, D., Siemens, J., Kaiser, K., Dip- pold, M. A., Spielvogel, S., Zilla, T., Mewes, D., von Blanck- enburg, F., Puhlmann, H., Holzmann, S., Weiler, M., Amelung, W., Lang, F., Kuzyakov, Y., Feger, K. H., Gottselig, N., Klumpp, E., Missong, A., Winkelmann, C., Uhlig, D., Sohrt, J., von Wilpert, K., Wu, B., and Hagedorn, F.: Dissolved and colloidal phosphorus fluxes in forest ecosystems – an almost blind spot in ecosystem research, J. Plant Nutr. Soil Sc., 179, 425–438, https://doi.org/10.1002/jpln.201600079, 2016.
Borie, F., Aguilera, P., Castillo, C., Valentine, A., Seguel, A., Barea, J. M., and Cornejo, P.: Revisiting the nature of phosphorus pools in Chilean volcanic soils as a basis for arbuscular mycorrhizal management in plant P acquisition, J. Soil Sci. Plant Nut., 19, 390–401, https://doi.org/10.1007/s42729-019-00041-y, 2019.
Boxman, A. W., Peters, R. C., and Roelofs, J. G.: Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands, Environ. Pollut., 156, 1252–1259, https://doi.org/10.1016/j.envpol.2008.03.017, 2008.
Brantley, S. L. and White, A. F.: Approaches to modeling weathered regolith, Rev. Miner. Geochem., 70, 435–484, https://doi.org/10.2138/rmg.2009.70.10, 2009.
Brantley, S. L., Eissenstat, D. M., Marshall, J. A., Godsey, S. E., Balogh-Brunstad, Z., Karwan, D. L., Papuga, S. A., Roering, J., Dawson, T. E., Evaristo, J., Chadwick, O., McDonnell, J. J., and Weathers, K. C.: Reviews and syntheses: on the roles trees play in building and plumbing the critical zone, Biogeosciences, 14, 5115–5142, https://doi.org/10.5194/bg-14-5115-2017, 2017.
Buss, H. L., Chapela Lara, M., Moore, O. W., Kurtz, A. C., Schulz, M. S., and White, A. F.: Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical Zone Observatory, Geochim. Cosmochim. Ac., 196, 224–251, https://doi.org/10.1016/j.gca.2016.09.038, 2017.
Buytaert, W., De Bièvre, B., Wyseure, G., and Deckers, J.: The effect of land use changes on the hydrological behaviour of Histic Andosols in south Ecuador, Hydrol. Process., 19, 3985–3997, https://doi.org/10.1002/hyp.5867, 2005.
Buytaert, W., Deckers, J., and Wyseure, G.: Description and classification of nonallophanic Andosols in south Ecuadorian alpine grasslands (páramo), Geomorphology, 73, 207–221, https://doi.org/10.1016/j.geomorph.2005.06.012, 2006.
Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., and Schulze, E. D.: Maximum rooting depth of vegetation types at the global scale, Oecologia, 108, 583–595, https://doi.org/10.1007/BF00329030, 1996.
Carabajo-Hidalgo, A., Sabaté, S., Crespo, P., and Asbjornsen, H.: Brief windows with more favorable atmospheric conditions explain patterns of Polylepis reticulata tree water use in a high-altitude Andean forest, Tree Physiol., 43, 2085–2097, https://doi.org/10.1093/treephys/tpad109, 2023.
Carrillo-Rojas, G., Silva, B., Rollenbeck, R. Célleri, R., and Bendix, J.: The breathing of the Andean highlands: Net ecosystem exchange and evapotranspiration over the páramo of southern Ecuador, Agr. Forest Meteorol., 265, 30–47, https://doi.org/10.1016/j.agrformet.2018.11.006, 2019.
Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J., and Hedin, L. O.: Changing sources of nutrients during four million years of ecosystem development, Nature, 397, 491–497, https://doi.org/10.1038/17276, 1999.
Chadwick, O. A., Gavenda, R. T., Kelly, E. F., Ziegler, K., Olson, C. G., Elliott, W. C., and Hendricks, D. M.: The impact of climate on the biogeochemical functioning of volcanic soils, Chem. Geol., 202, 195–223, https://doi.org/10.1016/j.chemgeo.2002.09.001, 2003.
