Articles | Volume 22, issue 11
https://doi.org/10.5194/bg-22-2667-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-2667-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
From the top: surface-derived carbon fuels greenhouse gas production at depth in a peatland
Alexandra Hedgpeth
CORRESPONDING AUTHOR
Geography Department, University of California Los Angeles, Los Angeles, CA 94143, USA
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Alison M. Hoyt
Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
Kyle C. Cavanaugh
Geography Department, University of California Los Angeles, Los Angeles, CA 94143, USA
Karis J. McFarlane
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Daniela F. Cusack
Geography Department, University of California Los Angeles, Los Angeles, CA 94143, USA
Department of Ecosystem Science & Sustainability, Colorado State University, Fort Collins, CO 80523, USA
Smithsonian Tropical Research Institute, 0843-03092, Ancon, Panama, Republic of Panama
Related authors
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Katherine E. Grant, Marisa N. Repasch, Kari M. Finstad, Julia D. Kerr, Maxwell Marple, Christopher J. Larson, Taylor A. B. Broek, Jennifer Pett-Ridge, and Karis J. McFarlane
Biogeosciences, 21, 4395–4411, https://doi.org/10.5194/bg-21-4395-2024, https://doi.org/10.5194/bg-21-4395-2024, 2024
Short summary
Short summary
Soils store organic carbon composed of multiple compounds from plants and microbes for different lengths of time. To understand how soils store these different carbon types, we measure the time each carbon fraction is in a grassland soil profile. Our results show that the length of time each individual soil fraction is in our soil changes. Our approach allows a detailed look at the different components in soils. This study can help improve our understanding of soil dynamics.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Jeffrey Prescott Beem-Miller, Craig Rasmussen, Alison May Hoyt, Marion Schrumpf, Georg Guggenberger, and Susan Trumbore
EGUsphere, https://doi.org/10.5194/egusphere-2022-1083, https://doi.org/10.5194/egusphere-2022-1083, 2022
Preprint withdrawn
Short summary
Short summary
We compared the age of persistent soil organic matter as well as active emissions of carbon dioxide from soils across a gradient of climate and geology. We found that clay minerals are more important than mean annual temperature for both persistent and actively cycling soil carbon, and that they may attenuate the sensitivity of soil organic matter decomposition to temperature. Accounting for geology and soil development could therefore improve estimates of soil carbon stocks and changes.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
Short summary
The International Soil Radiocarbon Database (ISRaD) is an an open-source archive of soil data focused on datasets including radiocarbon measurements. ISRaD includes data from bulk or
whole soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil surface.
Erik A. Hobbie, Janet Chen, Paul J. Hanson, Colleen M. Iversen, Karis J. McFarlane, Nathan R. Thorp, and Kirsten S. Hofmockel
Biogeosciences, 14, 2481–2494, https://doi.org/10.5194/bg-14-2481-2017, https://doi.org/10.5194/bg-14-2481-2017, 2017
Short summary
Short summary
We measured carbon and nitrogen isotope ratios (13C : 12C and 15N : 14N) in peat cores in a northern Minnesota bog to understand how climate, vegetation type, and decomposition affected C and N budgets over the last 9000 years. 13C : 12C patterns were primarily influenced by shifts in temperature, peatland vegetation and atmospheric CO2, whereas tree colonization and upland N influxes affected 15N : 14N ratios. Isotopic markers provided new insights into long-term patterns of CO2 and nitrogen losses.
