Articles | Volume 21, issue 3
https://doi.org/10.5194/bg-21-731-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-731-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigating ecosystem connections in the shelf sea environment using complex networks
Meteorology Department, University of Reading, Reading, UK
National Centre for Earth Observation, Leicester, UK
Jozef Skákala
National Centre for Earth Observation, Leicester, UK
Plymouth Marine Laboratory, Plymouth, UK
Ross Bannister
Meteorology Department, University of Reading, Reading, UK
National Centre for Earth Observation, Leicester, UK
Alberto Carrassi
Meteorology Department, University of Reading, Reading, UK
Department of Physics and Astronomy “Augusto Righi”, University of Bologna, Bologna, Italy
Stefano Ciavatta
Mercator Ocean International, Toulouse, France
Related authors
No articles found.
Simon Driscoll, Alberto Carrassi, Julien Brajard, Laurent Bertino, Einar Ólason, Marc Bocquet, and Amos Lawless
EGUsphere, https://doi.org/10.5194/egusphere-2024-2476, https://doi.org/10.5194/egusphere-2024-2476, 2024
Short summary
Short summary
The formation and evolution of sea ice melt ponds (ponds of melted water) are complex, insufficiently understood and represented in models with considerable uncertainty. These uncertain representations are not traditionally included in climate models potentially causing the known underestimation of sea ice loss in climate models. Our work creates the first observationally based machine learning model of melt ponds that is also a ready and viable candidate to be included in climate models.
Gianpiero Cossarini, Andy Moore, Stefano Ciavatta, and Katja Fennel
State Planet Discuss., https://doi.org/10.5194/sp-2024-8, https://doi.org/10.5194/sp-2024-8, 2024
Revised manuscript under review for SP
Short summary
Short summary
Marine biogeochemistry refers to the cycling of chemical elements resulting from physical transport, chemical reaction, uptake, and processing by living organisms. Biogeochemical models can have a wide range of complexity, from single parameterizations of processes to fully explicit representations of several nutrients, trophic levels, and functional groups. Uncertainty sources are the lack of knowledge about the parameterizations, initial and boundary conditions and the lack of observations
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024, https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Short summary
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its response to climate change, we need the best possible estimate of its physical and biogeochemical properties. This is obtained through data assimilation which blends numerical models and observations. We present the Ensemble and Assimilation Tool (EAT), a flexible and efficient test bed that allows any scientist to explore and further develop the state of the art in data assimilation.
Lilian Garcia-Oliva, Alberto Carrassi, and François Counillon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1843, https://doi.org/10.5194/egusphere-2024-1843, 2024
Short summary
Short summary
We used a simple coupled model and a data assimilation method to find the correct initialisation for climate predictions. We aim to clarify when weakly or strongly coupled data assimilation (WCDA or SCDA) is best, depending on the system's dynamical characteristics (spatio-temporal) and data coverage.
We found that WCDA is better in full data coverage. When we have a partially observed system, SCDA is better. This result depends on the temporal and spatial scale of the observed quantity.
We found that WCDA is better in full data coverage. When we have a partially observed system, SCDA is better. This result depends on the temporal and spatial scale of the observed quantity.
Jozef Skakala, David Ford, Keith Haines, Amos Lawless, Matthew Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Mike Bell, Davi Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
EGUsphere, https://doi.org/10.5194/egusphere-2024-1737, https://doi.org/10.5194/egusphere-2024-1737, 2024
Short summary
Short summary
In this paper we review marine data assimilation (MDA) in the UK, its stakeholders, needs, past and present developments in different areas of UK MDA, and offer a vision for their longer future. The specific areas covered are ocean physics and sea ice, marine biogeochemistry, coupled MDA, MDA informing observing network design and MDA theory. We also discuss future vision for MDA resources: observations, software, hardware and people skills.
Deep S. Banerjee and Jozef Skakala
EGUsphere, https://doi.org/10.22541/essoar.171405637.76928549/v1, https://doi.org/10.22541/essoar.171405637.76928549/v1, 2024
Short summary
Short summary
Nitrate is a crucial nutrient in oceans. Excess nutrients can trigger uncontrolled algae growth (eutrophication), damaging marine ecosystems. We used a machine learning tool to generate a skilled, gap-free, bi-decadal surface nitrate dataset from sparse observations. This dataset reveals areas on the North West European Shelf at risk of eutrophication, bi-decadal trends in coastal nitrate, and an impact of winter nitrate on spring phytoplankton blooms.
Yumeng Chen, Polly Smith, Alberto Carrassi, Ivo Pasmans, Laurent Bertino, Marc Bocquet, Tobias Sebastian Finn, Pierre Rampal, and Véronique Dansereau
The Cryosphere, 18, 2381–2406, https://doi.org/10.5194/tc-18-2381-2024, https://doi.org/10.5194/tc-18-2381-2024, 2024
Short summary
Short summary
We explore multivariate state and parameter estimation using a data assimilation approach through idealised simulations in a dynamics-only sea-ice model based on novel rheology. We identify various potential issues that can arise in complex operational sea-ice models when model parameters are estimated. Even though further investigation will be needed for such complex sea-ice models, we show possibilities of improving the observed and the unobserved model state forecast and parameter accuracy.
Ross Noel Bannister and Chris Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2024-655, https://doi.org/10.5194/egusphere-2024-655, 2024
Preprint archived
Short summary
Short summary
Prior information is essential for the top-down estimation of CH4 surface fluxes. Errors in the prior are correlated in time/space, but accounting for correlations can be costly. We report on an efficient scheme to represent correlations in the inverse modelling system, INVICAT. The method is tested by assimilating CH4 observations using the scheme. Our findings show that accounting for spatio-temporal correlations improve CH4 flux estimates, demonstrating that the method should be further used.
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Jiangshan Zhu and Ross Noel Bannister
Geosci. Model Dev., 16, 6067–6085, https://doi.org/10.5194/gmd-16-6067-2023, https://doi.org/10.5194/gmd-16-6067-2023, 2023
Short summary
Short summary
We describe how condensation and evaporation are included in the existing (otherwise dry) simplified ABC model. The new model (Hydro-ABC) includes transport of vapour and condensate within a dynamical core, and it transitions between these two phases via a micro-physics scheme. The model shows the development of an anvil cloud and excitation of atmospheric waves over many frequencies. The covariances that develop between variables are also studied together with indicators of convective motion.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Bo Dong, Ross Bannister, Yumeng Chen, Alison Fowler, and Keith Haines
Geosci. Model Dev., 16, 4233–4247, https://doi.org/10.5194/gmd-16-4233-2023, https://doi.org/10.5194/gmd-16-4233-2023, 2023
Short summary
Short summary
Traditional Kalman smoothers are expensive to apply in large global ocean operational forecast and reanalysis systems. We develop a cost-efficient method to overcome the technical constraints and to improve the performance of existing reanalysis products.
Tobias Sebastian Finn, Charlotte Durand, Alban Farchi, Marc Bocquet, Yumeng Chen, Alberto Carrassi, and Véronique Dansereau
The Cryosphere, 17, 2965–2991, https://doi.org/10.5194/tc-17-2965-2023, https://doi.org/10.5194/tc-17-2965-2023, 2023
Short summary
Short summary
We combine deep learning with a regional sea-ice model to correct model errors in the sea-ice dynamics of low-resolution forecasts towards high-resolution simulations. The combined model improves the forecast by up to 75 % and thereby surpasses the performance of persistence. As the error connection can additionally be used to analyse the shortcomings of the forecasts, this study highlights the potential of combined modelling for short-term sea-ice forecasting.
