Articles | Volume 22, issue 4
https://doi.org/10.5194/bg-22-1077-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1077-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Plutonium concentrations link soil organic matter decline to wind erosion in ploughed soils of South Africa
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
Chair of Physical Geography and Geoecology, RWTH Aachen University, Wüllnerstr. 5b, 52062 Aachen, Germany
Hendrik Wiesel
Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674 Cologne, Germany
Advanced Nuclear Fuels GmbH, Am Seitenkanal 1, 49811 Lingen, Germany
Wulf Amelung
Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany
L. Keith Fifield
Department of Nuclear Physics and Accelerator Applications, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
Alexandra Sandhage-Hofmann
Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany
Erik Strub
Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674 Cologne, Germany
Steven A. Binnie
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
Stefan Heinze
CologneAMS, Institute of Nuclear Physics, University of Cologne, Zülpicher Str. 77, 50937 Cologne, Germany
Elmarie Kotze
Department of Soil, Crop and Climate Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
Chris Du Preez
Department of Soil, Crop and Climate Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
Stephen G. Tims
Department of Nuclear Physics and Accelerator Applications, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
Tibor J. Dunai
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
Related authors
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
Earth Surf. Dynam., 13, 257–276, https://doi.org/10.5194/esurf-13-257-2025, https://doi.org/10.5194/esurf-13-257-2025, 2025
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, https://doi.org/10.5194/esurf-8-995-2020, 2020
Short summary
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
Volker Wennrich, Julia Diederich-Leicher, Bárbara Nataly Blanco-Arrué, Christoph Büttner, Stefan Buske, Eduardo Campos Sepulveda, Tibor Dunai, Jacob Feller, Emma Galego, Ascelina Hasberg, Niklas Leicher, Damián Alejandro López, Jorge Maldonado, Alicia Medialdea, Lukas Ninnemann, Russell Perryman, Juan Cristóbal Ríos-Contesse, Benedikt Ritter, Stephanie Scheidt, Barbara Vargas-Machuca, Pritam Yogeshwar, and Martin Melles
Sci. Dril., 34, 1–20, https://doi.org/10.5194/sd-34-1-2025, https://doi.org/10.5194/sd-34-1-2025, 2025
Short summary
Short summary
We present the results of comprehensive pre-site surveys and deep drillings in two clay pans in the central Atacama Desert of northern Chile, one of the driest deserts on Earth. The results of the site surveys as well as lithological and downhole-logging data of the deep-drilling operations highlight the potential of the sediment records from the PAG (Playa Adamito Grande) and Paranal clay pans to provide unprecedented information on the Neogene precipitation history of the hyperarid core of the Atacama Desert.
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
Earth Surf. Dynam., 13, 257–276, https://doi.org/10.5194/esurf-13-257-2025, https://doi.org/10.5194/esurf-13-257-2025, 2025
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023, https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary
Short summary
Chronological information on the evolution of the Namib Desert is scarce. We used U–Pb dating of silcretes formed by pressure solution during calcrete formation to track paleoclimate variability since the Late Miocene. Calcrete formation took place during the Pliocene with an abrupt cessation at 2.9 Ma. The end took place due to deep canyon incision which we dated using TCN exposure dating. With our data we correct and contribute to the Neogene history of the Namib Desert and its evolution.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023, https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.
Tibor János Dunai, Steven Andrew Binnie, and Axel Gerdes
Geochronology, 4, 65–85, https://doi.org/10.5194/gchron-4-65-2022, https://doi.org/10.5194/gchron-4-65-2022, 2022
Short summary
Short summary
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
Benedikt Ritter, Andreas Vogt, and Tibor J. Dunai
Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, https://doi.org/10.5194/gchron-3-421-2021, 2021
Short summary
Short summary
We describe the design and performance of a new noble gas mass laboratory dedicated to the development of and application to cosmogenic nuclides at the University of Cologne (Germany). At the core of the laboratory are a state-of-the-art high-mass-resolution multicollector Helix MCPlus (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated extraction line, including a laser-powered extraction furnace. Performance was tested with intercomparison (CREU-1) material.