C. L. Phillips, K. J. McFarlane, D. Risk, and A. R. Desai
Biogeosciences, 10, 7999–8012, https://doi.org/10.5194/bg-10-7999-2013, https://doi.org/10.5194/bg-10-7999-2013, 2013
Related subject area
Biogeochemistry: Wetlands
Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland
Reviews and syntheses: Variable inundation across Earth's terrestrial ecosystems
Decomposing the Tea Bag Index and finding slower organic matter loss rates at higher elevations and deeper soil horizons in a minerogenic salt marsh
Aquatic and Soil CO2 Emissions from forested wetlands of Congo's Cuvette Centrale
Assimilating Multi-site Eddy-Covariance Data to Calibrate the CH4 Wetland Emission Module in a Terrestrial Ecosystem Model
Assessing root–soil interactions in wetland plants: root exudation and radial oxygen loss
Technical note: Comparison of radiometric techniques for estimating recent organic carbon sequestration rates in inland wetland soils
Variability of CO2 and CH4 in a coastal peatland rewetted with brackish water from the Baltic Sea derived from autonomous high-resolution measurements
Shoulder season controls on methane emissions from a boreal peatland
Covariation of redox potential profiles and water table level in peatland sites representing different drainage regimes: implications for ecological modelling
Patterns and drivers of organic matter decomposition in peatland open-water pools
Spatial patterns of organic matter content in the surface soil of the salt marshes of the Venice Lagoon (Italy)
Sorption of colored vs. noncolored organic matter by tidal marsh soils
Peatland evaporation across hemispheres: contrasting controls and sensitivity to climate warming driven by plant functional types
Driving and limiting factors of CH4 and CO2 emissions from coastal brackish-water wetlands in temperate regions
Reviews and syntheses: Greenhouse gas emissions from drained organic forest soils – synthesizing data for site-specific emission factors for boreal and cool temperate regions
Reviews and syntheses: Understanding the impacts of peatland catchment management on dissolved organic matter concentration and treatability
Plant mercury accumulation and litter input to a Northern Sedge-dominated Peatland
Warming accelerates belowground litter turnover in salt marshes – insights from a Tea Bag Index study
Sedimentary blue carbon dynamics based on chronosequential observations in a tropical restored mangrove forest
Duration of extraction determines CO2 and CH4 emissions from an actively extracted peatland in eastern Quebec, Canada
Nutrient release and flux dynamics of CO2, CH4, and N2O in a coastal peatland driven by actively induced rewetting with brackish water from the Baltic Sea
Quantification of blue carbon in salt marshes of the Pacific coast of Canada
Cutting peatland CO2 emissions with water management practices
Tracking vegetation phenology of pristine northern boreal peatlands by combining digital photography with CO2 flux and remote sensing data
Dissolved organic matter concentration and composition discontinuity at the peat–pool interface in a boreal peatland
Effects of brackish water inflow on methane-cycling microbial communities in a freshwater rewetted coastal fen
High peatland methane emissions following permafrost thaw: enhanced acetoclastic methanogenesis during early successional stages
Origin, transport, and retention of fluvial sedimentary organic matter in South Africa's largest freshwater wetland, Mkhuze Wetland System
Peat macropore networks – new insights into episodic and hotspot methane emission
Mangrove sediment organic carbon storage and sources in relation to forest age and position along a deltaic salinity gradient
Plant genotype controls wetland soil microbial functioning in response to sea-level rise
Soil greenhouse gas fluxes from tropical coastal wetlands and alternative agricultural land uses
Carbon balance of a Finnish bog: temporal variability and limiting factors based on 6 years of eddy-covariance data
High-resolution induced polarization imaging of biogeochemical carbon turnover hotspots in a peatland
Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum
Factors controlling Carex brevicuspis leaf litter decomposition and its contribution to surface soil organic carbon pool at different water levels
Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations
Global peatland area and carbon dynamics from the Last Glacial Maximum to the present – a process-based model investigation
Vascular plants affect properties and decomposition of moss-dominated peat, particularly at elevated temperatures
Denitrification and associated nitrous oxide and carbon dioxide emissions from the Amazonian wetlands
Drivers of seasonal- and event-scale DOC dynamics at the outlet of mountainous peatlands revealed by high-frequency monitoring
Comparison of eddy covariance CO2 and CH4 fluxes from mined and recently rewetted sections in a northwestern German cutover bog
Microtopography is a fundamental organizing structure of vegetation and soil chemistry in black ash wetlands
Interacting effects of vegetation components and water level on methane dynamics in a boreal fen
Low methane emissions from a boreal wetland constructed on oil sand mine tailings
Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine
Saltwater reduces potential CO2 and CH4 production in peat soils from a coastal freshwater forested wetland
Reviews and syntheses: Greenhouse gas exchange data from drained organic forest soils – a review of current approaches and recommendations for future research
Effects of sterilization techniques on chemodenitrification and N2O production in tropical peat soil microcosms
Hongxing He, Ian B. Strachan, and Nigel T. Roulet
Biogeosciences, 22, 1355–1368, https://doi.org/10.5194/bg-22-1355-2025, https://doi.org/10.5194/bg-22-1355-2025, 2025
Short summary
Short summary
This study applied the CoupModel to simulate carbon dynamics and ecohydrology for a restored peatland and evaluated the responses of the simulated carbon fluxes to varying acrotelm thickness and climate. The results show that the CoupModel can simulate the coupled carbon and ecohydrology dynamics for the restored peatland system, and the restored peatland has less resilience in its C-uptake functions than pristine peatlands under a changing climate.
