Articles | Volume 22, issue 4
https://doi.org/10.5194/bg-22-1077-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1077-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Plutonium concentrations link soil organic matter decline to wind erosion in ploughed soils of South Africa
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
Chair of Physical Geography and Geoecology, RWTH Aachen University, Wüllnerstr. 5b, 52062 Aachen, Germany
Hendrik Wiesel
Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674 Cologne, Germany
Advanced Nuclear Fuels GmbH, Am Seitenkanal 1, 49811 Lingen, Germany
Wulf Amelung
Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany
L. Keith Fifield
Department of Nuclear Physics and Accelerator Applications, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
Alexandra Sandhage-Hofmann
Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany
Erik Strub
Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674 Cologne, Germany
Steven A. Binnie
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
Stefan Heinze
CologneAMS, Institute of Nuclear Physics, University of Cologne, Zülpicher Str. 77, 50937 Cologne, Germany
Elmarie Kotze
Department of Soil, Crop and Climate Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
Chris Du Preez
Department of Soil, Crop and Climate Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
Stephen G. Tims
Department of Nuclear Physics and Accelerator Applications, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
Tibor J. Dunai
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
Related authors
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
EGUsphere, https://doi.org/10.5194/egusphere-2024-592, https://doi.org/10.5194/egusphere-2024-592, 2024
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, https://doi.org/10.5194/esurf-8-995-2020, 2020
Short summary
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
EGUsphere, https://doi.org/10.5194/egusphere-2024-592, https://doi.org/10.5194/egusphere-2024-592, 2024
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023, https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary
Short summary
Chronological information on the evolution of the Namib Desert is scarce. We used U–Pb dating of silcretes formed by pressure solution during calcrete formation to track paleoclimate variability since the Late Miocene. Calcrete formation took place during the Pliocene with an abrupt cessation at 2.9 Ma. The end took place due to deep canyon incision which we dated using TCN exposure dating. With our data we correct and contribute to the Neogene history of the Namib Desert and its evolution.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023, https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.
Tibor János Dunai, Steven Andrew Binnie, and Axel Gerdes
Geochronology, 4, 65–85, https://doi.org/10.5194/gchron-4-65-2022, https://doi.org/10.5194/gchron-4-65-2022, 2022
Short summary
Short summary
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
Benedikt Ritter, Andreas Vogt, and Tibor J. Dunai
Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, https://doi.org/10.5194/gchron-3-421-2021, 2021
Short summary
Short summary
We describe the design and performance of a new noble gas mass laboratory dedicated to the development of and application to cosmogenic nuclides at the University of Cologne (Germany). At the core of the laboratory are a state-of-the-art high-mass-resolution multicollector Helix MCPlus (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated extraction line, including a laser-powered extraction furnace. Performance was tested with intercomparison (CREU-1) material.
Juan-Luis García, Christopher Lüthgens, Rodrigo M. Vega, Ángel Rodés, Andrew S. Hein, and Steven A. Binnie
E&G Quaternary Sci. J., 70, 105–128, https://doi.org/10.5194/egqsj-70-105-2021, https://doi.org/10.5194/egqsj-70-105-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM) about 21 kyr ago is known to have been global in extent. Nonetheless, we have limited knowledge during the pre-LGM time in the southern middle latitudes. If we want to understand the causes of the ice ages, the complete glacial period must be addressed. In this paper, we show that the Patagonian Ice Sheet in southern South America reached its full glacial extent also by 57 kyr ago and defies a climate explanation.
Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, https://doi.org/10.5194/esurf-8-995-2020, 2020
Short summary
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
Philipp Marr, Stefan Winkler, Steven A. Binnie, and Jörg Löffler
E&G Quaternary Sci. J., 68, 165–176, https://doi.org/10.5194/egqsj-68-165-2019, https://doi.org/10.5194/egqsj-68-165-2019, 2019
Short summary
Short summary
This paper is about deglaciation history in two areas of southern Norway. By dating rock surfaces we can estimate a minimum ice sheet thickness of 1476 m a.s.l. and a timing of deglaciation around 13 000 years ago in the western study area. In the eastern study area the deglaciation history is complex as the bedrock age most likely has inheritance from earlier ice-free periods. Comparing both study areas demonstrates the complex dynamics of the deglaciation in different areas in southern Norway.
Annelie Säurich, Bärbel Tiemeyer, Axel Don, Michel Bechtold, Wulf Amelung, and Annette Freibauer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-127, https://doi.org/10.5194/bg-2017-127, 2017
Manuscript not accepted for further review
Short summary
Short summary
Drained organic soils are hotspots of CO2 emissions. Due to mineralisation and mixing with mineral soil, the soil organic carbon (SOC) content of large areas of former peatlands decreased drastically. We evaluated potential CO2 emissions from such soils and true peat by aerobic incubation. Surprisingly, CO2 emissions increased in magnitude and variability with stronger disturbance and lower SOC content. This indicates that mixing peat with mineral soil is not a promising mitigation option.
Xiaoqian Jiang, Roland Bol, Barbara J. Cade-Menun, Volker Nischwitz, Sabine Willbold, Sara L. Bauke, Harry Vereecken, Wulf Amelung, and Erwin Klumpp
Biogeosciences, 14, 1153–1164, https://doi.org/10.5194/bg-14-1153-2017, https://doi.org/10.5194/bg-14-1153-2017, 2017
Short summary
Short summary
It is the first study to distinguish the species of nano-sized (d=1−20 nm), small-sized (d=20−450 nm) colloidal P, and dissolved P (d<1 nm) of hydromorphic surface grassland soils from Cambisol, Stagnic Cambisol to Stagnosol using FFF and 31P-NMR. Evidence of nano-sized associations of OC–Fe(Al)–PO43/pyrophosphate in Stagnosol. Stagnic properties affect P speciation and availability by releasing dissolved inorganic and ester-bound P forms as well as nano-sized organic matter–Fe/Al–P colloids.
