Articles | Volume 22, issue 6
https://doi.org/10.5194/bg-22-1697-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1697-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surface CO2 gradients challenge conventional CO2 emission quantification in lentic water bodies under calm conditions
Department Lake Research, Helmholtz Centre for Environmental Research – UFZ, Brückstraße 3a, 39114 Magdeburg, Germany
Uwe Spank
Chair of Meteorology, Institute of Hydrology and Meteorology, Faculty of Environmental Sciences, Technische Universität Dresden, Pienner Straße 23, 01737 Tharandt, Germany
Matthias Koschorreck
Department Lake Research, Helmholtz Centre for Environmental Research – UFZ, Brückstraße 3a, 39114 Magdeburg, Germany
Related authors
Patrick Aurich, Vivien Bernhard, Uwe Spank, and Matthias Koschorreck
EGUsphere, https://doi.org/10.5194/egusphere-2026-124, https://doi.org/10.5194/egusphere-2026-124, 2026
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Estimating greenhouse gas release from lakes requires measuring carbon dioxide near the water surface, where exchange with the air occurs. However, measurements are often taken deeper in the water, which can lead to biased results when carbon dioxide is not evenly mixed. We developed a thin device that measures carbon dioxide directly near the surface. Tests show it is accurate, reacts quickly to changes, and helps improve estimates of greenhouse gas release from lakes.
Patrick Aurich, Vivien Bernhard, Uwe Spank, and Matthias Koschorreck
EGUsphere, https://doi.org/10.5194/egusphere-2026-124, https://doi.org/10.5194/egusphere-2026-124, 2026
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Estimating greenhouse gas release from lakes requires measuring carbon dioxide near the water surface, where exchange with the air occurs. However, measurements are often taken deeper in the water, which can lead to biased results when carbon dioxide is not evenly mixed. We developed a thin device that measures carbon dioxide directly near the surface. Tests show it is accurate, reacts quickly to changes, and helps improve estimates of greenhouse gas release from lakes.
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024, https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Short summary
We measured the emission of carbon dioxide (CO2) and methane (CH4) from different sites at the river Elbe in Germany over 3 days to find out what is more important for quantification: small-scale spatial variability or diurnal temporal variability. We found that CO2 emissions were very different between day and night, while CH4 emissions were more different between sites. Dried out river sediments contributed to CO2 emissions, while the side areas of the river were important CH4 sources.
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022, https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Matthias Koschorreck, Yves T. Prairie, Jihyeon Kim, and Rafael Marcé
Biogeosciences, 18, 1619–1627, https://doi.org/10.5194/bg-18-1619-2021, https://doi.org/10.5194/bg-18-1619-2021, 2021
Short summary
Short summary
The concentration of carbon dioxide (CO2) in water samples is often measured using a gas chromatograph. Depending on the chemical composition of the water, this method can produce wrong results. We quantified the possible error and how it depends on water composition and the analytical procedure. We propose a method to correct wrong results by additionally analysing alkalinity in the samples. We provide an easily usable computer code to perform the correction calculations.
Cited articles
Åberg, J., Jansson, M., and Jonsson, A.: Importance of water temperature and thermal stratification dynamics for temporal variation of surface water CO2 in a boreal lake, J. Geophys. Res., 115, 2009JG001085, https://doi.org/10.1029/2009JG001085, 2010.
Andersson, A., Falck, E., Sjöblom, A., Kljun, N., Sahlée, E., Omar, A. M., and Rutgersson, A.: Air-sea gas transfer in high Arctic fjords, Geophys. Res. Lett., 44, 2519–2526, https://doi.org/10.1002/2016GL072373, 2017.
Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, Ch., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology, in: Advances in Ecological Research, Vol. 30, edited by: Fitter, A. H. and Raffaelli, D. G., Academic Press, 113–175, https://doi.org/10.1016/S0065-2504(08)60018-5, 1999.
Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance: a practical guide to measurement and data analysis, Springer, Dordrecht, Heidelberg, London, New York, 449 pp., ISBN 978-94-007-2350-4, e-ISBN 978-94-007-2351-1, 2012.
Balmer, M. and Downing, J.: Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake, Inland Waters, 1, 125–132, https://doi.org/10.5268/IW-1.2.366, 2011.
Benndorf, J.: Possibilities and Limits for Controlling Eutrophication by Biomanipulation, Intl. Rev. Hydrobiol., 80, 519–534, https://doi.org/10.1002/iroh.19950800404, 1995.
Burba, G.: Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates, LI-COR Biosciences, Lincoln, Nebraska, 345 pp., ISBN 978-0-615-76827-4, 2013.
Calleja, M. L., Duarte, C. M., Álvarez, M., Vaquer-Sunyer, R., Agustí, S., and Herndl, G. J.: Prevalence of strong vertical CO2 and O2 variability in the top meters of the ocean, Global Biogeochem. Cy., 27, 941–949, https://doi.org/10.1002/gbc.20081, 2013.
Cole, J. I. and Caraco, N. F.: Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF, P, Limnol. Oceanogr., 43, 647–656, 1998.
Cole, J. J., Bade, D. L., Bastviken, D., Pace, M. L., and Van de Bogert, M.: Multiple approaches to estimating air-water gas exchange in small lakes, Limnol. Ocean Method., 8, 285–293, https://doi.org/10.4319/lom.2010.8.285, 2010.
Crusius, J. and Wanninkhof, R.: Gas transfer velocities measured at low wind speed over a lake, Limnol. Oceanogr., 48, 1010–1017, https://doi.org/10.4319/lo.2003.48.3.1010, 2003.
Erkkilä, K.-M., Ojala, A., Bastviken, D., Biermann, T., Heiskanen, J. J., Lindroth, A., Peltola, O., Rantakari, M., Vesala, T., and Mammarella, I.: Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method, Biogeosciences, 15, 429–445, https://doi.org/10.5194/bg-15-429-2018, 2018.
Eugster, W., Kling, G., Jonas, T., McFadden, J. P., Wüest, A., MacIntyre, S., and Chapin, F. S.: CO2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing, J. Geophys. Res., 108, 2002JD002653, https://doi.org/10.1029/2002JD002653, 2003.
Fietzek, P., Fiedler, B., Steinhoff, T., and Körtzinger, A.: In situ Quality Assessment of a Novel Underwater pCO2 Sensor Based on Membrane Equilibration and NDIR Spectrometry, J. Atmos. Ocean. Tech., 31, 181–196, https://doi.org/10.1175/JTECH-D-13-00083.1, 2014.
Finkelstein, P. L. and Sims, P. F.: Sampling error in eddy correlation flux measurements, J. Geophys. Res.-Atmos., 106, 3503–3509, https://doi.org/10.1029/2000JD900731, 2001.
Foken, T. and Mauder, M.: Micrometeorology, Springer International Publishing, Cham, 410 pp., https://doi.org/10.1007/978-3-031-47526-9, 2024.
Foken, T. and Wichura, B.: Tools for quality assessment of surface-based flux measurements, Agr. Forest Meteorol., 78, 83–105, https://doi.org/10.1016/0168-1923(95)02248-1, 1996.
Gladyshev, M. I.: Biophysics of the Surface Microlayer of Aquatic Ecosystems, IWA Publishing, London, ISBN 9781900222174, 2002.