Nicholas Williams, Nicholas Byrne, Daniel Feltham, Peter Jan Van Leeuwen, Ross Bannister, David Schroeder, Andrew Ridout, and Lars Nerger
The Cryosphere, 17, 2509–2532, https://doi.org/10.5194/tc-17-2509-2023, https://doi.org/10.5194/tc-17-2509-2023, 2023
Short summary
Short summary
Observations show that the Arctic sea ice cover has reduced over the last 40 years. This study uses ensemble-based data assimilation in a stand-alone sea ice model to investigate the impacts of assimilating three different kinds of sea ice observation, including the novel assimilation of sea ice thickness distribution. We show that assimilating ice thickness distribution has a positive impact on thickness and volume estimates within the ice pack, especially for very thick ice.
Sukun Cheng, Yumeng Chen, Ali Aydoğdu, Laurent Bertino, Alberto Carrassi, Pierre Rampal, and Christopher K. R. T. Jones
The Cryosphere, 17, 1735–1754, https://doi.org/10.5194/tc-17-1735-2023, https://doi.org/10.5194/tc-17-1735-2023, 2023
Short summary
Short summary
This work studies a novel application of combining a Lagrangian sea ice model, neXtSIM, and data assimilation. It uses a deterministic ensemble Kalman filter to incorporate satellite-observed ice concentration and thickness in simulations. The neXtSIM Lagrangian nature is handled using a remapping strategy on a common homogeneous mesh. The ensemble is formed by perturbing air–ocean boundary conditions and ice cohesion. Thanks to data assimilation, winter Arctic sea ice forecasting is enhanced.
Joshua Chun Kwang Lee, Javier Amezcua, and Ross Noel Bannister
Geosci. Model Dev., 15, 6197–6219, https://doi.org/10.5194/gmd-15-6197-2022, https://doi.org/10.5194/gmd-15-6197-2022, 2022
Short summary
Short summary
In this article, we implement a novel data assimilation method for the ABC–DA system which combines traditional data assimilation approaches in a hybrid approach. We document the technical development and test the hybrid approach in idealised experiments within a tropical framework of the ABC–DA system. Our findings indicate that the hybrid approach outperforms individual traditional approaches. Its potential benefits have been highlighted and should be explored further within this framework.
Francine Schevenhoven and Alberto Carrassi
Geosci. Model Dev., 15, 3831–3844, https://doi.org/10.5194/gmd-15-3831-2022, https://doi.org/10.5194/gmd-15-3831-2022, 2022
Short summary
Short summary
In this study, we present a novel formulation to build a dynamical combination of models, the so-called supermodel, which needs to be trained based on data. Previously, we assumed complete and noise-free observations. Here, we move towards a realistic scenario and develop adaptations to the training methods in order to cope with sparse and noisy observations. The results are very promising and shed light on how to apply the method with state of the art general circulation models.
Yumeng Chen, Alberto Carrassi, and Valerio Lucarini
Nonlin. Processes Geophys., 28, 633–649, https://doi.org/10.5194/npg-28-633-2021, https://doi.org/10.5194/npg-28-633-2021, 2021
Short summary
Short summary
Chaotic dynamical systems are sensitive to the initial conditions, which are crucial for climate forecast. These properties are often used to inform the design of data assimilation (DA), a method used to estimate the exact initial conditions. However, obtaining the instability properties is burdensome for complex problems, both numerically and analytically. Here, we suggest a different viewpoint. We show that the skill of DA can be used to infer the instability properties of a dynamical system.
Ross Noel Bannister
Geosci. Model Dev., 13, 3789–3816, https://doi.org/10.5194/gmd-13-3789-2020, https://doi.org/10.5194/gmd-13-3789-2020, 2020
Short summary
Short summary
Forecasting models start from initial conditions, and data assimilation (DA) is the way that initial conditions are found from a combination of previous model data and latest observations. The ABC model is a simplified convective-scale model developed previously, and ABC-DA is the version of this system that includes the DA capability. This system is described in the present paper, and its performance is demonstrated with a range of options that control how the data assimilation is done.
Colin Grudzien, Marc Bocquet, and Alberto Carrassi
Geosci. Model Dev., 13, 1903–1924, https://doi.org/10.5194/gmd-13-1903-2020, https://doi.org/10.5194/gmd-13-1903-2020, 2020
Short summary
Short summary
All scales of a dynamical physical process cannot be resolved accurately in a multiscale, geophysical model. The behavior of unresolved scales of motion are often parametrized by a random process to emulate their effects on the dynamically resolved variables, and this results in a random–dynamical model. We study how the choice of a numerical discretization of such a system affects the model forecast and estimation statistics, when the random–dynamical model is unbiased in its parametrization.
Francine Schevenhoven, Frank Selten, Alberto Carrassi, and Noel Keenlyside
Earth Syst. Dynam., 10, 789–807, https://doi.org/10.5194/esd-10-789-2019, https://doi.org/10.5194/esd-10-789-2019, 2019
Short summary
Short summary
Weather and climate predictions potentially improve by dynamically combining different models into a
supermodel. A crucial step is to train the supermodel on the basis of observations. Here, we apply two different training methods to the global atmosphere–ocean–land model SPEEDO. We demonstrate that both training methods yield climate and weather predictions of superior quality compared to the individual models. Supermodel predictions can also outperform the commonly used multi-model mean.
Ali Aydoğdu, Alberto Carrassi, Colin T. Guider, Chris K. R. T Jones, and Pierre Rampal
Nonlin. Processes Geophys., 26, 175–193, https://doi.org/10.5194/npg-26-175-2019, https://doi.org/10.5194/npg-26-175-2019, 2019
Short summary
Short summary
Computational models involving adaptive meshes can both evolve dynamically and be remeshed. Remeshing means that the state vector dimension changes in time and across ensemble members, making the ensemble Kalman filter (EnKF) unsuitable for assimilation of observational data. We develop a modification in which analysis is performed on a fixed uniform grid onto which the ensemble is mapped, with resolution relating to the remeshing criteria. The approach is successfully tested on two 1-D models.
Marc Bocquet, Julien Brajard, Alberto Carrassi, and Laurent Bertino
Nonlin. Processes Geophys., 26, 143–162, https://doi.org/10.5194/npg-26-143-2019, https://doi.org/10.5194/npg-26-143-2019, 2019
Short summary
Short summary
This paper describes an innovative way to use data assimilation to infer the dynamics of a physical system from its observation only. The method can operate with noisy and partial observation of the physical system. It acts as a deep learning technique specialised to dynamical models without the need for machine learning tools. The method is successfully tested on chaotic dynamical systems: the Lorenz-63, Lorenz-96, and Kuramoto–Sivashinski models and a two-scale Lorenz model.
Julien Brajard, Alberto Carrassi, Marc Bocquet, and Laurent Bertino
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-136, https://doi.org/10.5194/gmd-2019-136, 2019
Revised manuscript not accepted
Short summary
Short summary
We explore the possibility of combining data assimilation with machine learning. We introduce a new hybrid method for a two-fold scope: (i) emulating hidden, possibly chaotic, dynamics and (ii) predicting its future states. Numerical experiments have been carried out using the chaotic Lorenz 96 model, proving both the convergence of the hybrid method and its statistical skills including short-term forecasting and emulation of the long-term dynamics.
Colin Grudzien, Alberto Carrassi, and Marc Bocquet
Nonlin. Processes Geophys., 25, 633–648, https://doi.org/10.5194/npg-25-633-2018, https://doi.org/10.5194/npg-25-633-2018, 2018
Short summary
Short summary
Using the framework Lyapunov vectors, we analyze the asymptotic properties of ensemble based Kalman filters and how these are influenced by dynamical chaos, especially in the context of random model errors and small ensemble sizes. Particularly, we show a novel derivation of the evolution of forecast uncertainty for ensemble-based Kalman filters with weakly-nonlinear error growth, and discuss its impact for filter design in geophysical models.