Clapuyt, F., Vanacker, V., and Van Oost, K.: Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms, Geomorphology, 260, 4–15, https://doi.org/10.1016/j.geomorph.2015.05.011, 2016.
Coblentz, D. and Keating, P. L.: Topographic controls on the distribution of tree islands in the high Andes of south-western Ecuador, J. Biogeogr., 35, 2026–2038, https://doi.org/10.1111/j.1365-2699.2008.01956.x, 2008.
Cramer, M. D., Hoffmann, V., and Verboom, G. A.: Nutrient availability moderates transpiration in Ehrharta calycina, New Phytol., 179, 1048–1057, https://doi.org/10.1111/j.1469-8137.2008.02510.x, 2008.
Crawley, M. J.: The R book, John Wiley and Sons Limited, Chichester, UK, https://doi.org/10.1007/s00362-008-0118-3, 2009.
Dawson, T. E., Hahm, W. J., and Crutchfield-Peters, K.: Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology, New Phytol., 226, 666–671, https://doi.org/10.1111/nph.16410, 2020.
Delfim, J., Schoebitz, M., Paulino, L., Hirzel, J., and Zagal, E.: Phosphorus availability in wheat, in volcanic soils inoculated with phosphate-solubilizing Bacillus thuringiensis, Sustainability, 10, 144, https://doi.org/10.3390/su10010144, 2018.
Dixon, J. L., Chadwick, O. A., and Vitousek, P. M.: Climate-driven thresholds for chemical weathering in postglacial soils of New Zealand, J. Geophys. Res.-Earth Surf., 121, 1619–1634, https://doi.org/10.1002/2016JF003864, 2016.
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., and Otero-Casal, C.: Hydrologic regulation of plant rooting depth, P. Natl. Acad. Sci. USA, 114, 10572–10577, https://doi.org/10.1073/pnas.1712381114, 2017.
Food and Agriculture Organization: World reference base for soil resources 2006, A framework for international classification, correlation and communication, Rome: World Soil Resources. Reports No 103, FAO/ISRIC/IUSS, ISBN 92-5-105511-4, 2006.
Hansen, B. C., Rodbell, D., Seltzer, G., León, B., Young, K., and Abbott, M.: Late-glacial and Holocene vegetational history from two sites in the western Cordillera of southwestern Ecuador, Palaeogeogr. Palaeoecl., 194, 79–108, https://doi.org/10.1016/S0031-0182(03)00272-4, 2003.
Hasenmueller, E. A., Gu, X., Weitzman, J. N., Adams, T. S., Stinchcomb, G. E., Eissenstat, D. M., Drohan, P. J., Brantley, S. L., and Kaye, J. P.: Weathering of rock to regolith: The activity of deep roots in bedrock fractures, Geoderma, 300, 11–31, https://doi.org/10.1016/j.geoderma.2017.03.020, 2017.
Hedin, L. O., Vitousek, P. M., and Matson, P. A.: Nutrient losses over four million years of tropical forest development, Ecology, 84, 2231–2255, https://doi.org/10.1890/02-4066, 2003.
Hobbie, S. E.: Effects of plant-species on nutrient cycling, Trends Ecol. Evol., 7, 336–339, https://doi.org/10.1016/0169-5347(92)90126-V, 1992.
Hofhansl, F., Wanek, W., Drage, S., Huber, W., Weissenhofer, A., and Richter, A.: Topography strongly affects atmospheric deposition and canopy exchange processes in different types of wet lowland rainforest, Southwest Costa Rica, Biogeochemistry, 106, 371–396, https://doi.org/10.1007/s10533-010-9517-3, 2011.
Jackson, R. B., Schenk, H. J., Jobbaìgy, E. G., Canadell, J., Colello, G. D., Dickinson, R. E., Field, C. B., Friedlingstein, P., Heimann, M., Hibbard, K., Kicklighter, D. W., Kleidon, A., Neilson, R. P., Parton, W. J., Sala, O. E., and Sykes, M. T.: Belowground consequences of vegetation change and their treatment in models, Ecol. Appl., 10, 470–483, https://doi.org/10.1890/1051-0761(2000)010[0470:BCOVCA]2.0.CO;2, 2000.