Juan-Luis García, Christopher Lüthgens, Rodrigo M. Vega, Ángel Rodés, Andrew S. Hein, and Steven A. Binnie
E&G Quaternary Sci. J., 70, 105–128, https://doi.org/10.5194/egqsj-70-105-2021, https://doi.org/10.5194/egqsj-70-105-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM) about 21 kyr ago is known to have been global in extent. Nonetheless, we have limited knowledge during the pre-LGM time in the southern middle latitudes. If we want to understand the causes of the ice ages, the complete glacial period must be addressed. In this paper, we show that the Patagonian Ice Sheet in southern South America reached its full glacial extent also by 57 kyr ago and defies a climate explanation.
Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, https://doi.org/10.5194/esurf-8-995-2020, 2020
Short summary
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
Cited articles
Alewell, C., Meusburger, K., Juretzko, G., Mabit, L., and Ketterer, M. E.: Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands, Chemosphere, 103, 274–280, https://doi.org/10.1016/j.chemosphere.2013.12.016, 2014.
Alewell, C., Pitois, A., Meusburger, K., Ketterer, M., and Mabit, L.: 239+240Pu from “contaminant” to soil erosion tracer: Where do we stand?, Earth-Sci. Rev., 172, 107–123, https://doi.org/10.1016/j.earscirev.2017.07.009, 2017.
Amelung, W., Lobe, I., and Du Preez, C. C.: Fate of microbial residues in sandy soils of the South African Highveld as influenced by prolonged arable cropping, Eur. J. Soil Sci., 53, 29–35, https://doi.org/10.1046/j.1365-2389.2002.00428.x, 2002.
Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., and Sparks, D. L.: Soil science. Soil and human security in the 21st century, Science, 348, 1261071, https://doi.org/10.1126/science.1261071, 2015.
Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer, M., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J., Storelvmo, T., Thorne, P., Trewin, B., Rao, K., Adhikary, B., Allan, R., Armour, K., and Zickfeld, K.: IPCC AR6 WGI Technical Summary, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, United Kingdom and New York, NY, USA, 33–144, https://doi.org/10.1017/9781009157896.002, 2021.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1 km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Bot, A. and Benites, J.: The importance of soil organic matter: Key to drought-resistant soil and sustained food production, Food and Agriculture Organization of the United Nations (FAO), FAO Soils Bulletin, vol. 80, ISBN 92-5-105366-9, 2005.
Bouisset, P., Nohl, M., Bouville, A., and Leclerc, G.: Inventory and vertical distribution of 137Cs, 239+240Pu and 238Pu in soil from Raivavae and Hiva Oa, two French Polynesian islands in the southern hemisphere, J. Environ. Radioactiv., 183, 82–93, https://doi.org/10.1016/j.jenvrad.2017.12.017, 2018.
Chamizo, E., López-Lora, M., Villa, M., Casacuberta, N., López-Gutiérrez, J. M., and Pham, M. K.: Analysis of 236U and plutonium isotopes, 239,240Pu, on the 1 MV AMS system at the Centro Nacional de Aceleradores, as a potential tool in oceanography, Nucl. Instrum. Meth. B, 361, 535–540, https://doi.org/10.1016/j.nimb.2015.02.066, 2015.
Chappell, A.: The limitations of using 137Cs for estimating soil redistribution in semi-arid environments, Geomorphology, 29, 135–152, https://doi.org/10.1016/S0169-555X(99)00011-2, 1999.
Chappell, A., Webb, N. P., Butler, H. J., Strong, C. L., McTainsh, G. H., Leys, J. F., and Viscarra Rossel, R. A.: Soil organic carbon dust emission: an omitted global source of atmospheric CO2, Glob. Change Biol., 19, 3238–3244, https://doi.org/10.1111/gcb.12305, 2013.
Chappell, A., Webb, N. P., Viscarra Rossel, R. A., and Bui, E.: Australian net (1950s–1990) soil organic carbon erosion: implications for CO2 emission and land–atmosphere modelling, Biogeosciences, 11, 5235–5244, https://doi.org/10.5194/bg-11-5235-2014, 2014.