Related subject area
Biogeochemistry: Soils
A synthesis of Sphagnum litterbag experiments: initial leaching losses bias decomposition rate estimates
Effect of straw retention and mineral fertilization on P speciation and P-transformation microorganisms in water- extractable colloids of a Vertisol
A new approach to continuous monitoring of carbon use efficiency and biosynthesis in soil microbes from measurement of CO2 and O2
Diverse organic carbon dynamics captured by radiocarbon analysis of distinct compound classes in a grassland soil
The effects of land use on soil carbon stocks in the UK
Technical note: A validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis
Depth Effects of Long-term Organic Residue Application on Soil Organic Carbon Stocks in Central Kenya
Distinct changes in carbon, nitrogen, and phosphorus cycling in the litter layer across two contrasting forest-tundra ecotones
A microbially-driven and depth-explicit soil organic carbon model constrained by carbon isotopes to reduce equifinality
Earth observation reveals reduced winter wheat growth and the importance of soil water storing capacity during drought
Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems
Technical note: An open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water
Dissolved organic matter fosters core mercury-methylating microbiome for methylmercury production in paddy soils
Solubility characteristics of soil humic substances as a function of pH
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grassland
Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh
Exploring micro-scale heterogeneity as a driver of biogeochemical transformations and gas transport in peat
Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau
Non-mycorrhizal root-associated fungi increase soil C stocks and stability via diverse mechanisms
Drought counteracts soil warming more strongly in the subsoil than in the topsoil according to a vertical microbial SOC model
Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change in chemical structure
Soil priming effects and involved microbial community along salt gradients
Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification
Ecosystem-specific patterns and drivers of global reactive iron mineral-associated organic carbon
Dark septate endophytic fungi associated with pioneer grass inhabiting volcanic deposits and their functions in promoting plant growth
Global patterns and drivers of phosphorus fractions in natural soils
Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Differential temperature sensitivity of intracellular metabolic processes and extracellular soil enzyme activities
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
The paradox of assessing greenhouse gases from soils for nature-based solutions
Management-induced changes in soil organic carbon on global croplands
Pore network modeling as a new tool for determining gas diffusivity in peat
Temperature sensitivity of dark CO2 fixation in temperate forest soils
Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites
Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra basin (Madagascar): insights in past vegetation changes
Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential
Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation
To what extent can soil moisture and soil Cu contamination stresses affect nitrous species emissions? Estimation through calibration of a nitrification–denitrification model
Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence
Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils – seasonal patterns and effects of fertilization
Age and chemistry of dissolved organic carbon reveal enhanced leaching of ancient labile carbon at the permafrost thaw zone
Soil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soils
Effect of organic carbon addition on paddy soil organic carbon decomposition under different irrigation regimes
Soil profile connectivity can impact microbial substrate use, affecting how soil CO2 effluxes are controlled by temperature
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
Biogeosciences, 22, 417–433, https://doi.org/10.5194/bg-22-417-2025, https://doi.org/10.5194/bg-22-417-2025, 2025
Short summary
Short summary
Decomposition rates for Sphagnum mosses, the main peat-forming plants in northern peatlands, are often derived from litterbag experiments. Here, we estimate initial leaching losses from available Sphagnum litterbag experiments and analyze how decomposition rates are biased when initial leaching losses are ignored. Our analyses indicate that initial leaching losses range between 3 to 18 mass-% and that this may result in overestimated mass losses when extrapolated to several decades.
Shanshan Bai, Yifei Ge, Dongtan Yao, Yifan Wang, Jinfang Tan, Shuai Zhang, Yutao Peng, and Xiaoqian Jiang
Biogeosciences, 22, 135–151, https://doi.org/10.5194/bg-22-135-2025, https://doi.org/10.5194/bg-22-135-2025, 2025
Short summary
Short summary
Mineral fertilization led to increases in total P, available P, high-activity inorganic P fractions, and organic P but reduced the abundance of P-cycling genes by decreasing soil pH and increasing P in bulk soil. Straw retention enhanced organic carbon, total P, and available P concentrations in water-extractable colloids (WECs). Abundances of the phoD gene and phoD-harboring Proteobacteria in WECs were elevated under straw retention, suggesting an increase in P-mineralization capacity.
Kyle E. Smart, Daniel O. Breecker, Christopher B. Blackwood, and Timothy M. Gallagher
Biogeosciences, 22, 87–101, https://doi.org/10.5194/bg-22-87-2025, https://doi.org/10.5194/bg-22-87-2025, 2025
Short summary
Short summary
When microbes consume carbon within soils, it is important to know how much carbon is respired and lost as carbon dioxide versus how much is used to make new biomass. We used a new approach of monitoring carbon dioxide and oxygen to track the fate of consumed carbon during a series of laboratory experiments where sugar was added to moistened soil. Our approach allowed us to estimate how much sugar was converted to dead microbial biomass, which is more likely to be preserved in soils.
Katherine E. Grant, Marisa N. Repasch, Kari M. Finstad, Julia D. Kerr, Maxwell Marple, Christopher J. Larson, Taylor A. B. Broek, Jennifer Pett-Ridge, and Karis J. McFarlane
Biogeosciences, 21, 4395–4411, https://doi.org/10.5194/bg-21-4395-2024, https://doi.org/10.5194/bg-21-4395-2024, 2024
Short summary
Short summary
Soils store organic carbon composed of multiple compounds from plants and microbes for different lengths of time. To understand how soils store these different carbon types, we measure the time each carbon fraction is in a grassland soil profile. Our results show that the length of time each individual soil fraction is in our soil changes. Our approach allows a detailed look at the different components in soils. This study can help improve our understanding of soil dynamics.
Peter Levy, Laura Bentley, Peter Danks, Bridget Emmett, Angus Garbutt, Stephen Heming, Peter Henrys, Aidan Keith, Inma Lebron, Niall McNamara, Richard Pywell, John Redhead, David Robinson, and Alexander Wickenden
Biogeosciences, 21, 4301–4315, https://doi.org/10.5194/bg-21-4301-2024, https://doi.org/10.5194/bg-21-4301-2024, 2024
Short summary
Short summary
We collated a large data set (15 790 soil cores) on soil carbon stock in different land uses. Soil carbon stocks were highest in woodlands and lowest in croplands. The variability in the effects was large. This has important implications for agri-environment schemes seeking to sequester carbon in the soil by altering land use because the effect of a given intervention is very hard to verify.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Claude Raoul Müller, Johan Six, Daniel Mugendi Njiru, Bernard Vanlauwe, and Marijn Van de Broek
EGUsphere, https://doi.org/10.5194/egusphere-2024-2796, https://doi.org/10.5194/egusphere-2024-2796, 2024
Short summary
Short summary
We studied how different organic and inorganic nutrient inputs affect soil organic carbon (SOC) down to 70 cm in Kenya. After 19 years, all organic treatments increased SOC stocks as compared to the control, but mineral nitrogen had no significant effect. Manure was the organic treatment that significantly increased SOC the deepest as its effect could be observed down to 60 cm. Manure was the best strategy to limit SOC loss in croplands and maintain soil quality after deforestation.
Frank Hagedorn, Joesphine Imboden, Pavel Moiseev, Decai Gao, Emmanuel Frossard, Daniel Christen, Konstantin Gavazov, and Jasmin Fetzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2622, https://doi.org/10.5194/egusphere-2024-2622, 2024
Short summary
Short summary
At treeline, plant species change abruptly from low stature plants in tundra to trees in forests. Our study documents that from tundra towards forest, the litter layer gets strongly enriched in nutrients. We show that these litter quality changes alter nutrient processing by soil microbes and increase the nutrient release during decomposition in forest than in tundra. The associated improvement of nutrient availability in the forest potentially stimulates tree growth and treeline shifts.