Golub, M., Koupaei-Abyazani, N., Vesala, T., Mammarella, I., Ojala, A., Bohrer, G., Weyhenmeyer, G. A., Blanken, P. D., Eugster, W., Koebsch, F., Chen, J., Czajkowski, K., Deshmukh, C., Guérin, F., Heiskanen, J., Humphreys, E., Jonsson, A., Karlsson, J., Kling, G., Lee, X., Liu, H., Lohila, A., Lundin, E., Morin, T., Podgrajsek, E., Provenzale, M., Rutgersson, A., Sachs, T., Sahlée, E., Serça, D., Shao, C., Spence, C., Strachan, I. B., Xiao, W., and Desai, A. R.: Diel, seasonal, and inter-annual variation in carbon dioxide effluxes from lakes and reservoirs, Environ. Res. Lett., 18, 034046, https://doi.org/10.1088/1748-9326/acb834, 2023.
Hardy, J. T.: The sea surface microlayer: Biology, chemistry and anthropogenic enrichment, Prog. Oceanogr., 11, 307–328, https://doi.org/10.1016/0079-6611(82)90001-5, 1982.
Hari, P., Pumpanen, J., Huotari, J., Kolari, P., Grace, J., Vesala, T., and Ojala, A.: High-frequency measurements of productivity of planktonic algae using rugged nondispersive infrared carbon dioxide probes: Productivity measurement and CO2 probe, Limnol. Oceanogr. Method., 6, 347–354, https://doi.org/10.4319/lom.2008.6.347, 2008.
Heiskanen, J. J., Mammarella, I., Haapanala, S., Pumpanen, J., Vesala, T., Macintyre, S., and Ojala, A.: Effects of cooling and internal wave motions on gas transfer coefficients in a boreal lake, Tellus B, 66, 22827, https://doi.org/10.3402/tellusb.v66.22827, 2014.
Kerimoglu, O. and Rinke, K.: Stratification dynamics in a shallow reservoir under different hydro-meteorological scenarios and operational strategies, Water Resour. Res., 49, 7518–7527, https://doi.org/10.1002/2013WR013520, 2013.
Lauerwald, R., Allen, G. H., Deemer, B. R., Liu, S., Maavara, T., Raymond, P., Alcott, L., Bastviken, D., Hastie, A., Holgerson, M. A., Johnson, M. S., Lehner, B., Lin, P., Marzadri, A., Ran, L., Tian, H., Yang, X., Yao, Y., and Regnier, P.: Inland Water Greenhouse Gas Budgets for RECCAP2: 1. State-Of-The-Art of Global Scale Assessments, Global Biogeochem. Cy., 37, e2022GB007657, https://doi.org/10.1029/2022GB007657, 2023.
Lee, X., Massman, W., and Law, B.: Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, Springer, Dordrecht, ISBN 9781402022647, 270 pp., 2004.
MacIntyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., and Miller, S. D.: Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake, Geophys. Res. Lett., 37, 2010GL044164, https://doi.org/10.1029/2010GL044164, 2010.
MacIntyre, S., Amaral, J. H. F., and Melack, J. M.: Enhanced Turbulence in the Upper Mixed Layer Under Light Winds and Heating: Implications for Gas Fluxes, J. Geophys. Res.-Ocean., 126, e2020JC017026, https://doi.org/10.1029/2020JC017026, 2021.
Mauder, M., Liebethal, C., Göckede, M., Leps, J.-P., Beyrich, F., and Foken, T.: Processing and quality control of flux data during LITFASS-2003, Bound.-Lay. Meteorol., 121, 67–88, https://doi.org/10.1007/s10546-006-9094-0, 2006.
McGillis, W. R., Edson, J. B., Zappa, C. J., Ware, J. D., McKenna, S. P., Terray, E. A., Hare, J. E., Fairall, C. W., Drennan, W., Donelan, M., DeGrandpre, M. D., Wanninkhof, R., and Feely, R. A.: Air-sea CO 2 exchange in the equatorial Pacific, J. Geophys. Res., 109, 2003JC002256, https://doi.org/10.1029/2003JC002256, 2004.
Mustaffa, N. I. H., Ribas-Ribas, M., Banko-Kubis, H. M., and Wurl, O.: Global reduction of in situ CO2 transfer velocity by natural surfactants in the sea-surface microlayer, P. Roy. Soc. A, 476, 20190763, https://doi.org/10.1098/rspa.2019.0763, 2020.