Matthias Rabatel, Pierre Rampal, Alberto Carrassi, Laurent Bertino, and Christopher K. R. T. Jones
The Cryosphere, 12, 935–953, https://doi.org/10.5194/tc-12-935-2018, https://doi.org/10.5194/tc-12-935-2018, 2018
Short summary
Short summary
Large deviations still exist between sea ice forecasts and observations because of both missing physics in models and uncertainties on model inputs. We investigate how the new sea ice model neXtSIM is sensitive to uncertainties in the winds. We highlight and quantify the role of the internal forces in the ice on this sensitivity and show that neXtSIM is better at predicting sea ice drift than a free-drift (without internal forces) ice model and is a skilful tool for search and rescue operations.
ABC model: a non-hydrostatic toy model for use in convective-scale data assimilation investigations
Ruth Elizabeth Petrie, Ross Noel Bannister, and Michael John Priestley Cullen
Geosci. Model Dev., 10, 4419–4441, https://doi.org/10.5194/gmd-10-4419-2017, https://doi.org/10.5194/gmd-10-4419-2017, 2017
Short summary
Short summary
The model and experiments in this paper are to study atmospheric flows on small (kilometre) scales. Compared to larger-scale flows, kilometre-scale motion is more difficult to predict, and geophysical balances are less valid. For these reasons, data assimilation (or DA, the task of using observations to initialise models) is more difficult, as the character of forecast errors (which have to be corrected by DA) is more difficult to represent. This model will be used to study small-scale DA.
Ross Noel Bannister, Stefano Migliorini, Alison Clare Rudd, and Laura Hart Baker
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-260, https://doi.org/10.5194/gmd-2017-260, 2017
Revised manuscript has not been submitted
Short summary
Short summary
An ensemble of weather forecasts (i.e. multiple forecasts) contains useful information that a traditional single forecast does not have. Most existing forecast ensembles though have few members (ensemble too small), meaning that the information that they contain is noisy. This paper shows how more ensemble members can be generated from an existing (small) ensemble, and how the value added by the extra members can be assessed in a quantitative way.
Momme Butenschön, James Clark, John N. Aldridge, Julian Icarus Allen, Yuri Artioli, Jeremy Blackford, Jorn Bruggeman, Pierre Cazenave, Stefano Ciavatta, Susan Kay, Gennadi Lessin, Sonja van Leeuwen, Johan van der Molen, Lee de Mora, Luca Polimene, Sevrine Sailley, Nicholas Stephens, and Ricardo Torres
Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016, https://doi.org/10.5194/gmd-9-1293-2016, 2016
Short summary
Short summary
ERSEM 15.06 is a model for marine biogeochemistry and the lower trophic levels of the marine food web. It comprises a pelagic and benthic sub-model including the microbial food web and the major biogeochemical cycles of carbon, nitrogen, phosphorus, silicate, and iron using dynamic stochiometry. Further features include modules for the carbonate system and calcification. We present full mathematical descriptions of all elements along with examples at various scales up to 3-D applications.
L. H. Baker, A. C. Rudd, S. Migliorini, and R. N. Bannister
Nonlin. Processes Geophys., 21, 19–39, https://doi.org/10.5194/npg-21-19-2014, https://doi.org/10.5194/npg-21-19-2014, 2014
Related subject area
Biogeochemistry: Modelling, Aquatic
Changes in Arctic Ocean plankton community structure and trophic dynamics on seasonal to interannual timescales
Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model
Efficiency metrics for ocean alkalinity enhancement under responsive and prescribed atmosphere conditions
Killing the predator: impacts of highest-predator mortality on the global-ocean ecosystem structure
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 1: roles of nutrient limitation and plankton community
Argon Saturation in a Suite of Coupled General Ocean Circulation Biogeochemical Models off Mauretania
Validation of the coupled physical–biogeochemical ocean model NEMO–SCOBI for the North Sea–Baltic Sea system
Seasonal and interannual variability of the pelagic ecosystem and of the organic carbon budget in the Rhodes Gyre (eastern Mediterranean): influence of winter mixing
How much do bacterial growth properties and biodegradable dissolved organic matter control water quality at low flow?
Methane emissions from Arctic landscapes during 2000–2015: an analysis with land and lake biogeochemistry models
Including filter-feeding gelatinous macrozooplankton in a global marine biogeochemical model: model–data comparison and impact on the ocean carbon cycle
Riverine impact on future projections of marine primary production and carbon uptake
Subsurface oxygen maximum in oligotrophic marine ecosystems: mapping the interaction between physical and biogeochemical processes
Quantifying biological carbon pump pathways with a data-constrained mechanistic model ensemble approach
Assessing the spatial and temporal variability of methylmercury biogeochemistry and bioaccumulation in the Mediterranean Sea with a coupled 3D model
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 2: statistical modeling and hypoxia prediction
Modelling the effects of benthic fauna on carbon, nitrogen and phosphorus dynamics in the Baltic Sea
Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms
Nutrient transport and transformation in macrotidal estuaries of the French Atlantic coast: a modeling approach using the Carbon-Generic Estuarine Model
A modelling study of temporal and spatial pCO2 variability on the biologically active and temperature-dominated Scotian Shelf
Modeling the marine chromium cycle: new constraints on global-scale processes
New insights into large-scale trends of apparent organic matter reactivity in marine sediments and patterns of benthic carbon transformation
Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models
Zooplankton mortality effects on the plankton community of the northern Humboldt Current System: sensitivity of a regional biogeochemical model
Multi-compartment kinetic–allometric (MCKA) model of radionuclide bioaccumulation in marine fish
Impact of bottom trawling on sediment biogeochemistry: a modelling approach
Cyanobacteria blooms in the Baltic Sea: a review of models and facts
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble
Modeling silicate–nitrate–ammonium co-limitation of algal growth and the importance of bacterial remineralization based on an experimental Arctic coastal spring bloom culture study
Role of jellyfish in the plankton ecosystem revealed using a global ocean biogeochemical model
Extreme event waves in marine ecosystems: an application to Mediterranean Sea surface chlorophyll
Use of optical absorption indices to assess seasonal variability of dissolved organic matter in Amazon floodplain lakes
The role of sediment-induced light attenuation on primary production during Hurricane Gustav (2008)
Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry
Seasonal patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from a regional high-resolution ocean biogeochemical model
Oxygen dynamics and evaluation of the single-station diel oxygen model across contrasting geologies
Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modeling approach
Global trends in marine nitrate N isotopes from observations and a neural network-based climatology
Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry
Model constraints on the anthropogenic carbon budget of the Arctic Ocean
Modeling oceanic nitrate and nitrite concentrations and isotopes using a 3-D inverse N cycle model
Biogeochemical response of the Mediterranean Sea to the transient SRES-A2 climate change scenario
Modelling the biogeochemical effects of heterotrophic and autotrophic N2 fixation in the Gulf of Aqaba (Israel), Red Sea
A perturbed biogeochemistry model ensemble evaluated against in situ and satellite observations
Diazotrophy as the main driver of the oligotrophy gradient in the western tropical South Pacific Ocean: results from a one-dimensional biogeochemical–physical coupled model
Causes of simulated long-term changes in phytoplankton biomass in the Baltic proper: a wavelet analysis
Modelling N2 fixation related to Trichodesmium sp.: driving processes and impacts on primary production in the tropical Pacific Ocean
Long-term response of oceanic carbon uptake to global warming via physical and biological pumps
Gabriela Negrete-García, Jessica Y. Luo, Colleen M. Petrik, Manfredi Manizza, and Andrew D. Barton
Biogeosciences, 21, 4951–4973, https://doi.org/10.5194/bg-21-4951-2024, https://doi.org/10.5194/bg-21-4951-2024, 2024
Short summary
Short summary
The Arctic Ocean experiences significant seasonal and year-to-year changes, impacting marine plankton populations. Using a plankton community model, we studied these effects on plankton communities and their influence on fish production. Our findings revealed earlier plankton blooms, shifts towards more carnivorous zooplankton, and increased fishery potential during summertime, especially in warmer years with less ice, highlighting the delicate balance of Arctic ecosystems.