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Satyatejas G. Reddy, W. Reilly Farrell, Fengrun Wu, Steven C. Pennings, Jonathan Sanderman, Meagan Eagle, Christopher Craft, and Amanda C. Spivak
Biogeosciences, 22, 435–453, https://doi.org/10.5194/bg-22-435-2025, https://doi.org/10.5194/bg-22-435-2025, 2025
Short summary
Short summary
Organic matter decay in salt marsh soils is not well understood. We used the Tea Bag Index, a standardized litter approach, to test how decay changes with soil depth, elevation, and time. The index overestimated decay, but one component, rooibos tea, produced comparable rates to natural litter. We found that decay was higher at shallower depths and lower marsh elevations, suggesting that hydrological setting may be a particularly important control on organic matter loss.
Antoine de Clippele, Astrid C. H. Jaeger, Simon Baumgartner, Marijn Bauters, Pascal Boeckx, Clement Botefa, Glenn Bush, Jessica Carilli, Travis W. Drake, Christian Ekamba, Gode Lompoko, Nivens Bey Mukwiele, Kristof Van Oost, Roland A. Werner, Joseph Zambo, Johan Six, and Matti Barthel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3313, https://doi.org/10.5194/egusphere-2024-3313, 2024
Short summary
Short summary
Tropical forest soils as a large terrestrial source of carbon dioxide (CO2) contribute to the GHG budgets. Despite this, carbon flux data from forested wetlands is scarce in tropical Africa. The study presents three years of semi-continuous measurements of surface CO2 fluxes within the Congo Basin. Although no seasonal patterns were evident, our results showed a positive effect of soil temperature and soil moisture, while a quadratic relationship was observed with the water table level.
Jalisha Theanutti Kallingal, Marko Scholze, Paul Anthony Miller, Johan Lindström, Janne Rinne, Mika Aurela, Patrik Vestin, and Per Weslien
EGUsphere, https://doi.org/10.5194/egusphere-2024-3305, https://doi.org/10.5194/egusphere-2024-3305, 2024
Short summary
Short summary
We explored the possibilities of a Bayesian-based data assimilation algorithm to improve the wetland CH4 flux estimates by a dynamic vegetation model. By assimilating CH4 observations from 14 wetland sites we calibrated model parameters and estimated large-scale annual emissions from northern wetlands. Our findings indicate that this approach leads to more reliable estimates of CH4 dynamics, which will improve our understanding of the climate change feedback from wetland CH4 emissions.
Katherine A. Haviland and Genevieve L. Noyce
Biogeosciences, 21, 5185–5198, https://doi.org/10.5194/bg-21-5185-2024, https://doi.org/10.5194/bg-21-5185-2024, 2024
Short summary
Short summary
Plant roots release both oxygen and carbon to the surrounding soil. While oxygen leads to less production of methane (a greenhouse gas), carbon often has the opposite effect. We investigated these processes in two plant species, S. patens and S. americanus. We found that S. patens roots produce more carbon and less oxygen than S. americanus. Additionally, the S. patens pool of root-associated carbon compounds was more dominated by compound types known to lead to higher methane production.