Jackson, R. B., Banner, J. L., Jobbágy, E. G., Pockman, W. T., and Wall, D. H.: Ecosystem carbon loss with woody plant invasion of grasslands, Nature, 418, 623–626, https://doi.org/10.1038/nature00910, 2002.
Jantz, N. and Behling, H.: A Holocene environmental record reflecting vegetation, climate, and fire variability at the Páramo of Quimsacocha, southwestern Ecuadorian Andes, Veg. Hist. Archaeobot., 21, 169–185, https://doi.org/10.1007/s00334-011-0327-x, 2012.
Jobbágy, E. G. and Jackson, R. B.: The distribution of soil nutrients with depth: Global patterns and the imprint of plants, Biogeochemistry, 53, 51–77, https://doi.org/10.1023/A:1010760720215, 2001.
Jobbágy, E. G. and Jackson, R. B.: The uplift of soil nutrients by plants: Biogeochemical consequences across scales, Ecology, 85, 2380–2389, https://doi.org/10.1890/03-0245, 2004.
Jobbágy, E. G. and Jackson, R. B.: Groundwater and soil chemical changes under phreatophytic tree plantations, J. Geophys. Res.-Biogeo., 112, G02013, https://doi.org/10.1029/2006JG000246, 2007.
Kelly, E. F., Chadwick, O. A., and Hilinski, T. E.: The effects of plants on mineral weathering, Biogeochemistry, 42, 21–53, https://doi.org/10.1023/A:1005919306687, 1998.
Klute, A.: Water Retention: Laboratory Methods, in: Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, edited by: Klute, A., Soil Science Society of America, American Society of Agronomy, Madison, WI, USA, 635–662, https://doi.org/10.2136/sssabookser5.1.2ed.c26, 1986.
Kurniawan, S., Corre, M. D., Matson, A. L., Schulte-Bisping, H., Utami, S. R., van Straaten, O., and Veldkamp, E.: Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils, Biogeosciences, 15, 5131–5154, https://doi.org/10.5194/bg-15-5131-2018, 2018.
Landeweert, R., Hoffland, E., Finlay, R. D., Kuyper, T. W., and van Breemen, N.: Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals, Trends Ecol. Evol., 16, 248–254, https://doi.org/10.1016/S0169-5347(01)02122-X, 2001.
Lazo, P. X., Mosquera, G. M., McDonnell, J. J., and Crespo, P.: The role of vegetation, soils, and precipitation on water storage and hydrological services in Andean páramo catchments, J. Hydrol., 572, 805–819, https://doi.org/10.1016/j.jhydrol.2019.03.050, 2019.
Maher, K.: The role of fluid residence time and topographic scales in determining chemical fluxes from landscapes, Earth Planet. Sc. Lett., 312, 48–58, https://doi.org/10.1016/j.epsl.2011.09.040, 2011.
Marín, F., Dahik, C., Mosquera, G., Feyen, J., Cisneros, P., and Crespo, P.: Changes in soil hydro-physical properties and SOM due to pine afforestation and grazing in Andean environments cannot be generalized, Forests, 10, 1–23, https://doi.org/10.3390/f10010017, 2018.
McLaughlin, S. B. and Wimmer, R.: Calcium physiology and terrestrial ecosystem processes, New Phytol., 142, 373–417, 1999.
Minaya, V., Corzo, G., Romero-Saltos, H., van der Kwast, J., Lantinga, E., Galárraga-Sánchez, R., and Mynett, A.: Altitudinal analysis of carbon stocks in the Antisana páramo, Ecuadorian Andes, J. Plant Ecol., 9, 553–563, https://doi.org/10.1093/jpe/rtv073, 2016.
Molina, A. and Vanacker, V.: Soil observatory Sigsihuaycu, Tropical Andes, UCLouvain Dataverse [data set], https://doi.org/10.14428/DVN/OKL0K0, 2024.
Molina, A., Vanacker, V., Corre, M. D., and Veldkamp, E.: Patterns in soil chemical weathering related to topographic gradients and vegetation structure in a high Andean tropical ecosystem, J. Geophys. Res.-Earth, 124, 666–685, https://doi.org/10.1029/2018JF004856, 2019.