Marijn Van de Broek, Gerard Govers, Marion Schrumpf, and Johan Six
EGUsphere, https://doi.org/10.5194/egusphere-2024-2205, https://doi.org/10.5194/egusphere-2024-2205, 2024
Short summary
Short summary
Soil organic carbon models are used to predict how soils affect the concentration of CO2 in the atmosphere. We show that equifinality – the phenomenon that different parameter values lead to correct overall model outputs, albeit with a different model behaviour – is an important source of model uncertainty. Our results imply that adding more complexity to soil organic carbon models is unlikely to lead to better predictions, as long as more data to constrain model parameters are not available.
Hanna Sjulgård, Lukas Valentin Graf, Tino Colombi, Juliane Hirte, Thomas Keller, and Helge Aasen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1872, https://doi.org/10.5194/egusphere-2024-1872, 2024
Short summary
Short summary
Our results showed that crop development derived from satellite images was lower in a dry year compared to a normal year, and faster growth was found more important for higher biomass during drought. The magnitude of the drought impact differed between fields, where higher crop performance was related to more plant available water, suggesting that soil properties play a role in crop response to drought. Our results shows that satellite images can be used to assess plant-soil-weather interactions
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Sahiti Bulusu, Cristina Prieto García, Helen E. Dahlke, and Elad Levintal
Biogeosciences, 21, 3007–3013, https://doi.org/10.5194/bg-21-3007-2024, https://doi.org/10.5194/bg-21-3007-2024, 2024
Short summary
Short summary
Do-it-yourself hardware is a new way to improve measurement resolution. We present a low-cost, automated system for field measurements of low nitrate concentrations in soil porewater and open water bodies. All data hardware components cost USD 1100, which is much cheaper than other available commercial solutions. We provide the complete building guide to reduce technical barriers, which we hope will allow easier reproducibility and set up new soil and environmental monitoring applications.
Qiang Pu, Bo Meng, Jen-How Huang, Kun Zhang, Jiang Liu, Yurong Liu, Mahmoud A. Abdelhafiz, and Xinbin Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-590, https://doi.org/10.5194/egusphere-2024-590, 2024
Short summary
Short summary
This study examines the effect of dissolved organic matter (DOM) on microbial mercury (Hg) methylation in paddy soils. It uncovers that DOM regulates Hg methylation mainly through altering core Hg-methylating microbiome composition and boosting the growth of core Hg-methylating microorganisms. The study highlights that in the regulation of methylmercury formation in paddy soils, more attention should be paid to changes in DOM concentration and composition.
Xuemei Yang, Jie Zhang, Khan M. G. Mostofa, Mohammad Mohinuzzaman, H. Henry Teng, Nicola Senesi, Giorgio S. Senesi, Jie Yuan, Yu Liu, Si-Liang Li, Xiaodong Li, Baoli Wang, and Cong-Qiang Liu
EGUsphere, https://doi.org/10.5194/egusphere-2023-2994, https://doi.org/10.5194/egusphere-2023-2994, 2024
Short summary
Short summary
The solubility characteristics of soil humic acids (HA), fulvic acids (FA), and protein-like substances (PLS) at different pH values remain uncertain. The key findings includes: HA solubility increases with increasing pH and decreases with decreasing pH; HApH6 and HApH1 contribute to 39.1–49.2 % and 3.1–24.1 % of total DOM, respectively; and HApH2, FA, and PLS are highly soluble at acidic pH values and are transported by ambient water. These issues are vital for sustainable soil management.
Violeta Mendoza-Martinez, Scott L. Collins, and Jennie R. McLaren
Biogeosciences, 21, 2655–2667, https://doi.org/10.5194/bg-21-2655-2024, https://doi.org/10.5194/bg-21-2655-2024, 2024
Short summary
Short summary
We examine the impacts of multi-decadal nitrogen additions on a dryland ecosystem N budget, including the soil, microbial, and plant N pools. After 26 years, there appears to be little impact on the soil microbial or plant community and only minimal increases in N pools within the soil. While perhaps encouraging from a conservation standpoint, we calculate that greater than 95 % of the nitrogen added to the system is not retained and is instead either lost deeper in the soil or emitted as gas.
Sean Fettrow, Andrew Wozniak, Holly A. Michael, and Angelia L. Seyfferth
Biogeosciences, 21, 2367–2384, https://doi.org/10.5194/bg-21-2367-2024, https://doi.org/10.5194/bg-21-2367-2024, 2024
Short summary
Short summary
Salt marshes play a big role in global carbon (C) storage, and C stock estimates are used to predict future changes. However, spatial and temporal gradients in C burial rates over the landscape exist due to variations in water inundation, dominant plant species and stage of growth, and tidal action. We quantified soil C concentrations in soil cores across time and space beside several porewater biogeochemical variables and discussed the controls on variability in soil C in salt marsh ecosystems.
Lukas Kohl, Petri Kiuru, Marjo Palviainen, Maarit Raivonen, Markku Koskinen, Mari Pihlatie, and Annamari Lauren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1280, https://doi.org/10.5194/egusphere-2024-1280, 2024
Short summary
Short summary
We present an assay to illuminate heterogeneity of biogeochemical transformations within peat samples. For this, we injected isotope labelled acetate into peat cores and monitoring the release of label-derived gases, which we compared to microtomography images. The fraction of label converted to CO2 and the rapidness of this conversion was linked to injection depth as well as air-filled porosity. Pore network metric did not provide predictive power over compared to porosity alone.
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024, https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Short summary
Soil organic matter stability depends on future temperature and precipitation scenarios. We used radiocarbon (14C) data and model predictions to understand how the transit time of carbon varies under environmental change in grasslands and peatlands. Soil moisture affected the Δ14C of peatlands, while temperature did not have any influence. Our models show the correspondence between Δ14C and transit time and could allow understanding future interactions between terrestrial and atmospheric carbon
Emiko K. Stuart, Laura Castañeda-Gómez, Wolfram Buss, Jeff R. Powell, and Yolima Carrillo
Biogeosciences, 21, 1037–1059, https://doi.org/10.5194/bg-21-1037-2024, https://doi.org/10.5194/bg-21-1037-2024, 2024
Short summary
Short summary
We inoculated wheat plants with various types of fungi whose impacts on soil carbon are poorly understood. After several months of growth, we examined both their impacts on soil carbon and the underlying mechanisms using multiple methods. Overall the fungi benefitted the storage of carbon in soil, mainly by improving the stability of pre-existing carbon, but several pathways were involved. This study demonstrates their importance for soil carbon storage and, therefore, climate change mitigation.
