Articles | Volume 21, issue 3
https://doi.org/10.5194/bg-21-731-2024
https://doi.org/10.5194/bg-21-731-2024
Research article
 | 
08 Feb 2024
Research article |  | 08 Feb 2024

Investigating ecosystem connections in the shelf sea environment using complex networks

Ieuan Higgs, Jozef Skákala, Ross Bannister, Alberto Carrassi, and Stefano Ciavatta

Related authors

Inverse modelling for surface methane flux estimation with 4DVar: impact of a computationally efficient representation of a non-diagonal B-matrix in INVICAT v4
Ross Noel Bannister and Chris Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2024-655,https://doi.org/10.5194/egusphere-2024-655, 2024
Short summary
EAT v0.9.6: a 1D testbed for physical-biogeochemical data assimilation in natural waters
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-238,https://doi.org/10.5194/gmd-2023-238, 2023
Revised manuscript under review for GMD
Short summary
Chromophoric dissolved organic matter dynamics revealed through the optimization of an optical–biogeochemical model in the northwestern Mediterranean Sea
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023,https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
The Hydro-ABC model (Version 2.0): a simplified convective-scale model with moist dynamics
Jiangshan Zhu and Ross Noel Bannister
Geosci. Model Dev., 16, 6067–6085, https://doi.org/10.5194/gmd-16-6067-2023,https://doi.org/10.5194/gmd-16-6067-2023, 2023
Short summary
Multivariate state and parameter estimation with data assimilation on sea-ice models using a Maxwell-Elasto-Brittle rheology
Yumeng Chen, Polly Smith, Alberto Carrassi, Ivo Pasmans, Laurent Bertino, Marc Bocquet, Tobias Sebastian Finn, Pierre Rampal, and Véronique Dansereau
EGUsphere, https://doi.org/10.5194/egusphere-2023-1809,https://doi.org/10.5194/egusphere-2023-1809, 2023
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Seasonal and interannual variability of the pelagic ecosystem and of the organic carbon budget in the Rhodes Gyre (eastern Mediterranean): influence of winter mixing
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023,https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Validation of the coupled physical-biogeochemical ocean model NEMO-SCOBI for the North Sea-Baltic Sea system
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, and Lars Arneborg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-116,https://doi.org/10.5194/bg-2023-116, 2023
Revised manuscript accepted for BG
Short summary
How much do bacterial growth properties and biodegradable dissolved organic matter control water quality at low flow?
Masihullah Hasanyar, Thomas Romary, Shuaitao Wang, and Nicolas Flipo
Biogeosciences, 20, 1621–1633, https://doi.org/10.5194/bg-20-1621-2023,https://doi.org/10.5194/bg-20-1621-2023, 2023
Short summary
Methane emissions from Arctic landscapes during 2000–2015: an analysis with land and lake biogeochemistry models
Xiangyu Liu and Qianlai Zhuang
Biogeosciences, 20, 1181–1193, https://doi.org/10.5194/bg-20-1181-2023,https://doi.org/10.5194/bg-20-1181-2023, 2023
Short summary
Including filter-feeding gelatinous macrozooplankton in a global marine biogeochemical model: model–data comparison and impact on the ocean carbon cycle
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023,https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary

Cited articles

Albert, R. and Barabási, A.-L.: Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47, https://doi.org/10.1103/RevModPhys.74.47, 2002. a
Artioli, Y., Blackford, J. C., Butenschön, M., Holt, J. T., Wakelin, S. L., Thomas, H., Borges, A. V., and Allen, J. I.: The carbonate system in the North Sea: Sensitivity and model validation, J. Marine Syst., 102, 1–13, 2012. a
Barabási, A.-L. and Bonabeau, E.: Scale-free networks, Sci. Am., 288, 60–69, 2003. a
Baretta, J., Ebenhöh, W., and Ruardij, P.: The European regional seas ecosystem model, a complex marine ecosystem model, Neth. J. Sea Res., 33, 233–246, 1995. a, b
Baretta-Bekker, J., Baretta, J., and Ebenhöh, W.: Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake, J. Sea Res., 38, 195–211, 1997. a
Download
Short summary
A complex network is a way of representing which parts of a system are connected to other parts. We have constructed a complex network based on an ecosystem–ocean model. From this, we can identify patterns in the structure and areas of similar behaviour. This can help to understand how natural, or human-made, changes will affect the shelf sea ecosystem, and it can be used in multiple future applications such as improving modelling, data assimilation, or machine learning.
Altmetrics
Final-revised paper
Preprint