Purbasha Mistry, Irena F. Creed, Charles G. Trick, Eric Enanga, and David A. Lobb
Biogeosciences, 21, 4699–4715, https://doi.org/10.5194/bg-21-4699-2024, https://doi.org/10.5194/bg-21-4699-2024, 2024
Short summary
Short summary
Precise and accurate estimates of wetland organic carbon sequestration rates are crucial to track the progress of climate action goals through effective carbon budgeting. Radioisotope dating methods using cesium-137 (137Cs) and lead-210 (210Pb) are needed to provide temporal references for these estimations. The choice between using 137Cs or 210Pb, or their combination, depends on respective study objectives, with careful consideration of factors such as dating range and estimation complexity.
Daniel Pönisch, Henry C. Bittig, Martin Kolbe, Ingo Schuffenhauer, Stefan Otto, Peter Holtermann, Kusala Premaratne, and Gregor Rehder
EGUsphere, https://doi.org/10.5194/egusphere-2024-3246, https://doi.org/10.5194/egusphere-2024-3246, 2024
Short summary
Short summary
Rewetted peatlands exhibit natural spatial and temporal biogeochemical heterogeneity, influenced by water level and vegetation. This study investigated the variability of the distribution of GHGs in a brackish-rewetted peatland. Two innovative sensor-equipped landers were used to measure a wide range of marine physicochemical variables at high temporal resolution. The measurements revealed strong fluctuations in CO2 and CH4, expressed as multi-day, diurnal and event-based variability.
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
Biogeosciences, 21, 3761–3788, https://doi.org/10.5194/bg-21-3761-2024, https://doi.org/10.5194/bg-21-3761-2024, 2024
Short summary
Short summary
During cold seasons, methane release from northern wetlands is important but often underestimated. We studied a boreal bog to understand methane emissions in spring and fall. At cold temperatures, methane release decreases due to lower production rates, but efficient methane transport through plant structures, decaying plants, and the release of methane stored in the pore water keep emissions ongoing. Understanding these seasonal processes can improve models for methane release in cold climates.
Markku Koskinen, Jani Anttila, Valerie Vranová, Ladislav Holik, Kevin Roche, Michel Vorenhout, Mari Pihlatie, and Raija Laiho
EGUsphere, https://doi.org/10.5194/egusphere-2024-2050, https://doi.org/10.5194/egusphere-2024-2050, 2024
Short summary
Short summary
Redox potential, indicative of the active pathways of organic matter decomposition, was monitored for two years in a boreal peatland with three drainage regimes. Contrary to expectations, water table level and redox potential were found to not correlate in a monotonic fashion and thus the relationship between water table level and redox conditions is not modellable by non-dynamic models.
Julien Arsenault, Julie Talbot, Tim R. Moore, Klaus-Holger Knorr, Henning Teickner, and Jean-François Lapierre
Biogeosciences, 21, 3491–3507, https://doi.org/10.5194/bg-21-3491-2024, https://doi.org/10.5194/bg-21-3491-2024, 2024
Short summary
Short summary
Peatlands are among the largest carbon (C) sinks on the planet. However, peatland features such as open-water pools emit more C than they accumulate because of higher decomposition than production. With this study, we show that the rates of decomposition vary among pools and are mostly driven by the environmental conditions in pools rather than by the nature of the material being decomposed. This means that changes in pool number or size may modify the capacity of peatlands to accumulate C.
Alice Puppin, Davide Tognin, Massimiliano Ghinassi, Erica Franceschinis, Nicola Realdon, Marco Marani, and Andrea D'Alpaos
Biogeosciences, 21, 2937–2954, https://doi.org/10.5194/bg-21-2937-2024, https://doi.org/10.5194/bg-21-2937-2024, 2024
Short summary
Short summary
This study aims at inspecting organic matter dynamics affecting the survival and carbon sink potential of salt marshes, which are valuable yet endangered wetland environments. Measuring the organic matter content in marsh soils and its relationship with environmental variables, we observed that the organic matter accumulation varies at different scales, and it is driven by the interplay between sediment supply and vegetation, which are affected, in turn, by marine and fluvial influences.