Marleen Pallandt, Marion Schrumpf, Holger Lange, Markus Reichstein, Lin Yu, and Bernhard Ahrens
EGUsphere, https://doi.org/10.5194/egusphere-2024-186, https://doi.org/10.5194/egusphere-2024-186, 2024
Short summary
Short summary
As soils get warmer due to climate change, SOC decomposes faster because of higher microbial activity, but only with sufficient soil moisture. We modelled how microbes decompose plant litter and microbial residues at different soil depths. We found that deep soil layers are more sensitive than topsoils. SOC is lost from the soil with warming, but this can be mitigated or worsened depending on the type of litter and its sensitivity to temperature. Droughts can reduce warming-induced SOC losses.
Huimin Sun, Michael W. I. Schmidt, Jintao Li, Jinquan Li, Xiang Liu, Nicholas O. E. Ofiti, Shurong Zhou, and Ming Nie
Biogeosciences, 21, 575–589, https://doi.org/10.5194/bg-21-575-2024, https://doi.org/10.5194/bg-21-575-2024, 2024
Short summary
Short summary
A soil organic carbon (SOC) molecular structure suggested that the easily decomposable and stabilized SOC is similarly affected after 9-year warming and N treatments despite large changes in SOC stocks. Given the long residence time of some SOC, the similar loss of all measurable chemical forms of SOC under global change treatments could have important climate consequences.
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences, 21, 1–11, https://doi.org/10.5194/bg-21-1-2024, https://doi.org/10.5194/bg-21-1-2024, 2024
Short summary
Short summary
Soil salinity mediates microorganisms and soil processes like soil organic carbon (SOC) cycling. We observed that negative priming effects at the early stages might be due to the preferential utilization of cottonseed meal. The positive priming that followed decreased with the increase in salinity.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023, https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary
Short summary
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil inorganic carbon (SIC) on a non-pretreated soil aliquot. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot complete the thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to quantify any SIC amount.
Bo Zhao, Amin Dou, Zhiwei Zhang, Zhenyu Chen, Wenbo Sun, Yanli Feng, Xiaojuan Wang, and Qiang Wang
Biogeosciences, 20, 4761–4774, https://doi.org/10.5194/bg-20-4761-2023, https://doi.org/10.5194/bg-20-4761-2023, 2023
Short summary
Short summary
This study provided a comprehensive analysis of the spatial variability and determinants of Fe-bound organic carbon (Fe-OC) among terrestrial, wetland, and marine ecosystems and its governing factors globally. We illustrated that reactive Fe was not only an important sequestration mechanism for OC in terrestrial ecosystems but also an effective “rusty sink” of OC preservation in wetland and marine ecosystems, i.e., a key factor for long-term OC storage in global ecosystems.
Han Sun, Tomoyasu Nishizawa, Hiroyuki Ohta, and Kazuhiko Narisawa
Biogeosciences, 20, 4737–4749, https://doi.org/10.5194/bg-20-4737-2023, https://doi.org/10.5194/bg-20-4737-2023, 2023
Short summary
Short summary
In this research, we assessed the diversity and function of the dark septate endophytic (DSE) fungi community associated with Miscanthus condensatus root in volcanic ecosystems. Both metabarcoding and isolation were adopted in this study. We further validated effects on plant growth by inoculation of some core DSE isolates. This study helps improve our understanding of the role of Miscanthus condensatus-associated DSE fungi during the restoration of post-volcanic ecosystems.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Imane Slimani, Xia Zhu-Barker, Patricia Lazicki, and William Horwath
Biogeosciences, 20, 3873–3894, https://doi.org/10.5194/bg-20-3873-2023, https://doi.org/10.5194/bg-20-3873-2023, 2023
Short summary
Short summary
There is a strong link between nitrogen availability and iron minerals in soils. These minerals have multiple outcomes for nitrogen availability depending on soil conditions and properties. For example, iron can limit microbial degradation of nitrogen in aerated soils but has opposing outcomes in non-aerated soils. This paper focuses on the multiple ways iron can affect nitrogen bioavailability in soils.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Adetunji Alex Adekanmbi, Laurence Dale, Liz Shaw, and Tom Sizmur
Biogeosciences, 20, 2207–2219, https://doi.org/10.5194/bg-20-2207-2023, https://doi.org/10.5194/bg-20-2207-2023, 2023
Short summary
Short summary
The decomposition of soil organic matter and flux of carbon dioxide are expected to increase as temperatures rise. However, soil organic matter decomposition is a two-step process whereby large molecules are first broken down outside microbial cells and then respired within microbial cells. We show here that these two steps are not equally sensitive to increases in soil temperature and that global warming may cause a shift in the rate-limiting step from outside to inside the microbial cell.
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023, https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Short summary
Ultrasonication with density fractionation of soils is a commonly used method to separate soil organic matter pools, which is, e.g., important to calculate carbon turnover in landscapes. It is shown that the approach that merges soil and dense solution without mixing has a low recovery rate and causes co-extraction of parts of the retained labile pool along with the intermediate pool. An alternative method with high recovery rates and no cross-contamination was recommended.
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023, https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023, https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary
Short summary
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited by soil nutrients. This study explores how mature trees stimulate soil availability of nitrogen and phosphorus with free-air carbon dioxide enrichment after 5 years of fumigation. We found that both nutrient availability and processes feeding available pools increased in the rhizosphere, and phosphorus increased at depth. This appears to not be by decomposition but by faster recycling of nutrients.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Petri Kiuru, Marjo Palviainen, Arianna Marchionne, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, and Annamari Laurén
Biogeosciences, 19, 5041–5058, https://doi.org/10.5194/bg-19-5041-2022, https://doi.org/10.5194/bg-19-5041-2022, 2022
Short summary
Short summary
Peatlands are large carbon stocks. Emissions of carbon dioxide and methane from peatlands may increase due to changes in management and climate. We studied the variation in the gas diffusivity of peat with depth using pore network simulations and laboratory experiments. Gas diffusivity was found to be lower in deeper peat with smaller pores and lower pore connectivity. However, gas diffusivity was not extremely low in wet conditions, which may reflect the distinctive structure of peat.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022, https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022, https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Short summary
This study focused on the modellisation of two important drivers of soil greenhouse gas emissions: soil contamination and soil moisture change. The aim was to include a Cu function in the soil biogeochemical model DNDC for different soil moisture conditions and then to estimate variation in N2O, NO2 or NOx emissions. Our results show a larger effect of Cu on N2 and N2O emissions than on the other nitrogen species and a higher effect for the soils incubated under constant constant moisture.
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021, https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
Cited articles
Alewell, C., Meusburger, K., Juretzko, G., Mabit, L., and Ketterer, M. E.: Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands, Chemosphere, 103, 274–280, https://doi.org/10.1016/j.chemosphere.2013.12.016, 2014.