Nürnberg, G. K., LaZerte, B. D., and Olding, D. D.: An Artificially Induced Planktothrix rubescens Surface Bloom in a Small Kettle Lake in Southern Ontario Compared to Blooms World-wide, Lake Reserv. Manage., 19, 307–322, https://doi.org/10.1080/07438140309353941, 2003.
Pereira, R., Ashton, I., Sabbaghzadeh, B., Shutler, J. D., and Upstill-Goddard, R. C.: Reduced air–sea CO2 exchange in the Atlantic Ocean due to biological surfactants, Nat. Geosci., 11, 492–496, https://doi.org/10.1038/s41561-018-0136-2, 2018.
Podgrajsek, E., Sahlée, E., Bastviken, D., Holst, J., Lindroth, A., Tranvik, L., and Rutgersson, A.: Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes, Biogeosciences, 11, 4225–4233, https://doi.org/10.5194/bg-11-4225-2014, 2014.
Podgrajsek, E., Sahlée, E., and Rutgersson, A.: Diel cycle of lake-air CO2 flux from a shallow lake and the impact of waterside convection on the transfer velocity, J. Geophys. Res.-Biogeo., 120, 29–38, https://doi.org/10.1002/2014JG002781, 2015.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 27 March 2025), 2024.
Rahlff, J., Stolle, C., Giebel, H.-A., Brinkhoff, T., Ribas-Ribas, M., Hodapp, D., and Wurl, O.: High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer, FEMS Microbiol. Ecol., 93, fix041, https://doi.org/10.1093/femsec/fix041, 2017.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide emissions from inland waters, Nature, 503, 355–359, https://doi.org/10.1038/nature12760, 2013.
Ringelberg, J.: The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton, Biol. Rev., 74, 397–423, https://doi.org/10.1017/S0006323199005381, 1999.
Rudberg, D., Duc, N. T., Schenk, J., Sieczko, A. K., Pajala, G., Sawakuchi, H. O., Verheijen, H. A., Melack, J. M., MacIntyre, S., Karlsson, J., and Bastviken, D.: Diel Variability of CO2 Emissions From Northern Lakes, J. Geophys. Res.-Biogeo., 126, e2021JG006246, https://doi.org/10.1029/2021JG006246, 2021.
Rudberg, D., Schenk, J., Pajala, G., Sawakuchi, H., Sieczko, A., Sundgren, I., Duc, N. T., Karlsson, J., MacIntyre, S., Melack, J., and Bastviken, D.: Contribution of gas concentration and transfer velocity to CO2 flux variability in northern lakes, Limnol. Oceanogr., 69, 818–833, https://doi.org/10.1002/lno.12528, 2024.
Rutgersson, A. and Smedman, A.: Enhanced air–sea CO2 transfer due to water-side convection, J. Mar. Syst., 80, 125–134, https://doi.org/10.1016/j.jmarsys.2009.11.004, 2010.
Rutgersson, A., Norman, M., Schneider, B., Pettersson, H., and Sahlée, E.: The annual cycle of carbon dioxide and parameters influencing the air–sea carbon exchange in the Baltic Proper, J. Mar. Syst., 74, 381–394, https://doi.org/10.1016/j.jmarsys.2008.02.005, 2008.
Sabbatini, S., Mammarella, I., Arriga, N., Fratini, G., Graf, A., Hörtnagl, L., Ibrom, A., Longdoz, B., Mauder, M., Merbold, L., Metzger, S., Montagnani, L., Pitacco, A., Rebmann, C., Sedlák, P., Šigut, L., Vitale, D., and Papale, D.: Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations, Int. Agrophys., 32, 495–515, https://doi.org/10.1515/intag-2017-0043, 2018.