Chappell, A., Webb, N. P., Leys, J. F., Waters, C. M., Orgill, S., and Eyres, M. J.: Minimising soil organic carbon erosion by wind is critical for land degradation neutrality, Environ. Sci. Policy, 93, 43–52, https://doi.org/10.1016/j.envsci.2018.12.020, 2019.
Christl, M., Vockenhuber, C., Kubik, P. W., Wacker, L., Lachner, J., Alfimov, V., and Synal, H. A.: The ETH Zurich AMS facilities: Performance parameters and reference materials, Nucl. Instrum. Meth. B, 294, 29–38, https://doi.org/10.1016/j.nimb.2012.03.004, 2013.
Cook, M., Kleinschmidt, R., Brugger, J., and Wong, V. N. L.: Transport and migration of plutonium in different soil types and rainfall regimes, J. Environ. Radioactiv., 248, 106883, https://doi.org/10.1016/j.jenvrad.2022.106883, 2022.
Cotrufo, M. F. and Lavallee, J. M.: Chapter One – Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration, in: Advances in Agronomy, edited by: Sparks, D. L., Academic Press, 1–66, https://doi.org/10.1016/bs.agron.2021.11.002, 2022.
Coughtrey, P., Jackson, D., Jones, C., Kane, P., and Thorne, M.: Radionuclide distribution and transport in terrestrial and aquatic ecosystems. A critical review of data, vol. 4, A. A. Balkema, Rotterdam, 580, ISBN 90 6191 281 4, 1984.
Das Gupta, S., Mohanty, B. P., and Köhne, J. M.: Soil Hydraulic Conductivities and their Spatial and Temporal Variations in a Vertisol, Soil Sci. Soc. Am. J., 70, 1872–1881, https://doi.org/10.2136/sssaj2006.0201, 2006.
Department of Agriculture, Land Reform and Rural Development (DALRRD): Abstract of Agricultural Statistics 2023, Resource Centre, Statistics and Economic Analysis, http://www.dalrrd.gov.za/images/Branches/Economica Development Trade and Marketing/Statistc and Economic Analysis/statistical-information/abstract-2023.pdf (last access: 12 December 2024), 2023.
Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J., Melles, M., Staubwasser, M., Kuczewski, B., Richter, J., Radtke, U., von Blanckenburg, F., and Klein, M.: CologneAMS, a dedicated center for accelerator mass spectrometry in Germany, Nucl. Instrum. Meth. B, 294, 18–23, https://doi.org/10.1016/j.nimb.2012.04.030, 2013.
Dialynas, Y. G., Bastola, S., Bras, R. L., Billings, S. A., Markewitz, D., and Richter, D. D.: Topographic variability and the influence of soil erosion on the carbon cycle, Global Biogeochem. Cy., 30, 644–660, https://doi.org/10.1002/2015gb005302, 2016.
du Preez, C. C. and du Toit, M. E.: Effect of cultivation on the nitrogen fertility of selected agro-ecosystems in South Africa, Fert. Res., 42, 27–32, https://doi.org/10.1007/BF00750497, 1995.
du Preez, C. C., van Huyssteen, C. W., and Amelung, W.: Changes in soil organic matter content and quality in South African arable land, in: Soil degradation and restoration in Africa, edited by: Lal, R. and Stewart, B. A., CRC press, 110–143, eBook ISBN 9781315102849, https://doi.org/10.1201/b22321, 2019.
du Toit, M. E., du Preez, C. C., Hensley, M., and Bennie, A. T. P.: Effek van bewerking op die organiese materiaalinhoud van geselekteerde droëlandgronde in Suid-Afrika, S. Afr. J. Plant Soil, 11, 71–79, https://doi.org/10.1080/02571862.1994.10634298, 1994.
Eckardt, F. D., Bekiswa, S., Von Holdt, J. R., Jack, C., Kuhn, N. J., Mogane, F., Murray, J. E., Ndara, N., and Palmer, A. R.: South Africa's agricultural dust sources and events from MSG SEVIRI, Aeolian Res., 47, 100637, https://doi.org/10.1016/j.aeolia.2020.100637, 2020.