Alewell, C., Pitois, A., Meusburger, K., Ketterer, M., and Mabit, L.: 239+240Pu from “contaminant” to soil erosion tracer: Where do we stand?, Earth-Sci. Rev., 172, 107–123, https://doi.org/10.1016/j.earscirev.2017.07.009, 2017.
Amelung, W., Lobe, I., and Du Preez, C. C.: Fate of microbial residues in sandy soils of the South African Highveld as influenced by prolonged arable cropping, Eur. J. Soil Sci., 53, 29–35, https://doi.org/10.1046/j.1365-2389.2002.00428.x, 2002.
Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., and Sparks, D. L.: Soil science. Soil and human security in the 21st century, Science, 348, 1261071, https://doi.org/10.1126/science.1261071, 2015.
Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer, M., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J., Storelvmo, T., Thorne, P., Trewin, B., Rao, K., Adhikary, B., Allan, R., Armour, K., and Zickfeld, K.: IPCC AR6 WGI Technical Summary, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, United Kingdom and New York, NY, USA, 33–144, https://doi.org/10.1017/9781009157896.002, 2021.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1 km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Bot, A. and Benites, J.: The importance of soil organic matter: Key to drought-resistant soil and sustained food production, Food and Agriculture Organization of the United Nations (FAO), FAO Soils Bulletin, vol. 80, ISBN 92-5-105366-9, 2005.
Bouisset, P., Nohl, M., Bouville, A., and Leclerc, G.: Inventory and vertical distribution of 137Cs, 239+240Pu and 238Pu in soil from Raivavae and Hiva Oa, two French Polynesian islands in the southern hemisphere, J. Environ. Radioactiv., 183, 82–93, https://doi.org/10.1016/j.jenvrad.2017.12.017, 2018.
Chamizo, E., López-Lora, M., Villa, M., Casacuberta, N., López-Gutiérrez, J. M., and Pham, M. K.: Analysis of 236U and plutonium isotopes, 239,240Pu, on the 1 MV AMS system at the Centro Nacional de Aceleradores, as a potential tool in oceanography, Nucl. Instrum. Meth. B, 361, 535–540, https://doi.org/10.1016/j.nimb.2015.02.066, 2015.
Chappell, A.: The limitations of using 137Cs for estimating soil redistribution in semi-arid environments, Geomorphology, 29, 135–152, https://doi.org/10.1016/S0169-555X(99)00011-2, 1999.
Chappell, A., Webb, N. P., Butler, H. J., Strong, C. L., McTainsh, G. H., Leys, J. F., and Viscarra Rossel, R. A.: Soil organic carbon dust emission: an omitted global source of atmospheric CO2, Glob. Change Biol., 19, 3238–3244, https://doi.org/10.1111/gcb.12305, 2013.
Chappell, A., Webb, N. P., Viscarra Rossel, R. A., and Bui, E.: Australian net (1950s–1990) soil organic carbon erosion: implications for CO2 emission and land–atmosphere modelling, Biogeosciences, 11, 5235–5244, https://doi.org/10.5194/bg-11-5235-2014, 2014.
Chappell, A., Webb, N. P., Leys, J. F., Waters, C. M., Orgill, S., and Eyres, M. J.: Minimising soil organic carbon erosion by wind is critical for land degradation neutrality, Environ. Sci. Policy, 93, 43–52, https://doi.org/10.1016/j.envsci.2018.12.020, 2019.
Christl, M., Vockenhuber, C., Kubik, P. W., Wacker, L., Lachner, J., Alfimov, V., and Synal, H. A.: The ETH Zurich AMS facilities: Performance parameters and reference materials, Nucl. Instrum. Meth. B, 294, 29–38, https://doi.org/10.1016/j.nimb.2012.03.004, 2013.
Cook, M., Kleinschmidt, R., Brugger, J., and Wong, V. N. L.: Transport and migration of plutonium in different soil types and rainfall regimes, J. Environ. Radioactiv., 248, 106883, https://doi.org/10.1016/j.jenvrad.2022.106883, 2022.
Cotrufo, M. F. and Lavallee, J. M.: Chapter One – Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration, in: Advances in Agronomy, edited by: Sparks, D. L., Academic Press, 1–66, https://doi.org/10.1016/bs.agron.2021.11.002, 2022.
Coughtrey, P., Jackson, D., Jones, C., Kane, P., and Thorne, M.: Radionuclide distribution and transport in terrestrial and aquatic ecosystems. A critical review of data, vol. 4, A. A. Balkema, Rotterdam, 580, ISBN 90 6191 281 4, 1984.
Das Gupta, S., Mohanty, B. P., and Köhne, J. M.: Soil Hydraulic Conductivities and their Spatial and Temporal Variations in a Vertisol, Soil Sci. Soc. Am. J., 70, 1872–1881, https://doi.org/10.2136/sssaj2006.0201, 2006.
Department of Agriculture, Land Reform and Rural Development (DALRRD): Abstract of Agricultural Statistics 2023, Resource Centre, Statistics and Economic Analysis, http://www.dalrrd.gov.za/images/Branches/Economica Development Trade and Marketing/Statistc and Economic Analysis/statistical-information/abstract-2023.pdf (last access: 12 December 2024), 2023.
Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J., Melles, M., Staubwasser, M., Kuczewski, B., Richter, J., Radtke, U., von Blanckenburg, F., and Klein, M.: CologneAMS, a dedicated center for accelerator mass spectrometry in Germany, Nucl. Instrum. Meth. B, 294, 18–23, https://doi.org/10.1016/j.nimb.2012.04.030, 2013.
Dialynas, Y. G., Bastola, S., Bras, R. L., Billings, S. A., Markewitz, D., and Richter, D. D.: Topographic variability and the influence of soil erosion on the carbon cycle, Global Biogeochem. Cy., 30, 644–660, https://doi.org/10.1002/2015gb005302, 2016.
du Preez, C. C. and du Toit, M. E.: Effect of cultivation on the nitrogen fertility of selected agro-ecosystems in South Africa, Fert. Res., 42, 27–32, https://doi.org/10.1007/BF00750497, 1995.
du Preez, C. C., van Huyssteen, C. W., and Amelung, W.: Changes in soil organic matter content and quality in South African arable land, in: Soil degradation and restoration in Africa, edited by: Lal, R. and Stewart, B. A., CRC press, 110–143, eBook ISBN 9781315102849, https://doi.org/10.1201/b22321, 2019.
du Toit, M. E., du Preez, C. C., Hensley, M., and Bennie, A. T. P.: Effek van bewerking op die organiese materiaalinhoud van geselekteerde droëlandgronde in Suid-Afrika, S. Afr. J. Plant Soil, 11, 71–79, https://doi.org/10.1080/02571862.1994.10634298, 1994.