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024, https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary
Short summary
N is a crucial nutrient that limits phytoplankton growth in large ocean areas. The amount of oceanic N is governed by the balance of N2 fixation and denitrification. Here we incorporate benthic denitrification into an Earth system model with variable particulate stoichiometry. Our model compares better to the observed surface nutrient distributions, marine N2 fixation, and primary production. Benthic denitrification plays an important role in marine N and C cycling and hence the global climate.
Michael Dominik Tyka
EGUsphere, https://doi.org/10.5194/egusphere-2024-2150, https://doi.org/10.5194/egusphere-2024-2150, 2024
Short summary
Short summary
Marine CO2 removal (mCDR) is a promising technology for removing legacy emissions from the atmosphere. Its indirect nature makes it difficult to assess experimentally; instead one relies heavily on simulation. Many past papers treated the atmosphere as non-responsive to the intervention studied. We show that even under these simplified assumptions, the increase in ocean CO2 inventory is equal to the equivalent quantity of direct CO2 removals occurring over time, in a realistic atmosphere.
David Talmy, Eric Carr, Harshana Rajakaruna, Selina Våge, and Anne Willem Omta
Biogeosciences, 21, 2493–2507, https://doi.org/10.5194/bg-21-2493-2024, https://doi.org/10.5194/bg-21-2493-2024, 2024
Short summary
Short summary
The structure of plankton communities is central to global cycles of carbon, nitrogen, and other elements. This study explored the sensitivity of different assumptions about highest-predator mortality in ecosystem models with contrasting food web structures. In the context of environmental data, we find support for models assuming a density-dependent mortality of the highest predator, irrespective of assumed food web structure.
Yanda Ou and Z. George Xue
Biogeosciences, 21, 2385–2424, https://doi.org/10.5194/bg-21-2385-2024, https://doi.org/10.5194/bg-21-2385-2024, 2024
Short summary
Short summary
Developed for the Gulf of Mexico (2006–2020), a 3D hydrodynamic–biogeochemical model validated against in situ data reveals the impact of nutrients and plankton diversity on dissolved oxygen dynamics. It highlights the role of physical processes, sediment oxygen consumption, and nutrient distribution in shaping bottom oxygen levels and hypoxia. The model underscores the importance of complex plankton interactions for understanding primary production and hypoxia evolution.
Heiner Dietze and Ulrike Löptien
EGUsphere, https://doi.org/10.5194/egusphere-2024-918, https://doi.org/10.5194/egusphere-2024-918, 2024
Short summary
Short summary
We introduce argon saturation as a prognostic variable in a suite of coupled general ocean circulation biogeochemical models off Mauretania. Our results indicate that the effect of increasing the spatial horizontal model resolutions from 12 km to 1.5 km leads to changes comparable to other infamous spurious effects of state-of-the-art numerical advection numerics.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023, https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Short summary
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation site. In this study, we use a 3D physical–biogeochemical model to investigate the seasonal and interannual variability of organic carbon dynamics in the gyre. Our results show its autotrophic nature and its high interannual variability, with enhanced primary production, downward exports, and onward exports to the surrounding regions during years marked by intense heat losses and deep mixed layers.
Masihullah Hasanyar, Thomas Romary, Shuaitao Wang, and Nicolas Flipo
Biogeosciences, 20, 1621–1633, https://doi.org/10.5194/bg-20-1621-2023, https://doi.org/10.5194/bg-20-1621-2023, 2023
Short summary
Short summary
The results of this study indicate that biodegradable dissolved organic matter is responsible for oxygen depletion at low flow during summer seasons when heterotrophic bacterial activity is so intense. Therefore, the dissolved organic matter must be well measured in the water monitoring networks in order to have more accurate water quality models. It also advocates for high-frequency data collection for better quantification of the uncertainties related to organic matter.
Xiangyu Liu and Qianlai Zhuang
Biogeosciences, 20, 1181–1193, https://doi.org/10.5194/bg-20-1181-2023, https://doi.org/10.5194/bg-20-1181-2023, 2023
Short summary
Short summary
We are among the first to quantify methane emissions from inland water system in the pan-Arctic. The total CH4 emissions are 36.46 Tg CH4 yr−1 during 2000–2015, of which wetlands and lakes were 21.69 Tg yr−1 and 14.76 Tg yr−1, respectively. By using two non-overlap area change datasets with land and lake models, our simulation avoids small lakes being counted twice as both lake and wetland, and it narrows the gap between two different methods used to quantify regional CH4 emissions.
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023, https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Short summary
Gelatinous zooplankton play a key role in the ocean carbon cycle. In particular, pelagic tunicates, which feed on a wide size range of prey, produce rapidly sinking detritus. Thus, they efficiently transfer carbon from the surface to the depths. Consequently, we added these organisms to a marine biogeochemical model (PISCES-v2) and evaluated their impact on the global carbon cycle. We found that they contribute significantly to carbon export and that this contribution increases with depth.
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023, https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary
Short summary
We assess the impact of riverine nutrients and carbon (C) on projected marine primary production (PP) and C uptake using a fully coupled Earth system model. Riverine inputs alleviate nutrient limitation and thus lessen the projected PP decline by up to 0.7 Pg C yr−1 globally. The effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projected ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver.
Valeria Di Biagio, Stefano Salon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 19, 5553–5574, https://doi.org/10.5194/bg-19-5553-2022, https://doi.org/10.5194/bg-19-5553-2022, 2022
Short summary
Short summary
The amount of dissolved oxygen in the ocean is the result of interacting physical and biological processes. Oxygen vertical profiles show a subsurface maximum in a large part of the ocean. We used a numerical model to map this subsurface maximum in the Mediterranean Sea and to link local differences in its properties to the driving processes. This emerging feature can help the marine ecosystem functioning to be better understood, also under the impacts of climate change.
Michael R. Stukel, Moira Décima, and Michael R. Landry
Biogeosciences, 19, 3595–3624, https://doi.org/10.5194/bg-19-3595-2022, https://doi.org/10.5194/bg-19-3595-2022, 2022
Short summary
Short summary
The biological carbon pump (BCP) transports carbon into the deep ocean, leading to long-term marine carbon sequestration. It is driven by many physical, chemical, and ecological processes. We developed a model of the BCP constrained using data from 11 cruises in 4 different ocean regions. Our results show that sinking particles and vertical mixing are more important than transport mediated by vertically migrating zooplankton. They also highlight the uncertainty in current estimates of the BCP.
Ginevra Rosati, Donata Canu, Paolo Lazzari, and Cosimo Solidoro
Biogeosciences, 19, 3663–3682, https://doi.org/10.5194/bg-19-3663-2022, https://doi.org/10.5194/bg-19-3663-2022, 2022
Short summary
Short summary
Methylmercury (MeHg) is produced and bioaccumulated in marine food webs, posing concerns for human exposure through seafood consumption. We modeled and analyzed the fate of MeHg in the lower food web of the Mediterranean Sea. The modeled spatial–temporal distribution of plankton bioaccumulation differs from the distribution of MeHg in surface water. We also show that MeHg exposure concentrations in temperate waters can be lowered by winter convection, which is declining due to climate change.
Yanda Ou, Bin Li, and Z. George Xue
Biogeosciences, 19, 3575–3593, https://doi.org/10.5194/bg-19-3575-2022, https://doi.org/10.5194/bg-19-3575-2022, 2022
Short summary
Short summary
Over the past decades, the Louisiana–Texas shelf has been suffering recurring hypoxia (dissolved oxygen < 2 mg L−1). We developed a novel prediction model using state-of-the-art statistical techniques based on physical and biogeochemical data provided by a numerical model. The model can capture both the magnitude and onset of the annual hypoxia events. This study also demonstrates that it is possible to use a global model forecast to predict regional ocean water quality.
