Articles | Volume 21, issue 15
https://doi.org/10.5194/bg-21-3491-2024
https://doi.org/10.5194/bg-21-3491-2024
Research article
 | 
02 Aug 2024
Research article |  | 02 Aug 2024

Patterns and drivers of organic matter decomposition in peatland open-water pools

Julien Arsenault, Julie Talbot, Tim R. Moore, Klaus-Holger Knorr, Henning Teickner, and Jean-François Lapierre

Related authors

Duration of extraction determines CO2 and CH4 emissions from an actively extracted peatland in eastern Quebec, Canada
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023,https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Water level variation at a beaver pond significantly impacts net CO2 uptake of a continental bog
Hongxing He, Tim Moore, Elyn R. Humphreys, Peter M. Lafleur, and Nigel T. Roulet
Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023,https://doi.org/10.5194/hess-27-213-2023, 2023
Short summary
Controls on autotrophic and heterotrophic respiration in an ombrotrophic bog
Tracy E. Rankin, Nigel T. Roulet, and Tim R. Moore
Biogeosciences, 19, 3285–3303, https://doi.org/10.5194/bg-19-3285-2022,https://doi.org/10.5194/bg-19-3285-2022, 2022
Short summary
Effects of experimental nitrogen deposition on peatland carbon pools and fluxes: a modelling analysis
Y. Wu, C. Blodau, T. R. Moore, J. Bubier, S. Juutinen, and T. Larmola
Biogeosciences, 12, 79–101, https://doi.org/10.5194/bg-12-79-2015,https://doi.org/10.5194/bg-12-79-2015, 2015
Carbon and greenhouse gas balances in an age sequence of temperate pine plantations
M. Peichl, A. M. Arain, T. R. Moore, J. J. Brodeur, M. Khomik, S. Ullah, N. Restrepo-Coupé, J. McLaren, and M. R. Pejam
Biogeosciences, 11, 5399–5410, https://doi.org/10.5194/bg-11-5399-2014,https://doi.org/10.5194/bg-11-5399-2014, 2014

Related subject area

Biogeochemistry: Wetlands
Spatial patterns of organic matter content in the surface soil of the salt marshes of the Venice Lagoon (Italy)
Alice Puppin, Davide Tognin, Massimiliano Ghinassi, Erica Franceschinis, Nicola Realdon, Marco Marani, and Andrea D'Alpaos
Biogeosciences, 21, 2937–2954, https://doi.org/10.5194/bg-21-2937-2024,https://doi.org/10.5194/bg-21-2937-2024, 2024
Short summary
Sorption of colored vs. noncolored organic matter by tidal marsh soils
Patrick J. Neale, J. Patrick Megonigal, Maria Tzortziou, Elizabeth A. Canuel, Christina R. Pondell, and Hannah Morrissette
Biogeosciences, 21, 2599–2620, https://doi.org/10.5194/bg-21-2599-2024,https://doi.org/10.5194/bg-21-2599-2024, 2024
Short summary
Peatland evaporation across hemispheres: contrasting controls and sensitivity to climate warming driven by plant functional types
Leeza Speranskaya, David I. Campbell, Peter M. Lafleur, and Elyn R. Humphreys
Biogeosciences, 21, 1173–1190, https://doi.org/10.5194/bg-21-1173-2024,https://doi.org/10.5194/bg-21-1173-2024, 2024
Short summary
Seasonal controls on methane flux components in a boreal peatland – combining plant removal and stable isotope analyses
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
EGUsphere, https://doi.org/10.5194/egusphere-2023-3098,https://doi.org/10.5194/egusphere-2023-3098, 2024
Short summary
Driving and limiting factors of CH4 and CO2 emissions from coastal brackish-water wetlands in temperate regions
Emilia Chiapponi, Sonia Silvestri, Denis Zannoni, Marco Antonellini, and Beatrice M. S. Giambastiani
Biogeosciences, 21, 73–91, https://doi.org/10.5194/bg-21-73-2024,https://doi.org/10.5194/bg-21-73-2024, 2024
Short summary

Cited articles

Arsenault, J., Talbot, J., and Moore, T. R.: Environmental controls of C, N and P biogeochemistry in peatland pools, Sci. Total Environ., 631/632, 714–722, 2018. 
Arsenault, J., Talbot, J., Moore, T. R., Beauvais, M.-P., Franssen, J., and Roulet, N. T.: The spatial heterogeneity of vegetation, hydrology and water chemistry in a peatland with open-water pools, Ecosystems, 22, 1352–1367, 2019. 
Arsenault, J., Talbot, J., Brown, L., Holden, J., Martinez-Cruz, K., Sepulveda-Jauregui, A., Swindles, G. T., Wauthy, M., and Lapierre, J. F.: Biogeochemical distinctiveness of peatland ponds, thermokarst waterbodies, and lakes, Geophys. Res. Lett., 49, e2021GL097492, https://doi.org/10.1029/2021GL097492, 2022. 
Arsenault, J., Talbot, J., Brown, L. E., Helbig, M., Holden, J., Hoyos-Santillan, J., Jolin, É., Mackenzie, R., Martinez-Cruz, K., Sepulveda-Jauregui, A., and Lapierre, J.: Climate-driven spatial and temporal patterns in peatland pool biogeochemistry, Glob. Change Biol., 29, 4056–4068, 2023. 
Arsenault, J., Talbot, J., Moore, T. R., Knorr, K.-H., Teickner, H., and Lapierre, J.-F.: Patterns and drivers of organic matter decomposition in peatland open-water pool, Zenodo [data set], https://doi.org/10.5281/zenodo.10581235, 2024. 
Download
Short summary
Peatlands are among the largest carbon (C) sinks on the planet. However, peatland features such as open-water pools emit more C than they accumulate because of higher decomposition than production. With this study, we show that the rates of decomposition vary among pools and are mostly driven by the environmental conditions in pools rather than by the nature of the material being decomposed. This means that changes in pool number or size may modify the capacity of peatlands to accumulate C.
Altmetrics
Final-revised paper
Preprint