Elliott, E. T.: Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils, Soil Sci. Soc. Am. J., 50, 627–633, https://doi.org/10.2136/sssaj1986.03615995005000030017x, 1986.
Everett, S. E.: Assessment of plutonium as a tracer of soil and sediment transport using accelerator mass spectrometry, Dissertation, Australian National University, XXII, 165 pp., https://doi.org/10.25911/5d514d0250051, 2009.
Everett, S. E., Tims, S. G., Hancock, G. J., Bartley, R., and Fifield, L. K.: Comparison of Pu and 137Cs as tracers of soil and sediment transport in a terrestrial environment, J. Environ. Radioactiv., 99, 383–393, https://doi.org/10.1016/j.jenvrad.2007.10.019, 2008.
FAO: Soil Organic Carbon: the hidden potential, Food and Agriculture Organization of the United Nations, Rome, Italy, ISBN-10 9251096813, ISBN-13 978-9251096819, 2017.
FAO and ITPS: Status of the World's Soil Resources (SWSR) – Main Report, Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy, ISBN 978-92-5-109004-6, 2015.
Fifield, L. K.: Accelerator mass spectrometry of the actinides, Quat. Geochronol., 3, 276–290, https://doi.org/10.1016/j.quageo.2007.10.003, 2008.
Fifield, L. K., Cresswell, R. G., di Tada, M. L., Ophel, T. R., Day, J. P., Clacher, A. P., King, S. J., and Priest, N. D.: Accelerator mass spectrometry of plutonium isotopes, Nucl. Instrum. Meth. B, 117, 295–303, https://doi.org/10.1016/0168-583X(96)00287-X, 1996.
Fulajtar, E.: Assessment of soil erosion on arable land using 137Cs measurements: a case study from Jaslovske Bohunice, Slovakia, Soil Till. Res., 69, 139–152, https://doi.org/10.1016/S0167-1987(02)00135-6, 2003.
Funk, R., Li, Y., Hoffmann, C., Reiche, M., Zhang, Z., Li, J., and Sommer, M.: Using 137Cs to estimate wind erosion and dust deposition on grassland in Inner Mongolia-selection of a reference site and description of the temporal variability, Plant Soil, 351, 293–307, https://doi.org/10.1007/s11104-011-0964-y, 2011.
Hardy, E. P., Krey, P. W., and Volchok, H. L.: Global Inventory and Distribution of Fallout Plutonium, Nature, 241, 444–445, https://doi.org/10.1038/241444a0, 1973.
Harper, R. M. and Tinnacher, R. M.: Plutonium, in: Encyclopedia of Ecology, edited by: Jørgensen, S. E., and Fath, B. D., Academic Press, Oxford, 2845–2850, https://doi.org/10.1016/B978-008045405-4.00422-5, 2008.
He, Q. and Walling, D. E.: Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments, J. Environ. Radioactiv., 30, 117–137, https://doi.org/10.1016/0265-931X(96)89275-7, 1996.
Holmes, P. J., Thomas, D. S. G., Bateman, M. D., Wiggs, G. F. S., and Rabumbulu, M.: Evidence for Land Degradation from Aeolian Sediment in the West-Central Free State Province, South Africa, Land Degrad. Dev., 23, 601–610, https://doi.org/10.1002/ldr.2177, 2012.
Hoo, W. T., Fifield, L. K., Tims, S. G., Fujioka, T., and Mueller, N.: Using fallout plutonium as a probe for erosion assessment, J. Environ. Radioactiv., 102, 937–942, https://doi.org/10.1016/j.jenvrad.2010.06.010, 2011.
Hoshino, Y., Higashi, T., Ito, T., and Komatsuzaki, M.: Tillage can reduce the radiocesium contamination of soybean after the Fukushima Dai-ichi nuclear power plant accident, Soil Till. Res., 153, 76–85, https://doi.org/10.1016/j.still.2015.05.005, 2015.