Eva Ehrnsten, Oleg Pavlovitch Savchuk, and Bo Gustav Gustafsson
Biogeosciences, 19, 3337–3367, https://doi.org/10.5194/bg-19-3337-2022, https://doi.org/10.5194/bg-19-3337-2022, 2022
Short summary
Short summary
We studied the effects of benthic fauna, animals living on or in the seafloor, on the biogeochemical cycles of carbon, nitrogen and phosphorus using a model of the Baltic Sea ecosystem. By eating and excreting, the animals transform a large part of organic matter sinking to the seafloor into inorganic forms, which fuel plankton blooms. Simultaneously, when they move around (bioturbate), phosphorus is bound in the sediments. This reduces nitrogen-fixing plankton blooms and oxygen depletion.
Brandon J. McNabb and Philippe D. Tortell
Biogeosciences, 19, 1705–1721, https://doi.org/10.5194/bg-19-1705-2022, https://doi.org/10.5194/bg-19-1705-2022, 2022
Short summary
Short summary
The trace gas dimethyl sulfide (DMS) plays an important role in the ocean sulfur cycle and can also influence Earth’s climate. Our study used two statistical methods to predict surface ocean concentrations and rates of sea–air exchange of DMS in the northeast subarctic Pacific. Our results show improved predictive power over previous approaches and suggest that nutrient availability, light-dependent processes, and physical mixing may be important controls on DMS in this region.
Xi Wei, Josette Garnier, Vincent Thieu, Paul Passy, Romain Le Gendre, Gilles Billen, Maia Akopian, and Goulven Gildas Laruelle
Biogeosciences, 19, 931–955, https://doi.org/10.5194/bg-19-931-2022, https://doi.org/10.5194/bg-19-931-2022, 2022
Short summary
Short summary
Estuaries are key reactive ecosystems along the land–ocean aquatic continuum and are often strongly impacted by anthropogenic activities. We calculated nutrient in and out fluxes by using a 1-D transient model for seven estuaries along the French Atlantic coast. Among these, large estuaries with high residence times showed higher retention rates than medium and small ones. All reveal coastal eutrophication due to the excess of diffused nitrogen from intensive agricultural river basins.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Frerk Pöppelmeier, David J. Janssen, Samuel L. Jaccard, and Thomas F. Stocker
Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021, https://doi.org/10.5194/bg-18-5447-2021, 2021
Short summary
Short summary
Chromium (Cr) is a redox-sensitive element that holds promise as a tracer of ocean oxygenation and biological activity. We here implemented the oxidation states Cr(III) and Cr(VI) in the Bern3D model to investigate the processes that shape the global Cr distribution. We find a Cr ocean residence time of 5–8 kyr and that the benthic source dominates the tracer budget. Further, regional model–data mismatches suggest strong Cr removal in oxygen minimum zones and a spatially variable benthic source.
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Short summary
In this study we analyse surface ocean dimethylsulfide (DMS) concentration and flux to the atmosphere from four CMIP6 Earth system models over the historical and ssp585 simulations.
Our analysis of contemporary (1980–2009) climatologies shows that models better reproduce observations in mid to high latitudes. The models disagree on the sign of the trend of the global DMS flux from 1980 onwards. The models agree on a positive trend of DMS over polar latitudes following sea-ice retreat dynamics.
Mariana Hill Cruz, Iris Kriest, Yonss Saranga José, Rainer Kiko, Helena Hauss, and Andreas Oschlies
Biogeosciences, 18, 2891–2916, https://doi.org/10.5194/bg-18-2891-2021, https://doi.org/10.5194/bg-18-2891-2021, 2021
Short summary
Short summary
In this study we use a regional biogeochemical model of the eastern tropical South Pacific Ocean to implicitly simulate the effect that fluctuations in populations of small pelagic fish, such as anchovy and sardine, may have on the biogeochemistry of the northern Humboldt Current System. To do so, we vary the zooplankton mortality in the model, under the assumption that these fishes eat zooplankton. We also evaluate the model for the first time against mesozooplankton observations.
Roman Bezhenar, Kyeong Ok Kim, Vladimir Maderich, Govert de With, and Kyung Tae Jung
Biogeosciences, 18, 2591–2607, https://doi.org/10.5194/bg-18-2591-2021, https://doi.org/10.5194/bg-18-2591-2021, 2021
Short summary
Short summary
A new approach to predicting the accumulation of radionuclides in fish was developed by taking into account heterogeneity of distribution of contamination in the organism and dependence of metabolic process rates on the fish mass. Predicted concentrations of radionuclides in fish agreed well with the laboratory and field measurements. The model with the defined generic parameters could be used in marine environments without local calibration, which is important for emergency decision support.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Adriaan D. Rijnsdorp, and Karline Soetaert
Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, https://doi.org/10.5194/bg-18-2539-2021, 2021
Short summary
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Britta Munkes, Ulrike Löptien, and Heiner Dietze
Biogeosciences, 18, 2347–2378, https://doi.org/10.5194/bg-18-2347-2021, https://doi.org/10.5194/bg-18-2347-2021, 2021
Short summary
Short summary
Cyanobacteria blooms can strongly aggravate eutrophication problems of water bodies. Their controls are, however, not comprehensively understood, which impedes effective management and protection plans. Here we review the current understanding of cyanobacteria blooms. Juxtaposition of respective field and laboratory studies with state-of-the-art mathematical models reveals substantial uncertainty associated with nutrient demands, grazing, and death of cyanobacteria.
Jens Terhaar, Olivier Torres, Timothée Bourgeois, and Lester Kwiatkowski
Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021, https://doi.org/10.5194/bg-18-2221-2021, 2021
Short summary
Short summary
The uptake of carbon, emitted as a result of human activities, results in ocean acidification. We analyse 21st-century projections of acidification in the Arctic Ocean, a region of particular vulnerability, using the latest generation of Earth system models. In this new generation of models there is a large decrease in the uncertainty associated with projections of Arctic Ocean acidification, with freshening playing a greater role in driving acidification than previously simulated.
Tobias R. Vonnahme, Martial Leroy, Silke Thoms, Dick van Oevelen, H. Rodger Harvey, Svein Kristiansen, Rolf Gradinger, Ulrike Dietrich, and Christoph Völker
Biogeosciences, 18, 1719–1747, https://doi.org/10.5194/bg-18-1719-2021, https://doi.org/10.5194/bg-18-1719-2021, 2021
Short summary
Short summary
Diatoms are crucial for Arctic coastal spring blooms, and their growth is controlled by nutrients and light. At the end of the bloom, inorganic nitrogen or silicon can be limiting, but nitrogen can be regenerated by bacteria, extending the algal growth phase. Modeling these multi-nutrient dynamics and the role of bacteria is challenging yet crucial for accurate modeling. We recreated spring bloom dynamics in a cultivation experiment and developed a representative dynamic model.
Rebecca M. Wright, Corinne Le Quéré, Erik Buitenhuis, Sophie Pitois, and Mark J. Gibbons
Biogeosciences, 18, 1291–1320, https://doi.org/10.5194/bg-18-1291-2021, https://doi.org/10.5194/bg-18-1291-2021, 2021
Short summary
Short summary
Jellyfish have been included in a global ocean biogeochemical model for the first time. The global mean jellyfish biomass in the model is within the observational range. Jellyfish are found to play an important role in the plankton ecosystem, influencing community structure, spatiotemporal dynamics and biomass. The model raises questions about the sensitivity of the zooplankton community to jellyfish mortality and the interactions between macrozooplankton and jellyfish.
Valeria Di Biagio, Gianpiero Cossarini, Stefano Salon, and Cosimo Solidoro
Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020, https://doi.org/10.5194/bg-17-5967-2020, 2020
Short summary
Short summary
Events that influence the functioning of the Earth’s ecosystems are of interest in relation to a changing climate. We propose a method to identify and characterise
wavesof extreme events affecting marine ecosystems for multi-week periods over wide areas. Our method can be applied to suitable ecosystem variables and has been used to describe different kinds of extreme event waves of phytoplankton chlorophyll in the Mediterranean Sea, by analysing the output from a high-resolution model.