Eckardt, F. D., Bekiswa, S., Von Holdt, J. R., Jack, C., Kuhn, N. J., Mogane, F., Murray, J. E., Ndara, N., and Palmer, A. R.: South Africa's agricultural dust sources and events from MSG SEVIRI, Aeolian Res., 47, 100637, https://doi.org/10.1016/j.aeolia.2020.100637, 2020.
Elliott, E. T.: Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils, Soil Sci. Soc. Am. J., 50, 627–633, https://doi.org/10.2136/sssaj1986.03615995005000030017x, 1986.
Everett, S. E.: Assessment of plutonium as a tracer of soil and sediment transport using accelerator mass spectrometry, Dissertation, Australian National University, XXII, 165 pp., https://doi.org/10.25911/5d514d0250051, 2009.
Everett, S. E., Tims, S. G., Hancock, G. J., Bartley, R., and Fifield, L. K.: Comparison of Pu and 137Cs as tracers of soil and sediment transport in a terrestrial environment, J. Environ. Radioactiv., 99, 383–393, https://doi.org/10.1016/j.jenvrad.2007.10.019, 2008.
FAO: Soil Organic Carbon: the hidden potential, Food and Agriculture Organization of the United Nations, Rome, Italy, ISBN-10 9251096813, ISBN-13 978-9251096819, 2017.
FAO and ITPS: Status of the World's Soil Resources (SWSR) – Main Report, Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy, ISBN 978-92-5-109004-6, 2015.
Fifield, L. K.: Accelerator mass spectrometry of the actinides, Quat. Geochronol., 3, 276–290, https://doi.org/10.1016/j.quageo.2007.10.003, 2008.
Fifield, L. K., Cresswell, R. G., di Tada, M. L., Ophel, T. R., Day, J. P., Clacher, A. P., King, S. J., and Priest, N. D.: Accelerator mass spectrometry of plutonium isotopes, Nucl. Instrum. Meth. B, 117, 295–303, https://doi.org/10.1016/0168-583X(96)00287-X, 1996.
Fulajtar, E.: Assessment of soil erosion on arable land using 137Cs measurements: a case study from Jaslovske Bohunice, Slovakia, Soil Till. Res., 69, 139–152, https://doi.org/10.1016/S0167-1987(02)00135-6, 2003.
Funk, R., Li, Y., Hoffmann, C., Reiche, M., Zhang, Z., Li, J., and Sommer, M.: Using 137Cs to estimate wind erosion and dust deposition on grassland in Inner Mongolia-selection of a reference site and description of the temporal variability, Plant Soil, 351, 293–307, https://doi.org/10.1007/s11104-011-0964-y, 2011.
Hardy, E. P., Krey, P. W., and Volchok, H. L.: Global Inventory and Distribution of Fallout Plutonium, Nature, 241, 444–445, https://doi.org/10.1038/241444a0, 1973.
Harper, R. M. and Tinnacher, R. M.: Plutonium, in: Encyclopedia of Ecology, edited by: Jørgensen, S. E., and Fath, B. D., Academic Press, Oxford, 2845–2850, https://doi.org/10.1016/B978-008045405-4.00422-5, 2008.
He, Q. and Walling, D. E.: Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments, J. Environ. Radioactiv., 30, 117–137, https://doi.org/10.1016/0265-931X(96)89275-7, 1996.
Holmes, P. J., Thomas, D. S. G., Bateman, M. D., Wiggs, G. F. S., and Rabumbulu, M.: Evidence for Land Degradation from Aeolian Sediment in the West-Central Free State Province, South Africa, Land Degrad. Dev., 23, 601–610, https://doi.org/10.1002/ldr.2177, 2012.
Hoo, W. T., Fifield, L. K., Tims, S. G., Fujioka, T., and Mueller, N.: Using fallout plutonium as a probe for erosion assessment, J. Environ. Radioactiv., 102, 937–942, https://doi.org/10.1016/j.jenvrad.2010.06.010, 2011.
Hoshino, Y., Higashi, T., Ito, T., and Komatsuzaki, M.: Tillage can reduce the radiocesium contamination of soybean after the Fukushima Dai-ichi nuclear power plant accident, Soil Till. Res., 153, 76–85, https://doi.org/10.1016/j.still.2015.05.005, 2015.
Hu, Y. and Zhang, Y.: Using 137Cs and 210Pbex to investigate the soil erosion and accumulation moduli on the southern margin of the Hunshandake Sandy Land in Inner Mongolia, J. Geogr. Sci., 29, 1655–1669, https://doi.org/10.1007/s11442-019-1983-1, 2019.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps, FAO, Rome, ISBN 978-92-5-108369-7, 2015.
Kachanoski, R. G. and de Jong, E.: Predicting the Temporal Relationship between Soil Cesium-137 and Erosion Rate, J. Environ. Qual., 13, 301–304, https://doi.org/10.2134/jeq1984.00472425001300020025x, 1984.
Kelley, J. M., Bond, L. A., and Beasley, T. M.: Global distribution of Pu isotopes and 237Np, Sci. Total Environ., 237–238, 483–500, https://doi.org/10.1016/S0048-9697(99)00160-6, 1999.
Lal, R.: Influence of Soil Erosion on Carbon Dynamics in the World, in: Soil erosion and carbon dynamics, edited by: Roose, E. J., Lal, R., Feller, C., Barthès, B., and Stewart, B. A., Advances in soil science, CRC Press, Boca Raton, 23–35, https://doi.org/10.1201/9780203491935 2006.
Lal, R., Tims, S. G., Fifield, L. K., Wasson, R. J., and Howe, D.: Applicability of 239Pu as a tracer for soil erosion in the wet-dry tropics of northern Australia, Nucl. Instrum. Meth. B, 294, 577–583, https://doi.org/10.1016/j.nimb.2012.07.041, 2013.
Lal, R., Fifield, L. K., Tims, S. G., Wasson, R. J., and Howe, D.: A study of soil erosion rates using (239)Pu, in the wet-dry tropics of northern Australia, J. Environ. Radioactiv., 211, 106085, https://doi.org/10.1016/j.jenvrad.2019.106085, 2020.
Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century, Glob. Change Biol., 26, 261–273, https://doi.org/10.1111/gcb.14859, 2020.
Li, S., Lobb, D. A., Kachanoski, R. G., and McConkey, B. G.: Comparing the use of the traditional and repeated-sampling-approach of the 137Cs technique in soil erosion estimation, Geoderma, 160, 324–335, https://doi.org/10.1016/j.geoderma.2010.09.029, 2011.
Little, C. A.: Plutonium in a grassland ecosystem, in: Transuranic elements in the environment, edited by: Hanson, W. C., US Department of Energy Washington, DC, 420–440, ISBN 0-87079-119-2, 1980.
Liu, Y. and Hou, X.: Effect of land use and vegetation coverage on level and distribution of plutonium isotopes in the northern Loess Plateau, China, J. Radioanal. Nucl. Ch., 332, 989–998, https://doi.org/10.1007/s10967-022-08675-6, 2022.