Hu, Y. and Zhang, Y.: Using 137Cs and 210Pbex to investigate the soil erosion and accumulation moduli on the southern margin of the Hunshandake Sandy Land in Inner Mongolia, J. Geogr. Sci., 29, 1655–1669, https://doi.org/10.1007/s11442-019-1983-1, 2019.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps, FAO, Rome, ISBN 978-92-5-108369-7, 2015.
Kachanoski, R. G. and de Jong, E.: Predicting the Temporal Relationship between Soil Cesium-137 and Erosion Rate, J. Environ. Qual., 13, 301–304, https://doi.org/10.2134/jeq1984.00472425001300020025x, 1984.
Kelley, J. M., Bond, L. A., and Beasley, T. M.: Global distribution of Pu isotopes and 237Np, Sci. Total Environ., 237–238, 483–500, https://doi.org/10.1016/S0048-9697(99)00160-6, 1999.
Lal, R.: Influence of Soil Erosion on Carbon Dynamics in the World, in: Soil erosion and carbon dynamics, edited by: Roose, E. J., Lal, R., Feller, C., Barthès, B., and Stewart, B. A., Advances in soil science, CRC Press, Boca Raton, 23–35, https://doi.org/10.1201/9780203491935 2006.
Lal, R., Tims, S. G., Fifield, L. K., Wasson, R. J., and Howe, D.: Applicability of 239Pu as a tracer for soil erosion in the wet-dry tropics of northern Australia, Nucl. Instrum. Meth. B, 294, 577–583, https://doi.org/10.1016/j.nimb.2012.07.041, 2013.
Lal, R., Fifield, L. K., Tims, S. G., Wasson, R. J., and Howe, D.: A study of soil erosion rates using (239)Pu, in the wet-dry tropics of northern Australia, J. Environ. Radioactiv., 211, 106085, https://doi.org/10.1016/j.jenvrad.2019.106085, 2020.
Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century, Glob. Change Biol., 26, 261–273, https://doi.org/10.1111/gcb.14859, 2020.
Li, S., Lobb, D. A., Kachanoski, R. G., and McConkey, B. G.: Comparing the use of the traditional and repeated-sampling-approach of the 137Cs technique in soil erosion estimation, Geoderma, 160, 324–335, https://doi.org/10.1016/j.geoderma.2010.09.029, 2011.
Little, C. A.: Plutonium in a grassland ecosystem, in: Transuranic elements in the environment, edited by: Hanson, W. C., US Department of Energy Washington, DC, 420–440, ISBN 0-87079-119-2, 1980.
Liu, Y. and Hou, X.: Effect of land use and vegetation coverage on level and distribution of plutonium isotopes in the northern Loess Plateau, China, J. Radioanal. Nucl. Ch., 332, 989–998, https://doi.org/10.1007/s10967-022-08675-6, 2022.
Lobe, I.: Fate of organic matter in sandy soils of the South African Highveld as influenced by the duration of arable cropping, Bayreuther bodenkundliche Berichte, 79, Lehrstuhl für Bodenkunde und Bodengeographie der Univ. Bayreuth, Bayreuth, https://eref.uni-bayreuth.de/id/eprint/18595 (last access: 12 December 2024), 2003.
Lobe, I., Amelung, W., and Du Preez, C. C.: Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld, Eur. J. Soil Sci., 52, 93–101, https://doi.org/10.1046/j.1365-2389.2001.t01-1-00362.x, 2001.
Lobe, I., Du Preez, C. C., and Amelung, W.: Influence of prolonged arable cropping on lignin compounds in sandy soils of the South African Highveld, Eur. J. Soil Sci., 53, 553–562, https://doi.org/10.1046/j.1365-2389.2002.00469.x, 2002.
Lobe, I., Bol, R., Ludwig, B., Du Preez, C. C., and Amelung, W.: Savanna-derived organic matter remaining in arable soils of the South African Highveld long-term mixed cropping: Evidence from 13C and 15N natural abundance, Soil Biol. Biochem., 37, 1898–1909, https://doi.org/10.1016/j.soilbio.2005.02.030, 2005.