Maria Paula da Silva, Lino A. Sander de Carvalho, Evlyn Novo, Daniel S. F. Jorge, and Claudio C. F. Barbosa
Biogeosciences, 17, 5355–5364, https://doi.org/10.5194/bg-17-5355-2020, https://doi.org/10.5194/bg-17-5355-2020, 2020
Short summary
Short summary
In this study, we analyze the seasonal changes in the dissolved organic matter (DOM) quality (based on its optical properties) in four Amazon floodplain lakes. DOM plays a fundamental role in surface water chemistry, controlling metal bioavailability and mobility, and nutrient cycling. The model proposed in our paper highlights the potential to study DOM quality at a wider spatial scale, which may help to better understand the persistence and fate of DOM in the ecosystem.
Zhengchen Zang, Z. George Xue, Kehui Xu, Samuel J. Bentley, Qin Chen, Eurico J. D'Sa, Le Zhang, and Yanda Ou
Biogeosciences, 17, 5043–5055, https://doi.org/10.5194/bg-17-5043-2020, https://doi.org/10.5194/bg-17-5043-2020, 2020
Taylor A. Shropshire, Steven L. Morey, Eric P. Chassignet, Alexandra Bozec, Victoria J. Coles, Michael R. Landry, Rasmus Swalethorp, Glenn Zapfe, and Michael R. Stukel
Biogeosciences, 17, 3385–3407, https://doi.org/10.5194/bg-17-3385-2020, https://doi.org/10.5194/bg-17-3385-2020, 2020
Short summary
Short summary
Zooplankton are the smallest animals in the ocean and important food for fish. Despite their importance, zooplankton have been relatively undersampled. To better understand the zooplankton community in the Gulf of Mexico (GoM), we developed a model to simulate their dynamics. We found that heterotrophic protists are important for supporting mesozooplankton, which are the primary prey of larval fish. The model developed in this study has the potential to improve fisheries management in the GoM.
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020, https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Short summary
Constants of global biogeochemical ocean models are often tuned
by handto match observations of nutrients or oxygen. We investigate the effect of this tuning by optimising six constants of a global biogeochemical model, simulated in five different offline circulations. Optimal values for three constants adjust to distinct features of the circulation applied and can afterwards be swapped among the circulations, without losing too much of the model's fit to observed quantities.
Laura Haffert, Matthias Haeckel, Henko de Stigter, and Felix Janssen
Biogeosciences, 17, 2767–2789, https://doi.org/10.5194/bg-17-2767-2020, https://doi.org/10.5194/bg-17-2767-2020, 2020
Short summary
Short summary
Deep-sea mining for polymetallic nodules is expected to have severe environmental impacts. Through prognostic modelling, this study aims to provide a holistic assessment of the biogeochemical recovery after a disturbance event. It was found that the recovery strongly depends on the impact type; e.g. complete removal of the surface sediment reduces seafloor nutrient fluxes over centuries.
Fabian A. Gomez, Rik Wanninkhof, Leticia Barbero, Sang-Ki Lee, and Frank J. Hernandez Jr.
Biogeosciences, 17, 1685–1700, https://doi.org/10.5194/bg-17-1685-2020, https://doi.org/10.5194/bg-17-1685-2020, 2020
Short summary
Short summary
We use a numerical model to infer annual changes of surface carbon chemistry in the Gulf of Mexico (GoM). The main seasonality drivers of partial pressure of carbon dioxide and aragonite saturation state from the model are temperature and river runoff. The GoM basin is a carbon sink in winter–spring and carbon source in summer–fall, but uptake prevails near the Mississippi Delta year-round due to high biological production. Our model results show good correspondence with observational studies.
Simon J. Parker
Biogeosciences, 17, 305–315, https://doi.org/10.5194/bg-17-305-2020, https://doi.org/10.5194/bg-17-305-2020, 2020
Short summary
Short summary
Dissolved oxygen (DO) models typically assume constant ecosystem respiration over the course of a single day. Using a data-driven approach, this research examines this assumption in four streams across two (hydro-)geological types (Chalk and Greensand). Despite hydrogeological equivalence in terms of baseflow index for each hydrogeological pairing, model suitability differed within, rather than across, geology types. This corresponded with associated differences in timings of DO minima.
Fabrice Lacroix, Tatiana Ilyina, and Jens Hartmann
Biogeosciences, 17, 55–88, https://doi.org/10.5194/bg-17-55-2020, https://doi.org/10.5194/bg-17-55-2020, 2020
Short summary
Short summary
Contributions of rivers to the oceanic cycling of carbon have been poorly represented in global models until now. Here, we assess the long–term implications of preindustrial riverine loads in the ocean in a novel framework which estimates the loads through a hierarchy of weathering and land–ocean export models. We investigate their impacts for the oceanic biological production and air–sea carbon flux. Finally, we assess the potential incorporation of the framework in an Earth system model.
Patrick A. Rafter, Aaron Bagnell, Dario Marconi, and Timothy DeVries
Biogeosciences, 16, 2617–2633, https://doi.org/10.5194/bg-16-2617-2019, https://doi.org/10.5194/bg-16-2617-2019, 2019
Short summary
Short summary
The N isotopic composition of nitrate (
nitrate δ15N) is a useful tracer of ocean N cycling and many other ocean processes. Here, we use a global compilation of marine nitrate δ15N as an input, training, and validating dataset for an artificial neural network (a.k.a.,
machine learning) and examine basin-scale trends in marine nitrate δ15N from the surface to the seafloor.
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Short summary
Measuring ecosystem properties in the ocean is a hard business. Recent availability of data from Biogeochemical-Argo floats can help make this task easier. Numerical models can integrate these new data in a coherent picture and can be used to investigate the functioning of ecosystem processes. Our new approach merges experimental information and model capabilities to quantitatively demonstrate the importance of light and water vertical mixing for algae dynamics in the Mediterranean Sea.
Jens Terhaar, James C. Orr, Marion Gehlen, Christian Ethé, and Laurent Bopp
Biogeosciences, 16, 2343–2367, https://doi.org/10.5194/bg-16-2343-2019, https://doi.org/10.5194/bg-16-2343-2019, 2019
Short summary
Short summary
A budget of anthropogenic carbon in the Arctic Ocean, the main driver of open-ocean acidification, was constructed for the first time using a high-resolution ocean model. The budget reveals that anthropogenic carbon enters the Arctic Ocean mainly by lateral transport; the air–sea flux plays a minor role. Coarser-resolution versions of the same model, typical of earth system models, store less anthropogenic carbon in the Arctic Ocean and thus underestimate ocean acidification in the Arctic Ocean.
Taylor S. Martin, François Primeau, and Karen L. Casciotti
Biogeosciences, 16, 347–367, https://doi.org/10.5194/bg-16-347-2019, https://doi.org/10.5194/bg-16-347-2019, 2019
Short summary
Short summary
Nitrite is a key intermediate in many nitrogen (N) cycling processes in the ocean, particularly in areas with low oxygen that are hotspots for N loss. We have created a 3-D global N cycle model with nitrite as a tracer. Stable isotopes of N are also included in the model and we are able to model the isotope fractionation associated with each N cycling process. Our model accurately represents N concentrations and isotope distributions in the ocean.
Camille Richon, Jean-Claude Dutay, Laurent Bopp, Briac Le Vu, James C. Orr, Samuel Somot, and François Dulac
Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019, https://doi.org/10.5194/bg-16-135-2019, 2019
Short summary
Short summary
We evaluate the effects of climate change and biogeochemical forcing evolution on the nutrient and plankton cycles of the Mediterranean Sea for the first time. We use a high-resolution coupled physical and biogeochemical model and perform 120-year transient simulations. The results indicate that changes in external nutrient fluxes and climate change may have synergistic or antagonistic effects on nutrient concentrations, depending on the region and the scenario.
