Articles | Volume 21, issue 15
https://doi.org/10.5194/bg-21-3491-2024
https://doi.org/10.5194/bg-21-3491-2024
Research article
 | 
02 Aug 2024
Research article |  | 02 Aug 2024

Patterns and drivers of organic matter decomposition in peatland open-water pools

Julien Arsenault, Julie Talbot, Tim R. Moore, Klaus-Holger Knorr, Henning Teickner, and Jean-François Lapierre

Related authors

Multi-scale water balance analysis of a thawing boreal peatland complex near the southern permafrost limit in western Canada
Alexandre Lhosmot, Gabriel Hould Gosselin, Manuel Helbig, Julien Fouché, Youngryel Ryu, Matteo Detto, Ryan Connon, William Quinton, Tim Moore, and Oliver Sonnentag
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-367,https://doi.org/10.5194/hess-2024-367, 2025
Preprint under review for HESS
Short summary
Fate of dissolved organic matter across the permafrost–nearshore water continuum: role of the intertidal sediments
Aude Flamand, Jean-François Lapierre, and Gwénaëlle Chaillou
EGUsphere, https://doi.org/10.5194/egusphere-2024-2945,https://doi.org/10.5194/egusphere-2024-2945, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Duration of extraction determines CO2 and CH4 emissions from an actively extracted peatland in eastern Quebec, Canada
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023,https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Water level variation at a beaver pond significantly impacts net CO2 uptake of a continental bog
Hongxing He, Tim Moore, Elyn R. Humphreys, Peter M. Lafleur, and Nigel T. Roulet
Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023,https://doi.org/10.5194/hess-27-213-2023, 2023
Short summary
Controls on autotrophic and heterotrophic respiration in an ombrotrophic bog
Tracy E. Rankin, Nigel T. Roulet, and Tim R. Moore
Biogeosciences, 19, 3285–3303, https://doi.org/10.5194/bg-19-3285-2022,https://doi.org/10.5194/bg-19-3285-2022, 2022
Short summary

Related subject area

Biogeochemistry: Wetlands
Decomposing the Tea Bag Index and finding slower organic matter loss rates at higher elevations and deeper soil horizons in a minerogenic salt marsh
Satyatejas G. Reddy, W. Reilly Farrell, Fengrun Wu, Steven C. Pennings, Jonathan Sanderman, Meagan Eagle, Christopher Craft, and Amanda C. Spivak
Biogeosciences, 22, 435–453, https://doi.org/10.5194/bg-22-435-2025,https://doi.org/10.5194/bg-22-435-2025, 2025
Short summary
Assessing root–soil interactions in wetland plants: root exudation and radial oxygen loss
Katherine A. Haviland and Genevieve L. Noyce
Biogeosciences, 21, 5185–5198, https://doi.org/10.5194/bg-21-5185-2024,https://doi.org/10.5194/bg-21-5185-2024, 2024
Short summary
Technical note: Comparison of radiometric techniques for estimating recent organic carbon sequestration rates in inland wetland soils
Purbasha Mistry, Irena F. Creed, Charles G. Trick, Eric Enanga, and David A. Lobb
Biogeosciences, 21, 4699–4715, https://doi.org/10.5194/bg-21-4699-2024,https://doi.org/10.5194/bg-21-4699-2024, 2024
Short summary
Simulating soil atmosphere exchanges and CO2 fluxes for a restored peatland
Hongxing He, Ian B. Strachan, and Nigel T. Roulet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2679,https://doi.org/10.5194/egusphere-2024-2679, 2024
Short summary
Shoulder season controls on methane emissions from a boreal peatland
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
Biogeosciences, 21, 3761–3788, https://doi.org/10.5194/bg-21-3761-2024,https://doi.org/10.5194/bg-21-3761-2024, 2024
Short summary

Cited articles

Arsenault, J., Talbot, J., and Moore, T. R.: Environmental controls of C, N and P biogeochemistry in peatland pools, Sci. Total Environ., 631/632, 714–722, 2018. 
Arsenault, J., Talbot, J., Moore, T. R., Beauvais, M.-P., Franssen, J., and Roulet, N. T.: The spatial heterogeneity of vegetation, hydrology and water chemistry in a peatland with open-water pools, Ecosystems, 22, 1352–1367, 2019. 
Arsenault, J., Talbot, J., Brown, L., Holden, J., Martinez-Cruz, K., Sepulveda-Jauregui, A., Swindles, G. T., Wauthy, M., and Lapierre, J. F.: Biogeochemical distinctiveness of peatland ponds, thermokarst waterbodies, and lakes, Geophys. Res. Lett., 49, e2021GL097492, https://doi.org/10.1029/2021GL097492, 2022. 
Arsenault, J., Talbot, J., Brown, L. E., Helbig, M., Holden, J., Hoyos-Santillan, J., Jolin, É., Mackenzie, R., Martinez-Cruz, K., Sepulveda-Jauregui, A., and Lapierre, J.: Climate-driven spatial and temporal patterns in peatland pool biogeochemistry, Glob. Change Biol., 29, 4056–4068, 2023. 
Arsenault, J., Talbot, J., Moore, T. R., Knorr, K.-H., Teickner, H., and Lapierre, J.-F.: Patterns and drivers of organic matter decomposition in peatland open-water pool, Zenodo [data set], https://doi.org/10.5281/zenodo.10581235, 2024. 
Download
Short summary
Peatlands are among the largest carbon (C) sinks on the planet. However, peatland features such as open-water pools emit more C than they accumulate because of higher decomposition than production. With this study, we show that the rates of decomposition vary among pools and are mostly driven by the environmental conditions in pools rather than by the nature of the material being decomposed. This means that changes in pool number or size may modify the capacity of peatlands to accumulate C.
Share
Altmetrics
Final-revised paper
Preprint