Lobe, I., Sandhage-Hofmann, A., Brodowski, S., du Preez, C. C., and Amelung, W.: Aggregate dynamics and associated soil organic matter contents as influenced by prolonged arable cropping in the South African Highveld, Geoderma, 162, 251–259, https://doi.org/10.1016/j.geoderma.2011.02.001, 2011.
Mabit, L., Benmansour, M., and Walling, D. E.: Comparative advantages and limitations of the fallout radionuclides (137)Cs, (210)Pb(ex) and (7)Be for assessing soil erosion and sedimentation, J. Environ. Radioactiv., 99, 1799–1807, https://doi.org/10.1016/j.jenvrad.2008.08.009, 2008.
Mabit, L., Meusburger, K., Fulajtar, E., and Alewell, C.: The usefulness of 137Cs as a tracer for soil erosion assessment: A critical reply to Parsons and Foster (2011), Earth-Sci. Rev., 127, 300–307, https://doi.org/10.1016/j.earscirev.2013.05.008, 2013.
Matisoff, G.: (210)Pb as a tracer of soil erosion, sediment source area identification and particle transport in the terrestrial environment, J. Environ. Radioactiv., 138, 343–354, https://doi.org/10.1016/j.jenvrad.2014.03.008, 2014.
Meusburger, K., Porto, P., Mabit, L., La Spada, C., Arata, L., and Alewell, C.: Excess Lead-210 and Plutonium-239+240: Two suitable radiogenic soil erosion tracers for mountain grassland sites, Environ. Res., 160, 195–202, https://doi.org/10.1016/j.envres.2017.09.020, 2018.
Meusburger, K., Evrard, O., Alewell, C., Borrelli, P., Cinelli, G., Ketterer, M., Mabit, L., Panagos, P., van Oost, K., and Ballabio, C.: Plutonium aided reconstruction of caesium atmospheric fallout in European topsoils, Sci. Rep.-UK, 10, 11858, https://doi.org/10.1038/s41598-020-68736-2, 2020.
Michelotti, E. A., Whicker, J. J., Eisele, W. F., Breshears, D. D., and Kirchner, T. B.: Modeling aeolian transport of soil-bound plutonium: considering infrequent but normal environmental disturbances is critical in estimating future dose, J. Environ. Radioactiv., 120, 73–80, https://doi.org/10.1016/j.jenvrad.2013.01.011, 2013.
Nakanishi, T. M.: The Overview of Our Research, in: Agricultural Implications of the Fukushima Nuclear Accident, edited by: Nakanishi, T. M., and Tanoi, K., Springer Japan, Tokyo, 1–10, https://doi.org/10.1007/978-4-431-54328-2_1, 2013.
National Institution of Standards and Technology (NIST): Standard Reference Material® 4334I Plutonium-242 Radioactivity Standard, 2010.
National Nuclear Data Center (NNDC): NuDat 3.0: https://www.nndc.bnl.gov/nudat3/, last access: 10 January 2024.
Palm, C., Sanchez, P., Ahamed, S., and Awiti, A.: Soils: A Contemporary Perspective, Annu. Rev. Env. Resour., 32, 99–129, https://doi.org/10.1146/annurev.energy.31.020105.100307, 2007.
Parsons, A. J. and Foster, I. D. L.: What can we learn about soil erosion from the use of 137Cs?, Earth-Sci. Rev., 108, 101–113, https://doi.org/10.1016/j.earscirev.2011.06.004, 2011.
Pennock, D. and Appleby, P.: Site selection and sampling design, in: Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides, edited by: Zapata, F., Springer, 15–40, ISBN 1-4020-1041-9, 2002.
Prăvălie, R., Patriche, C., Borrelli, P., Panagos, P., Roşca, B., Dumitraşcu, M., Nita, I.-A., Săvulescu, I., Birsan, M.-V., and Bandoc, G.: Arable lands under the pressure of multiple land degradation processes. A global perspective, Environ. Res., 194, 110697, https://doi.org/10.1016/j.envres.2020.110697, 2021.
Reeves, D. W.: The role of soil organic matter in maintaining soil quality in continuous cropping systems, Soil Till. Res., 43, 131–167, https://doi.org/10.1016/S0167-1987(97)00038-X, 1997.