Lobe, I.: Fate of organic matter in sandy soils of the South African Highveld as influenced by the duration of arable cropping, Bayreuther bodenkundliche Berichte, 79, Lehrstuhl für Bodenkunde und Bodengeographie der Univ. Bayreuth, Bayreuth, https://eref.uni-bayreuth.de/id/eprint/18595 (last access: 12 December 2024), 2003.
Lobe, I., Amelung, W., and Du Preez, C. C.: Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld, Eur. J. Soil Sci., 52, 93–101, https://doi.org/10.1046/j.1365-2389.2001.t01-1-00362.x, 2001.
Lobe, I., Du Preez, C. C., and Amelung, W.: Influence of prolonged arable cropping on lignin compounds in sandy soils of the South African Highveld, Eur. J. Soil Sci., 53, 553–562, https://doi.org/10.1046/j.1365-2389.2002.00469.x, 2002.
Lobe, I., Bol, R., Ludwig, B., Du Preez, C. C., and Amelung, W.: Savanna-derived organic matter remaining in arable soils of the South African Highveld long-term mixed cropping: Evidence from 13C and 15N natural abundance, Soil Biol. Biochem., 37, 1898–1909, https://doi.org/10.1016/j.soilbio.2005.02.030, 2005.
Lobe, I., Sandhage-Hofmann, A., Brodowski, S., du Preez, C. C., and Amelung, W.: Aggregate dynamics and associated soil organic matter contents as influenced by prolonged arable cropping in the South African Highveld, Geoderma, 162, 251–259, https://doi.org/10.1016/j.geoderma.2011.02.001, 2011.
Mabit, L., Benmansour, M., and Walling, D. E.: Comparative advantages and limitations of the fallout radionuclides (137)Cs, (210)Pb(ex) and (7)Be for assessing soil erosion and sedimentation, J. Environ. Radioactiv., 99, 1799–1807, https://doi.org/10.1016/j.jenvrad.2008.08.009, 2008.
Mabit, L., Meusburger, K., Fulajtar, E., and Alewell, C.: The usefulness of 137Cs as a tracer for soil erosion assessment: A critical reply to Parsons and Foster (2011), Earth-Sci. Rev., 127, 300–307, https://doi.org/10.1016/j.earscirev.2013.05.008, 2013.
Matisoff, G.: (210)Pb as a tracer of soil erosion, sediment source area identification and particle transport in the terrestrial environment, J. Environ. Radioactiv., 138, 343–354, https://doi.org/10.1016/j.jenvrad.2014.03.008, 2014.
Meusburger, K., Porto, P., Mabit, L., La Spada, C., Arata, L., and Alewell, C.: Excess Lead-210 and Plutonium-239+240: Two suitable radiogenic soil erosion tracers for mountain grassland sites, Environ. Res., 160, 195–202, https://doi.org/10.1016/j.envres.2017.09.020, 2018.
Meusburger, K., Evrard, O., Alewell, C., Borrelli, P., Cinelli, G., Ketterer, M., Mabit, L., Panagos, P., van Oost, K., and Ballabio, C.: Plutonium aided reconstruction of caesium atmospheric fallout in European topsoils, Sci. Rep.-UK, 10, 11858, https://doi.org/10.1038/s41598-020-68736-2, 2020.
Michelotti, E. A., Whicker, J. J., Eisele, W. F., Breshears, D. D., and Kirchner, T. B.: Modeling aeolian transport of soil-bound plutonium: considering infrequent but normal environmental disturbances is critical in estimating future dose, J. Environ. Radioactiv., 120, 73–80, https://doi.org/10.1016/j.jenvrad.2013.01.011, 2013.
Nakanishi, T. M.: The Overview of Our Research, in: Agricultural Implications of the Fukushima Nuclear Accident, edited by: Nakanishi, T. M., and Tanoi, K., Springer Japan, Tokyo, 1–10, https://doi.org/10.1007/978-4-431-54328-2_1, 2013.
National Institution of Standards and Technology (NIST): Standard Reference Material® 4334I Plutonium-242 Radioactivity Standard, 2010.
National Nuclear Data Center (NNDC): NuDat 3.0: https://www.nndc.bnl.gov/nudat3/, last access: 10 January 2024.
Palm, C., Sanchez, P., Ahamed, S., and Awiti, A.: Soils: A Contemporary Perspective, Annu. Rev. Env. Resour., 32, 99–129, https://doi.org/10.1146/annurev.energy.31.020105.100307, 2007.
Parsons, A. J. and Foster, I. D. L.: What can we learn about soil erosion from the use of 137Cs?, Earth-Sci. Rev., 108, 101–113, https://doi.org/10.1016/j.earscirev.2011.06.004, 2011.
Pennock, D. and Appleby, P.: Site selection and sampling design, in: Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides, edited by: Zapata, F., Springer, 15–40, ISBN 1-4020-1041-9, 2002.
Prăvălie, R., Patriche, C., Borrelli, P., Panagos, P., Roşca, B., Dumitraşcu, M., Nita, I.-A., Săvulescu, I., Birsan, M.-V., and Bandoc, G.: Arable lands under the pressure of multiple land degradation processes. A global perspective, Environ. Res., 194, 110697, https://doi.org/10.1016/j.envres.2020.110697, 2021.
Reeves, D. W.: The role of soil organic matter in maintaining soil quality in continuous cropping systems, Soil Till. Res., 43, 131–167, https://doi.org/10.1016/S0167-1987(97)00038-X, 1997.
Reissig, H.: 137Cs in landwirtschaftlichen Nutzpflanzen und Böden auf dem Territorium der DDR 1960–1963, Arch. Agron. Soil Sci., 9, 955–972, https://doi.org/10.1080/03650346509412984, 1965.
Sanderman, J., Hengl, T., and Fiske, G. J.: Soil carbon debt of 12 000 years of human land use, P. Natl. Acad. Sci. USA, 114, 9575–9580, https://doi.org/10.1073/pnas.1706103114, 2017.
Sato, I., Sasaki, J., Satoh, H., Murata, T., Otani, K., and Okada, K.: Radioactive cesium and potassium in cattle living in the “zone in preparation for the lifting of the evacuation order” of the Fukushima nuclear accident, Anim. Sci. J., 88, 1021–1026, https://doi.org/10.1111/asj.12749, 2017.
Schimmack, W., Auerswald, K., and Bunzl, K.: Can 239+240Pu replace 137Cs as an erosion tracer in agricultural landscapes contaminated with Chernobyl fallout?, J. Environ. Radioactiv., 53, 41–57, https://doi.org/10.1016/S0265-931X(00)00117-X, 2001.