Patrick J. Neale, J. Patrick Megonigal, Maria Tzortziou, Elizabeth A. Canuel, Christina R. Pondell, and Hannah Morrissette
Biogeosciences, 21, 2599–2620, https://doi.org/10.5194/bg-21-2599-2024, https://doi.org/10.5194/bg-21-2599-2024, 2024
Short summary
Short summary
Adsorption/desorption incubations were conducted with tidal marsh soils to understand the differential sorption behavior of colored vs. noncolored dissolved organic carbon. The wetland soils varied in organic content, and a range of salinities of fresh to 35 was used. Soils primarily adsorbed colored organic carbon and desorbed noncolored organic carbon. Sorption capacity increased with salinity, implying that salinity variations may shift composition of dissolved carbon in tidal marsh waters.
Leeza Speranskaya, David I. Campbell, Peter M. Lafleur, and Elyn R. Humphreys
Biogeosciences, 21, 1173–1190, https://doi.org/10.5194/bg-21-1173-2024, https://doi.org/10.5194/bg-21-1173-2024, 2024
Short summary
Short summary
Higher evaporation has been predicted in peatlands due to climatic drying. We determined whether the water-conservative vegetation at a Southern Hemisphere bog could cause a different response to dryness compared to a "typical" Northern Hemisphere bog, using decades-long evaporation datasets from each site. At the southern bog, evaporation increased at a much lower rate with increasing dryness, suggesting that this peatland type may be more resilient to climate warming than northern bogs.
Emilia Chiapponi, Sonia Silvestri, Denis Zannoni, Marco Antonellini, and Beatrice M. S. Giambastiani
Biogeosciences, 21, 73–91, https://doi.org/10.5194/bg-21-73-2024, https://doi.org/10.5194/bg-21-73-2024, 2024
Short summary
Short summary
Coastal wetlands are important for their ability to store carbon, but they also emit methane, a potent greenhouse gas. This study conducted in four wetlands in Ravenna, Italy, aims at understanding how environmental factors affect greenhouse gas emissions. Temperature and irradiance increased emissions from water and soil, while water column depth and salinity limited them. Understanding environmental factors is crucial for mitigating climate change in wetland ecosystems.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Jennifer Williamson, Chris Evans, Bryan Spears, Amy Pickard, Pippa J. Chapman, Heidrun Feuchtmayr, Fraser Leith, Susan Waldron, and Don Monteith
Biogeosciences, 20, 3751–3766, https://doi.org/10.5194/bg-20-3751-2023, https://doi.org/10.5194/bg-20-3751-2023, 2023
Short summary
Short summary
Managing drinking water catchments to minimise water colour could reduce costs for water companies and save their customers money. Brown-coloured water comes from peat soils, primarily around upland reservoirs. Management practices, including blocking drains, removing conifers, restoring peatland plants and reducing burning, have been used to try and reduce water colour. This work brings together published evidence of the effectiveness of these practices to aid water industry decision-making.
Ting Sun and Brian A. Branfireun
Biogeosciences, 20, 2971–2984, https://doi.org/10.5194/bg-20-2971-2023, https://doi.org/10.5194/bg-20-2971-2023, 2023
Short summary
Short summary
Shrub leaves had higher mercury concentrations than sedge leaves in the sedge-dominated peatland. Dead shrub leaves leached less soluble mercury but more bioaccessible dissolved organic matter than dead sedge leaves. Leached mercury was positively related to the aromaticity of dissolved organic matter in leachate. Future plant species composition changes under climate change will affect Hg input from plant leaves to northern peatlands.
Hao Tang, Stefanie Nolte, Kai Jensen, Roy Rich, Julian Mittmann-Goetsch, and Peter Mueller
Biogeosciences, 20, 1925–1935, https://doi.org/10.5194/bg-20-1925-2023, https://doi.org/10.5194/bg-20-1925-2023, 2023
Short summary
Short summary
In order to gain the first mechanistic insight into warming effects and litter breakdown dynamics across whole-soil profiles, we used a unique field warming experiment and standardized plant litter to investigate the degree to which rising soil temperatures can accelerate belowground litter breakdown in coastal wetland ecosystems. We found warming strongly increases the initial rate of labile litter decomposition but has less consistent effects on the stabilization of this material.