Reissig, H.: 137Cs in landwirtschaftlichen Nutzpflanzen und Böden auf dem Territorium der DDR 1960–1963, Arch. Agron. Soil Sci., 9, 955–972, https://doi.org/10.1080/03650346509412984, 1965.
Sanderman, J., Hengl, T., and Fiske, G. J.: Soil carbon debt of 12 000 years of human land use, P. Natl. Acad. Sci. USA, 114, 9575–9580, https://doi.org/10.1073/pnas.1706103114, 2017.
Sato, I., Sasaki, J., Satoh, H., Murata, T., Otani, K., and Okada, K.: Radioactive cesium and potassium in cattle living in the “zone in preparation for the lifting of the evacuation order” of the Fukushima nuclear accident, Anim. Sci. J., 88, 1021–1026, https://doi.org/10.1111/asj.12749, 2017.
Schimmack, W., Auerswald, K., and Bunzl, K.: Can 239+240Pu replace 137Cs as an erosion tracer in agricultural landscapes contaminated with Chernobyl fallout?, J. Environ. Radioactiv., 53, 41–57, https://doi.org/10.1016/S0265-931X(00)00117-X, 2001.
Schimmack, W., Auerswald, K., and Bunzl, K.: Estimation of soil erosion and deposition rates at an agricultural site in Bavaria, Germany, as derived from fallout radiocesium and plutonium as tracers, Naturwissenschaften, 89, 43–46, 2002.
Schimmack, W., Bunzl, K., and Flessa, H.: Short-term and long-term effects of ploughing on the vertical distribution of radiocaesium in two Bavarian soils, Soil Use Manage., 10, 164–168, https://doi.org/10.1111/j.1475-2743.1994.tb00480.x, 1994.
Smith, B. S., Child, D. P., Fierro, D., Harrison, J. J., Heijnis, H., Hotchkis, M. A. C., Johansen, M. P., Marx, S., Payne, T. E., and Zawadzki, A.: Measurement of fallout radionuclides, 239,240Pu and 137Cs, in soil and creek sediment: Sydney Basin, Australia, J. Environ. Radioactiv., 151, 579–586, https://doi.org/10.1016/j.jenvrad.2015.06.015, 2016a.
Smith, P., House, J. I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P. C., Clark, J. M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M. F., Elliott, J. A., McDowell, R., Griffiths, R. I., Asakawa, S., Bondeau, A., Jain, A. K., Meersmans, J., and Pugh, T. A. M.: Global change pressures on soils from land use and management, Glob. Change Biol., 22, 1008–1028, https://doi.org/10.1111/gcb.13068, 2016b.
Soil Survey Staff: Keys to Soil Taxonomy, USDA-Natural Resources Conservation Service, Washington, DC, 12th edn., ISBN-10 035957324X, ISBN-13 978-0359573240, 2014.
Sokol, N. W., Sanderman, J., and Bradford, M. A.: Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry, Glob. Change Biol., 25, 12–24, https://doi.org/10.1111/gcb.14482, 2019.
Solomon, D., Lehmann, J., Lobe, I., Martinez, C. E., Tveitnes, S., Du Preez, C. C., and Amelung, W.: Sulphur speciation and biogeochemical cycling in long-term arable cropping of subtropical soils: evidence from wet-chemical reduction and S K-edge XANES spectroscopy, Eur. J. Soil Sci., 56, 621–634, https://doi.org/10.1111/j.1365-2389.2005.00702.x, 2005.
Sutherland, R. A.: Caesium-137 soil sampling and inventory variability in reference locations: A literature survey, Hydrol. Process., 10, 43–53, https://doi.org/10.1002/(sici)1099-1085(199601)10:1<43::Aid-hyp298>3.0.Co;2-x, 1996.
UN Scientific Committee on the Effects of Atomic Radiation: Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, vol. 1: Sources, UN, New York, 89, ISBN 92-1-142238-8, 2000.
Van Pelt, R. S.: Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind I: Historic use of 137Cs, Aeolian Res., 9, 89–102, https://doi.org/10.1016/j.aeolia.2012.11.004, 2013.