Angela M. Kuhn, Katja Fennel, and Ilana Berman-Frank
Biogeosciences, 15, 7379–7401, https://doi.org/10.5194/bg-15-7379-2018, https://doi.org/10.5194/bg-15-7379-2018, 2018
Short summary
Short summary
Recent studies demonstrate that marine N2 fixation can be carried out without light. However, direct measurements of N2 fixation in dark environments are relatively scarce. This study uses a model that represents biogeochemical cycles at a deep-ocean location in the Gulf of Aqaba (Red Sea). Different model versions are used to test assumptions about N2 fixers. Relaxing light limitation for marine N2 fixers improved the similarity between model results and observations of deep nitrate and oxygen.
Prima Anugerahanti, Shovonlal Roy, and Keith Haines
Biogeosciences, 15, 6685–6711, https://doi.org/10.5194/bg-15-6685-2018, https://doi.org/10.5194/bg-15-6685-2018, 2018
Short summary
Short summary
Minor changes in the biogeochemical model equations lead to major dynamical changes. We assessed this structural sensitivity for the MEDUSA biogeochemical model on chlorophyll and nitrogen concentrations at five oceanographic stations over 10 years, using 1-D ensembles generated by combining different process equations. The ensemble performed better than the default model in most of the stations, suggesting that our approach is useful for generating a probabilistic biogeochemical ensemble model.
Audrey Gimenez, Melika Baklouti, Thibaut Wagener, and Thierry Moutin
Biogeosciences, 15, 6573–6589, https://doi.org/10.5194/bg-15-6573-2018, https://doi.org/10.5194/bg-15-6573-2018, 2018
Short summary
Short summary
During the OUTPACE cruise conducted in the oligotrophic to ultra-oligotrophic region of the western tropical South Pacific, two contrasted regions were sampled in terms of N2 fixation rates, primary production rates and nutrient availability. The aim of this work was to investigate the role of N2 fixation in the differences observed between the two contrasted areas by comparing two simulations only differing by the presence or not of N2 fixers using a 1-D biogeochemical–physical coupled model.
Jenny Hieronymus, Kari Eilola, Magnus Hieronymus, H. E. Markus Meier, Sofia Saraiva, and Bengt Karlson
Biogeosciences, 15, 5113–5129, https://doi.org/10.5194/bg-15-5113-2018, https://doi.org/10.5194/bg-15-5113-2018, 2018
Short summary
Short summary
This paper investigates how phytoplankton concentrations in the Baltic Sea co-vary with nutrient concentrations and other key variables on inter-annual timescales in a model integration over the years 1850–2008. The study area is not only affected by climate change; it has also been subjected to greatly increased nutrient loads due to extensive use of agricultural fertilizers. The results indicate the largest inter-annual coherence of phytoplankton with the limiting nutrient.
Cyril Dutheil, Olivier Aumont, Thomas Gorguès, Anne Lorrain, Sophie Bonnet, Martine Rodier, Cécile Dupouy, Takuhei Shiozaki, and Christophe Menkes
Biogeosciences, 15, 4333–4352, https://doi.org/10.5194/bg-15-4333-2018, https://doi.org/10.5194/bg-15-4333-2018, 2018
Short summary
Short summary
N2 fixation is recognized as one of the major sources of nitrogen in the ocean. Thus, N2 fixation sustains a significant part of the primary production (PP) by supplying the most common limiting nutrient for phytoplankton growth. From numerical simulations, the local maximums of Trichodesmium biomass in the Pacific are found around islands, explained by the iron fluxes from island sediments. We assessed that 15 % of the PP may be due to Trichodesmium in the low-nutrient, low-chlorophyll areas.
Akitomo Yamamoto, Ayako Abe-Ouchi, and Yasuhiro Yamanaka
Biogeosciences, 15, 4163–4180, https://doi.org/10.5194/bg-15-4163-2018, https://doi.org/10.5194/bg-15-4163-2018, 2018
Short summary
Short summary
Millennial-scale changes in oceanic CO2 uptake due to global warming are simulated by a GCM and offline biogeochemical model. Sensitivity studies show that decreases in oceanic CO2 uptake are mainly caused by a weaker biological pump and seawater warming. Enhanced CO2 uptake due to weaker equatorial upwelling cancels out reduced CO2 uptake due to weaker AMOC and AABW formation. Thus, circulation change plays only a small direct role in reduction of CO2 uptake due to global warming.
Cited articles
Albert, R. and Barabási, A.-L.: Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47, https://doi.org/10.1103/RevModPhys.74.47, 2002. a
Artioli, Y., Blackford, J. C., Butenschön, M., Holt, J. T., Wakelin, S. L., Thomas, H., Borges, A. V., and Allen, J. I.: The carbonate system in the North Sea: Sensitivity and model validation, J. Marine Syst., 102, 1–13, 2012. a
Barabási, A.-L. and Bonabeau, E.: Scale-free networks, Sci. Am., 288, 60–69, 2003. a
Baretta-Bekker, J., Baretta, J., and Ebenhöh, W.: Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake, J. Sea Res., 38, 195–211, 1997. a
Blackford, J.: An analysis of benthic biological dynamics in a North Sea ecosystem model, J. Sea Res., 38, 213–230, 1997. a
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U.: Complex networks: Structure and dynamics, Phys. Rep., 424, 175–308, 2006. a
Bruggeman, J. and Bolding, K.: A general framework for aquatic biogeochemical models, Environ. Modell. Softw., 61, 249–265, 2014. a
Butenschön, M., Clark, J., Aldridge, J. N., Allen, J. I., Artioli, Y., Blackford, J., Bruggeman, J., Cazenave, P., Ciavatta, S., Kay, S., Lessin, G., van Leeuwen, S., van der Molen, J., de Mora, L., Polimene, L., Sailley, S., Stephens, N., and Torres, R.: ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels, Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016, 2016. a, b, c, d, e
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of observation, background and analysis-error statistics in observation space, Q. J. Roy. Meteor. Soc., 131, 3385–3396, 2005. a
Edwards, K. P., Barciela, R., and Butenschön, M.: Validation of the NEMO-ERSEM operational ecosystem model for the North West European Continental Shelf, Ocean Sci., 8, 983–1000, https://doi.org/10.5194/os-8-983-2012, 2012. a
Ford, D.: Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design, Biogeosciences, 18, 509–534, https://doi.org/10.5194/bg-18-509-2021, 2021. a
Ford, D., Key, S., McEwan, R., Totterdell, I., and Gehlen, M.: Marine biogeochemical modelling and data assimilation for operational forecasting, reanalysis and climate research, in: New Frontiers in Operational Oceanography, edited by: Chassignet, E., Pascual, A., Tintoré, J., and Verron, J., GODAE OceanView, 625–652, https://doi.org/10.17125/gov2018.ch22, 2018. a
Geider, R., MacIntyre, H., and Kana, T.: Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature, Mar. Ecol. Prog. Ser., 148, 187–200, 1997. a
Groom, S., Sathyendranath, S., Ban, Y., Bernard, S., Brewin, R., Brotas, V., Brockmann, C., Chauhan, P., Choi, J.-k., Chuprin, A., Ciavatta, S., Cipollini, P., Donlon, C., Franz, B., He, X., Hirata, T., Jackson, T., Kampel, M., Krasemann, H., Lavender, S., Pardo-Martinez, S., Mélin, F., Platt, T., Santoleri, R., Skakala, J., Schaeffer, B., Smith, M., Steinmetz, F., Valente, A., and Wang, M.: Satellite ocean colour: current status and future perspective, Frontiers in Marine Science, 6, 485, https://doi.org/10.3389/fmars.2019.00485, 2019. a