Schimmack, W., Auerswald, K., and Bunzl, K.: Estimation of soil erosion and deposition rates at an agricultural site in Bavaria, Germany, as derived from fallout radiocesium and plutonium as tracers, Naturwissenschaften, 89, 43–46, 2002.
Schimmack, W., Bunzl, K., and Flessa, H.: Short-term and long-term effects of ploughing on the vertical distribution of radiocaesium in two Bavarian soils, Soil Use Manage., 10, 164–168, https://doi.org/10.1111/j.1475-2743.1994.tb00480.x, 1994.
Smith, B. S., Child, D. P., Fierro, D., Harrison, J. J., Heijnis, H., Hotchkis, M. A. C., Johansen, M. P., Marx, S., Payne, T. E., and Zawadzki, A.: Measurement of fallout radionuclides, 239,240Pu and 137Cs, in soil and creek sediment: Sydney Basin, Australia, J. Environ. Radioactiv., 151, 579–586, https://doi.org/10.1016/j.jenvrad.2015.06.015, 2016a.
Smith, P., House, J. I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P. C., Clark, J. M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M. F., Elliott, J. A., McDowell, R., Griffiths, R. I., Asakawa, S., Bondeau, A., Jain, A. K., Meersmans, J., and Pugh, T. A. M.: Global change pressures on soils from land use and management, Glob. Change Biol., 22, 1008–1028, https://doi.org/10.1111/gcb.13068, 2016b.
Soil Survey Staff: Keys to Soil Taxonomy, USDA-Natural Resources Conservation Service, Washington, DC, 12th edn., ISBN-10 035957324X, ISBN-13 978-0359573240, 2014.
Sokol, N. W., Sanderman, J., and Bradford, M. A.: Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry, Glob. Change Biol., 25, 12–24, https://doi.org/10.1111/gcb.14482, 2019.
Solomon, D., Lehmann, J., Lobe, I., Martinez, C. E., Tveitnes, S., Du Preez, C. C., and Amelung, W.: Sulphur speciation and biogeochemical cycling in long-term arable cropping of subtropical soils: evidence from wet-chemical reduction and S K-edge XANES spectroscopy, Eur. J. Soil Sci., 56, 621–634, https://doi.org/10.1111/j.1365-2389.2005.00702.x, 2005.
Sutherland, R. A.: Caesium-137 soil sampling and inventory variability in reference locations: A literature survey, Hydrol. Process., 10, 43–53, https://doi.org/10.1002/(sici)1099-1085(199601)10:1<43::Aid-hyp298>3.0.Co;2-x, 1996.
UN Scientific Committee on the Effects of Atomic Radiation: Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, vol. 1: Sources, UN, New York, 89, ISBN 92-1-142238-8, 2000.
Van Pelt, R. S.: Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind I: Historic use of 137Cs, Aeolian Res., 9, 89–102, https://doi.org/10.1016/j.aeolia.2012.11.004, 2013.
Van Pelt, R. S. and Ketterer, M. E.: Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind II: The potential for future use of 239+240Pu, Aeolian Res., 9, 103–110, https://doi.org/10.1016/j.aeolia.2013.01.004, 2013.
Van Pelt, R. S., Zobeck, T. M., Ritchie, J. C., and Gill, T. E.: Validating the use of 137Cs measurements to estimate rates of soil redistribution by wind, Catena, 70, 455–464, https://doi.org/10.1016/j.catena.2006.11.014, 2007.
Van Pelt, R. S., Hushmurodov, S. X., Baumhardt, R. L., Chappell, A., Nearing, M. A., Polyakov, V. O., and Strack, J. E.: The reduction of partitioned wind and water erosion by conservation agriculture, Catena, 148, 160–167, https://doi.org/10.1016/j.catena.2016.07.004, 2017.
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., and Flessa, H.: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review, Eur. J. Soil Sci., 57, 426–445, https://doi.org/10.1111/j.1365-2389.2006.00809.x, 2006.
von Sperber, C., Stallforth, R., Du Preez, C., and Amelung, W.: Changes in soil phosphorus pools during prolonged arable cropping in semiarid grasslands, Eur. J. Soil Sci., 68, 462–471, https://doi.org/10.1111/ejss.12433, 2017.
Vos, H. C., Fister, W., Eckardt, F. D., Palmer, A. R., and Kuhn, N. J.: Physical Crust Formation on Sandy Soils and Their Potential to Reduce Dust Emissions from Croplands, Land, 9, 503, https://doi.org/10.3390/land9120503, 2020.
Wallbrink, P. J., Walling, D. E., and He, Q.: Radionuclide Measurement Using HPGe Gamma Spectrometry, in: Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides, edited by: Zapata, F., Springer Netherlands, Dordrecht, 67–96, https://doi.org/10.1007/0-306-48054-9_5, 2003.
Wiggs, G. and Holmes, P.: Dynamic controls on wind erosion and dust generation on west-central Free State agricultural land, South Africa, Earth Surf. Proc. Land., 36, 827–838, https://doi.org/10.1002/esp.2110, 2010.
Wilding, L.: Spatial variability: its documentation, accomodation and implication to soil surveys, in: Soil spatial variability, Las Vegas NV, 30 November–1 December 1984, 166–194, edited by: Nielsen, D. R. and Bouma, J., Pudoc Wageningen, ISBN 90-220-0891-6, 1985.
Xu, Y., Qiao, J., Hou, X., and Pan, S.: Plutonium in Soils from Northeast China and Its Potential Application for Evaluation of Soil Erosion, Sci. Rep.-UK, 3, 3506, https://doi.org/10.1038/srep03506, 2013.
Xu, Y., Pan, S., Wu, M., Zhang, K., and Hao, Y.: Association of Plutonium isotopes with natural soil particles of different size and comparison with 137Cs, Sci. Total Environ., 581–582, 541–549, https://doi.org/10.1016/j.scitotenv.2016.12.162, 2017.
Yan, H., Wang, S., Wang, C., Zhang, G., and Patel, N.: Losses of soil organic carbon under wind erosion in China, Glob. Change Biol., 11, 828–840, https://doi.org/10.1111/j.1365-2486.2005.00950.x, 2005.
Zapata, F.: Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides, Springer, ISBN 1-4020-1041-9, 2002.
Zhao, X., Qiao, J., and Hou, X.: Plutonium isotopes in Northern Xinjiang, China: Level, distribution, sources and their contributions, Environ. Pollut., 265, 114929, https://doi.org/10.1016/j.envpol.2020.114929, 2020.
Short summary
We measured concentrations of nuclear fallout in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century, the data strongly correlate with the organic matter content of the soils. The finding implies that wind erosion strongly influenced the loss of organic matter in the soils we investigated. Furthermore, the exponential decline of fallout concentrations and organic matter content over time peaks shortly after native grassland is ploughed.
We measured concentrations of nuclear fallout in soil samples taken from arable land in South...
Altmetrics
Final-revised paper
Preprint