Van Pelt, R. S. and Ketterer, M. E.: Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind II: The potential for future use of 239+240Pu, Aeolian Res., 9, 103–110, https://doi.org/10.1016/j.aeolia.2013.01.004, 2013.
Van Pelt, R. S., Zobeck, T. M., Ritchie, J. C., and Gill, T. E.: Validating the use of 137Cs measurements to estimate rates of soil redistribution by wind, Catena, 70, 455–464, https://doi.org/10.1016/j.catena.2006.11.014, 2007.
Van Pelt, R. S., Hushmurodov, S. X., Baumhardt, R. L., Chappell, A., Nearing, M. A., Polyakov, V. O., and Strack, J. E.: The reduction of partitioned wind and water erosion by conservation agriculture, Catena, 148, 160–167, https://doi.org/10.1016/j.catena.2016.07.004, 2017.
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., and Flessa, H.: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review, Eur. J. Soil Sci., 57, 426–445, https://doi.org/10.1111/j.1365-2389.2006.00809.x, 2006.
von Sperber, C., Stallforth, R., Du Preez, C., and Amelung, W.: Changes in soil phosphorus pools during prolonged arable cropping in semiarid grasslands, Eur. J. Soil Sci., 68, 462–471, https://doi.org/10.1111/ejss.12433, 2017.
Vos, H. C., Fister, W., Eckardt, F. D., Palmer, A. R., and Kuhn, N. J.: Physical Crust Formation on Sandy Soils and Their Potential to Reduce Dust Emissions from Croplands, Land, 9, 503, https://doi.org/10.3390/land9120503, 2020.
Wallbrink, P. J., Walling, D. E., and He, Q.: Radionuclide Measurement Using HPGe Gamma Spectrometry, in: Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides, edited by: Zapata, F., Springer Netherlands, Dordrecht, 67–96, https://doi.org/10.1007/0-306-48054-9_5, 2003.
Wiggs, G. and Holmes, P.: Dynamic controls on wind erosion and dust generation on west-central Free State agricultural land, South Africa, Earth Surf. Proc. Land., 36, 827–838, https://doi.org/10.1002/esp.2110, 2010.
Wilding, L.: Spatial variability: its documentation, accomodation and implication to soil surveys, in: Soil spatial variability, Las Vegas NV, 30 November–1 December 1984, 166–194, edited by: Nielsen, D. R. and Bouma, J., Pudoc Wageningen, ISBN 90-220-0891-6, 1985.
Xu, Y., Qiao, J., Hou, X., and Pan, S.: Plutonium in Soils from Northeast China and Its Potential Application for Evaluation of Soil Erosion, Sci. Rep.-UK, 3, 3506, https://doi.org/10.1038/srep03506, 2013.
Xu, Y., Pan, S., Wu, M., Zhang, K., and Hao, Y.: Association of Plutonium isotopes with natural soil particles of different size and comparison with 137Cs, Sci. Total Environ., 581–582, 541–549, https://doi.org/10.1016/j.scitotenv.2016.12.162, 2017.
Yan, H., Wang, S., Wang, C., Zhang, G., and Patel, N.: Losses of soil organic carbon under wind erosion in China, Glob. Change Biol., 11, 828–840, https://doi.org/10.1111/j.1365-2486.2005.00950.x, 2005.
Zapata, F.: Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides, Springer, ISBN 1-4020-1041-9, 2002.
Zhao, X., Qiao, J., and Hou, X.: Plutonium isotopes in Northern Xinjiang, China: Level, distribution, sources and their contributions, Environ. Pollut., 265, 114929, https://doi.org/10.1016/j.envpol.2020.114929, 2020.
Short summary
We measured concentrations of nuclear fallout in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century, the data strongly correlate with the organic matter content of the soils. The finding implies that wind erosion strongly influenced the loss of organic matter in the soils we investigated. Furthermore, the exponential decline of fallout concentrations and organic matter content over time peaks shortly after native grassland is ploughed.
We measured concentrations of nuclear fallout in soil samples taken from arable land in South...
Altmetrics
Final-revised paper
Preprint