Schilder, J., Bastviken, D., van Hardenbroek, M., Kankaala, P., Rinta, P., Stötter, T., and Heiri, O.: Spatial heterogeneity and lake morphology affect diffusive greenhouse gas emission estimates of lakes, Geophys. Res. Lett., 40, 5752–5756, https://doi.org/10.1002/2013GL057669, 2013.
Spank, U., Hehn, M., Keller, P., Koschorreck, M., and Bernhofer, C.: A Season of Eddy-Covariance Fluxes Above an Extensive Water Body Based on Observations from a Floating Platform, Bound.-Lay. Meteorol., 174, 433–464, https://doi.org/10.1007/s10546-019-00490-z, 2020.
Spank, U., Bernhofer, C., Mauder, M., Keller, P. S., and Koschorreck, M.: Contrasting temporal dynamics of methane and carbon dioxide emissions from a eutrophic reservoir detected by eddy covariance measurements, Meteorol. Z., 32, 317–342, https://doi.org/10.1127/metz/2023/1162, 2023.
Spank, U., Koschorreck, M., Aurich, P., Sanchez Higuera, A. M., Raabe, A., Holstein, P., Bernhofer, C., and Mauder, M.: Rethinking evaporation measurement and modelling from inland waters – A discussion of the challenges to determine the actual values on the example of a shallow lowland reservoir, J. Hydrol., 651, 132530, https://doi.org/10.1016/j.jhydrol.2024.132530, 2025.
Vachon, D. and del Giorgio, P. A.: Whole-Lake CO2 Dynamics in Response to Storm Events in Two Morphologically Different Lakes, Ecosystems, 17, 1338–1353, https://doi.org/10.1007/s10021-014-9799-8, 2014.
Vachon, D. and Prairie, Y. T.: The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes, Can. J. Fish. Aquat. Sci., 70, 1757–1764, https://doi.org/10.1139/cjfas-2013-0241, 2013.
Williamson, T. J., Vanni, M. J., and Renwick, W. H.: Spatial and Temporal Variability of Nutrient Dynamics and Ecosystem Metabolism in a Hyper-eutrophic Reservoir Differ Between a Wet and Dry Year, Ecosystems, 24, 68–88, https://doi.org/10.1007/s10021-020-00505-8, 2021.
Wurl, O., Wurl, E., Miller, L., Johnson, K., and Vagle, S.: Formation and global distribution of sea-surface microlayers, Biogeosciences, 8, 121–135, https://doi.org/10.5194/bg-8-121-2011, 2011.
Zagarese, H. E., Sagrario, M. de los Á. G., Wolf-Gladrow, D., Nõges, P., Nõges, T., Kangur, K., Matsuzaki, S.-I. S., Kohzu, A., Vanni, M. J., Özkundakci, D., Echaniz, S. A., Vignatti, A., Grosman, F., Sanzano, P., Van Dam, B., and Knoll, L. B.: Patterns of CO2 concentration and inorganic carbon limitation of phytoplankton biomass in agriculturally eutrophic lakes, Water Res., 190, 116715, https://doi.org/10.1016/j.watres.2020.116715, 2021.
Zhang, Y., Loiselle, S., Shi, K., Han, T., Zhang, M., Hu, M., Jing, Y., Lai, L., and Zhan, P.: Wind Effects for Floating Algae Dynamics in Eutrophic Lakes, Remote Sens., 13, 800, https://doi.org/10.3390/rs13040800, 2021.
Short summary
Lakes can be sources and sinks of the greenhouse gas carbon dioxide. The gas exchange between the atmosphere and the water can be measured by taking gas samples from them. However, the depth of water samples is not well defined, which may cause errors. We hypothesized that gradients of CO2 concentrations develop under the surface when wind speeds are very low. Our measurements show that such a gradient can occur on calm nights, potentially shifting lakes from a CO2 sink to a source.
Lakes can be sources and sinks of the greenhouse gas carbon dioxide. The gas exchange between...
Altmetrics
Final-revised paper
Preprint