Mora, D. E. and Willems, P.: Decadal oscillations in rainfall and air temperature in the Paute River basin-southern Andes of Ecuador, Theor. Appl. Climatol., 108, 267–282, https://doi.org/10.1007/s00704-011-0527-4, 2012.
Mosquera, P. V., Hampel, H., Vázquez, R. F., and Catalan, J.: Water chemistry variation in tropical high-mountain lakes on old volcanic bedrocks, Limnol. Oceanogr., 67, 1522–1536, https://doi.org/10.1002/lno.12099, 2022.
Nieminen, T. M., Derome, K., Meesenburg, H., and De Vos, B.: Chapter 16-Soil Solution: Sampling and Chemical Analyses, Dev. Environ. Sci., 12, 301–315, https://doi.org/10.1016/B978-0-08-098222-9.00016-9, 2013.
Olshansky, Y., Knowles, J. F., Barron-Gafford, G. A., Rasmussen, C., Abramson, N., and Chorover, J.: Soil fluid biogeochemical response to climatic events, J. Geophys. Res.-Biogeo., 124, 2866–2882, https://doi.org/10.1029/2019JG005216, 2019.
Páez-Bimos, S., Villacís, M., Morales, O., Calispa, M., Molina, A., Salgado, S., De Bièvre, B., Muñoz, T., and Vanacker, V.: Vegetation effects on soil pore structure and hydraulic properties in volcanic ash soils of the high Andes, Hydrol. Process., 36, e14678, https://doi.org/10.1002/hyp.14678, 2022.
Páez-Bimos, S., Molina, A., Calispa, M., Delmelle, P., Lahuatte, B., Villacís, M., Muñoz, T., and Vanacker, V.: Soil–vegetation–water interactions controlling solute flow and chemical weathering in volcanic ash soils of the high Andes, Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, 2023.
Ping, C.-L., Michaelson, G. J., Stiles, C. A., and González, G.: Soil characteristics, carbon stores, and nutrient distribution in eight forest types along an elevation gradient, eastern Puerto Rico, Ecol. Bull., 54, 67–86, 2013.
Podwojewski, P. and Poulenard, J.: En los suelos del páramo del Ecuador, Serie Páramo 5, GTP/Abya Yala, Quito, Ecuador, ISBN 9978-04-591-0, 2000.
Porder, S. and Chadwick, O. A.: Climate and soil-age constraints on nutrient uplift and retention by plants, Ecology, 90, 623–636, https://doi.org/10.1890/07-1739.1, 2009.
Poulenard, J., Podwojewski, P., and Herbillon, A. J.: Characteristics of non-allophanic andisols with hydric properties from the Ecuadorian paramos, Geoderma, 117, 267–281, https://doi.org/10.1016/s0016-7061(03)00128-9, 2003.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, last access: 24 March 2023.
Rada, F., Azocar, A., and Garcìa-Nuñez, C.: Plant functional diversity in tropical Andean paramos, Plant Ecol. Divers., 12, 539–553, https://doi.org/10.1080/17550874.2019.1674396, 2019.
Ramsay, P. M.: The Páramo Vegetation of Ecuador: the community ecology, dynamics and productivity of tropical grasslands in the Andes, PhD thesis, 1–274, University of Wales, UK, 1992.
Rempe, D. M. and Dietrich, W. E.: Direct observations of rock moisture, a hidden component of the hydrologic cycle, P. Natl. Acad. Sci. USA, 115, 2664–2669, https://doi.org/10.1073/pnas.1800141115, 2018.
Rodbell, D. T., Bagnato, S., Nebolini, J. C., Seltzer, G. O., and Abbott, M. B.: A Late-Glacial-Holocene tephrochronology for glacial lakes in southern Ecuador, Quaternary Res., 57, 343–354, https://doi.org/10.1006/qres.2002.2324, 2002.
Schenk, H. J. and Jackson, R. B.: Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems, J. Ecol., 90, 480–494, https://www.jstor.org/stable/3072232, 2002.