Heinze, C. and Gehlen, M.: Modeling ocean biogeochemical processes and the resulting tracer distributions, in: International Geophysics, vol. 103, Elsevier, 667–694, https://doi.org/10.1016/B978-0-12-391851-2.00026-X, 2013. a
Hollingsworth, A. and Lönnberg, P.: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field, Tellus A, 38, 111–136, 1986. a
Huthnance, J. M., Holt, J. T., and Wakelin, S. L.: Deep ocean exchange with west-European shelf seas, Ocean Sci., 5, 621–634, https://doi.org/10.5194/os-5-621-2009, 2009. a
Jahnke, R. A.: Global synthesis, in: Carbon and nutrient fluxes in continental margins, Springer, 597–615, https://doi.org/10.1007/978-3-540-92735-8_16, 2010. a
Jeong, H., Mason, S. P., Barabási, A.-L., and Oltvai, Z. N.: Lethality and centrality in protein networks, Nature, 411, 41–42, 2001. a
Jiang, J., Huang, Z.-G., Seager, T. P., Lin, W., Grebogi, C., Hastings, A., and Lai, Y.-C.: Predicting tipping points in mutualistic networks through dimension reduction, P. Natl. Acad. Sci. USA, 115, E639–E647, 2018. a
Lea, D. J., While, J., Martin, M. J., Weaver, A., Storto, A., and Chrust, M.: A new global ocean ensemble system at the Met Office: Assessing the impact of hybrid data assimilation and inflation settings, Q. J. Roy. Meteor. Soc., 148, 1996–2030, 2022. a
Legge, O., Johnson, M., Hicks, N., Jickells, T., Diesing, M., Aldridge, J., Andrews, J., Artioli, Y., Bakker, D. C., Burrows, M. T., Carr, N., Cripps, G., Felgate, S. L., Fernand, L., Greenwood, N., Hartman, S., Kröger, S., Lessin, G., Mahaffey, C., Mayor, D. J., Parker, R., Queirós, A. M., Shutler, J. D., Silva, T., Stahl, H., Tinker, J., Underwood, G. J. C., Van Der Molen, J., Wakelin, S., Weston, K., and Williamson, P.: Carbon on the Northwest European Shelf: Contemporary budget and future influences, Frontiers in Marine Science, 7, 143, https://doi.org/10.3389/fmars.2020.00143, 2020. a, b
Lenhart, H.-J., Mills, D. K., Baretta-Bekker, H., Van Leeuwen, S. M., Van Der Molen, J., Baretta, J. W., Blaas, M., Desmit, X., Kühn, W., Lacroix, G., Los, H. J., Ménesguen, A., Neves, R., Proctor, R., Ruardij, P., Skogen, M. D., Vanhoutte-Brunier, A., Villars, M. T., and Wakelin, S. L.: Predicting the consequences of nutrient reduction on the eutrophication status of the North Sea, J. Marine Syst., 81, 148–170, 2010. a
Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C.: An estimate of global primary production in the ocean from satellite radiometer data, J. Plankton Res., 17, 1245–1271, 1995. a
Müllner, D.: Modern hierarchical, agglomerative clustering algorithms, arXiv [preprint], arXiv:1109.2378, 2011. a
Ng, A., Jordan, M., and Weiss, Y.: On spectral clustering: Analysis and an algorithm, Adv. Neur. In., 14, 2001. a
O'Dea, E., Furner, R., Wakelin, S., Siddorn, J., While, J., Sykes, P., King, R., Holt, J., and Hewitt, H.: The CO5 configuration of the 7 km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution, Geosci. Model Dev., 10, 2947–2969, https://doi.org/10.5194/gmd-10-2947-2017, 2017. a, b
Ostle, C., Aubert, A., Artigas, L. F., Rombouts, I., Budria, A., Graham, G., Johansen, M., Johns, D., Padegimas, B., and McQuatters-Gollop, A.: WP1 Pelagic Habitats – Deliverable 1.1 “Programming outputs for constructing plankton lifeform indicator from disparate data types.”, OSPAR Commission, 2016. a, b
Pauly, D., Christensen, V., Guénette, S., Pitcher, T. J., Sumaila, U. R., Walters, C. J., Watson, R., and Zeller, D.: Towards sustainability in world fisheries, Nature, 418, 689–695, 2002. a
Schartau, M., Wallhead, P., Hemmings, J., Löptien, U., Kriest, I., Krishna, S., Ward, B. A., Slawig, T., and Oschlies, A.: Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling, Biogeosciences, 14, 1647–1701, https://doi.org/10.5194/bg-14-1647-2017, 2017. a
Siddorn, J. and Furner, R.: An analytical stretching function that combines the best attributes of geopotential and terrain-following vertical coordinates, Ocean Model., 66, 1–13, 2013. a
Skakala, J., Bruggeman, J., Brewin, R. J., Ford, D. A., and Ciavatta, S.: Improved representation of underwater light field and its impact on ecosystem dynamics: A study in the North Sea, J. Geophys. Res.-Oceans, 125, e2020JC016122, https://doi.org/10.1029/2020JC016122, 2020. a, b
Skákala, J., Ford, D., Bruggeman, J., Hull, T., Kaiser, J., King, R. R., Loveday, B., Palmer, M. R., Smyth, T., Williams, C. A., and Ciavatta, S.: Towards a multi-platform assimilative system for North Sea biogeochemistry, J. Geophys. Res.-Oceans, 126, e2020JC016649, https://doi.org/10.1029/2020JC016649, 2021. a, b, c
Skákala, J., Bruggeman, J., Ford, D., Wakelin, S., Akpınar, A., Hull, T., Kaiser, J., Loveday, B. R., O'Dea, E., Williams, C. A., and Ciavatta, S.: The impact of ocean biogeochemistry on physics and its consequences for modelling shelf seas, Ocean Model., 172, 101976, https://doi.org/10.1016/j.ocemod.2022.101976, 2022. a
Skákala, J., Awty-Carroll, K., Menon, P. P., Wang, K., and Lessin, G.: Future digital twins: emulating a highly complex marine biogeochemical model with machine learning to predict hypoxia, Frontiers in Marine Science, 10, 1058837, https://doi.org/10.3389/fmars.2023.1058837, 2023. a
Sonnewald, M., Lguensat, R., Jones, D. C., Dueben, P., Brajard, J., and Balaji, V.: Bridging observations, theory and numerical simulation of the ocean using machine learning, Environ. Res. Lett., 16, 7, https://doi.org/10.1088/1748-9326/ac0eb0, 2021. a
Storkey, D., Blockley, E., Furner, R., Guiavarc'h, C., Lea, D., Martin, M., Barciela, R., Hines, A., Hyder, P., and Siddorn, J.: Forecasting the ocean state using NEMO: The new FOAM system, J. Oper. Oceanogr., 3, 3–15, 2010. a
Telszewski, M., Palacz, A., and Fischer, A.: Biogeochemical in situ observations–motivation, status, and new frontiers, in: New Frontiers in Operational Oceanography, GODAE, 131–160, https://doi.org/10.17125/gov2018.ch06, 2018. a, b
Tibshirani, R., Walther, G., and Hastie, T.: Estimating the number of clusters in a data set via the gap statistic, J. R. Stat. Soc. B, 63, 411–423, 2001. a
Von Luxburg, U.: A tutorial on spectral clustering, Stat. Comput., 17, 395–416, 2007. a
Zanin, M., Papo, D., Sousa, P. A., Menasalvas, E., Nicchi, A., Kubik, E., and Boccaletti, S.: Combining complex networks and data mining: why and how, Phys. Rep., 635, 1–44, 2016. a
Short summary
A complex network is a way of representing which parts of a system are connected to other parts. We have constructed a complex network based on an ecosystem–ocean model. From this, we can identify patterns in the structure and areas of similar behaviour. This can help to understand how natural, or human-made, changes will affect the shelf sea ecosystem, and it can be used in multiple future applications such as improving modelling, data assimilation, or machine learning.
A complex network is a way of representing which parts of a system are connected to other parts....
Altmetrics
Final-revised paper
Preprint