Schwendenmann, L. and Veldkamp, E.: The role of dissolved organic carbon, dissolved organic nitrogen and dissolved inorganic nitrogen in a tropical wet forest ecosystem, Ecosystems, 8, 339–351, https://doi.org/10.1007/s10021-003-0088-1, 2005.
Shaul, O.: Magnesium transport and function in plants: the tip of the iceberg, Biometals, 15, 307–321, https://doi.org/10.1023/A:1016091118585, 2002.
Tenorio, G. E., Vanacker, V., Campforts, B., Álvarez, L., Zhiminaicela, S., Vercruysse, K., Molina, A., and Govers, G.: Tracking spatial variation in river load from Andean highlands to inter-Andean valleys, Geomorphology, 308, 175–189, https://doi.org/10.1016/j.geomorph.2018.02.009, 2018.
Tonneijck, F. H., Jansen, B., Nierop, K. G. J., Verstraten, J. M., Sevink, J., and de Lange, L.: Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador, Eur. J. Soil Sci., 61, 392–405, https://doi.org/10.1111/j.1365-2389.2010.01241.x, 2010.
Tripler, C. E., Kaushal, S. S., Likens, G. E., and Walter, M. T.: Patterns in potassium dynamics in forest ecosystems, Ecol. Lett., 9, 451–466, https://doi.org/10.1111/j.1461-0248.2006.00891.x, 2006.
Uhlig, D., Schuessler, J. A., Bouchez, J., Dixon, J. L., and von Blanckenburg, F.: Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes, Biogeosciences, 14, 3111–3128, https://doi.org/10.5194/bg-14-3111-2017, 2017.
Uhlig, D., Amelung, W., and von Blanckenburg, F.: Mineral nutrients sourced in deep regolith sustain long-term nutrition of mountainous temperate forest ecosystems, Global Biogeochem. Cy., 34, e2019GB006513, https://doi.org/10.1029/2019GB006513, 2020.
van Dam, J. C., Stricker, J. N. M., and Droogers, P.: Inverse method to determine soil hydraulic functions from multistep outflow experiments, Soil Sci. Soc. Am. J., 58, 647–652, https://doi.org/10.2136/sssaj1994.03615995005800030002x, 1994.
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic properties of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980.
van Hoorn, J. W.: Determining hydraulic conductivity with the inversed auger hole and infiltrometer methods, in: Proceedings of the International Drainage Workshop, Wageningen, the Netherlands, 16–20 May 1978, 150–249, 1979.
Vitousek, P., Chadwick, O., Matson, P., Allison, S., Derry, L., Kettley, L., Luers, A., Mecking, E., Monastra, V., and Porder, S.: Erosion and the Rejuvenation of Weathering-derived Nutrient Supply in an Old Tropical Landscape, Ecosystems, 6, 762–772, https://doi.org/10.1007/s10021-003-0199-8, 2003.
Vitousek, P. M.: Nutrient Cycling and Limitation: Hawaii as a Model System, USA, Princeton University Press, ISBN 0-691-11579-6, 2004.
White, A. F., Schulz, M. S., Stonestrom, D. A., Vivit, D. V., Fitzpatrick, J., Bullen, T. D., Maher, K., and Blum, A. E.: Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. Part II: Solute profiles, gradients and the comparisons of contemporary and long-term weathering rates, Geochim. Cosmochim. Ac., 73, 2769–2803, https://doi.org/10.1016/j.gca.2009.01.029, 2009.
White, A. F., Schulz, M. S., Vivit, D. V., Bullen, T. D., and Fitzpatrick, J.: The impact of biotic/abiotic interfaces in mineral nutrient cycling: a study of soils of the Santa Cruz chronosequence, California, Geochim. Cosmochim. Ac., 77, 62–85, https://doi.org/10.1016/j.gca.2011.10.029, 2012.
White, S.: Grass páramo as hunter-gatherer landscape, Holocene, 23, 898–915, https://doi.org/10.1177/0959683612471987, 2013.
Zhang, H., Aldana-Jague, E., Clapuyt, F., Wilken, F., Vanacker, V., and Van Oost, K.: Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection, Earth Surf. Dynam., 7, 807–827, https://doi.org/10.5194/esurf-7-807-2019, 2019.
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock...
Altmetrics
Final-revised paper
Preprint