Raghab Ray, Rempei Suwa, Toshihiro Miyajima, Jeffrey Munar, Masaya Yoshikai, Maria Lourdes San Diego-McGlone, and Kazuo Nadaoka
Biogeosciences, 20, 911–928, https://doi.org/10.5194/bg-20-911-2023, https://doi.org/10.5194/bg-20-911-2023, 2023
Short summary
Short summary
Mangroves are blue carbon ecosystems known to store large amounts of organic carbon in the sediments. This study is a first attempt to apply a chronosequence (or space-for-time substitution) approach to evaluate the distribution and accumulation rate of carbon in a 30-year-old (maximum age) restored mangrove forest. Using this approach, the contribution of restored or planted mangroves to sedimentary organic carbon presents an increasing pattern with mangrove age.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Daniel L. Pönisch, Anne Breznikar, Cordula N. Gutekunst, Gerald Jurasinski, Maren Voss, and Gregor Rehder
Biogeosciences, 20, 295–323, https://doi.org/10.5194/bg-20-295-2023, https://doi.org/10.5194/bg-20-295-2023, 2023
Short summary
Short summary
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however, short-term nutrient leaching and high CH4 emissions shortly after rewetting are likely to occur. We investigated the rewetting of a coastal peatland with brackish water and its effects on nutrient release and greenhouse gas fluxes. Nutrient concentrations were higher in the peatland than in the adjacent bay, leading to an export. CH4 emissions did not increase, which is in contrast to freshwater rewetting.
Stephen G. Chastain, Karen E. Kohfeld, Marlow G. Pellatt, Carolina Olid, and Maija Gailis
Biogeosciences, 19, 5751–5777, https://doi.org/10.5194/bg-19-5751-2022, https://doi.org/10.5194/bg-19-5751-2022, 2022
Short summary
Short summary
Salt marshes are thought to be important carbon sinks because of their ability to store carbon in their soils. We provide the first estimates of how much blue carbon is stored in salt marshes on the Pacific coast of Canada. We find that the carbon stored in the marshes is low compared to other marshes around the world, likely because of their young age. Still, the high marshes take up carbon at rates faster than the global average, making them potentially important carbon sinks in the future.
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022, https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Short summary
Draining peat causes high CO2 emissions, and rewetting could potentially help solve this problem. In the dry year 2020 we measured that subsurface irrigation reduced CO2 emissions by 28 % and 83 % on two research sites. We modelled a peat parcel and found that the reduction depends on seepage and weather conditions and increases when using pressurized irrigation or maintaining high ditchwater levels. We found that soil temperature and moisture are suitable as indicators of peat CO2 emissions.
Maiju Linkosalmi, Juha-Pekka Tuovinen, Olli Nevalainen, Mikko Peltoniemi, Cemal M. Taniş, Ali N. Arslan, Juuso Rainne, Annalea Lohila, Tuomas Laurila, and Mika Aurela
Biogeosciences, 19, 4747–4765, https://doi.org/10.5194/bg-19-4747-2022, https://doi.org/10.5194/bg-19-4747-2022, 2022
Short summary
Short summary
Vegetation greenness was monitored with digital cameras in three northern peatlands during five growing seasons. The greenness index derived from the images was highest at the most nutrient-rich site. Greenness indicated the main phases of phenology and correlated with CO2 uptake, though this was mainly related to the common seasonal cycle. The cameras and Sentinel-2 satellite showed consistent results, but more frequent satellite data are needed for reliable detection of phenological phases.
Antonin Prijac, Laure Gandois, Laurent Jeanneau, Pierre Taillardat, and Michelle Garneau
Biogeosciences, 19, 4571–4588, https://doi.org/10.5194/bg-19-4571-2022, https://doi.org/10.5194/bg-19-4571-2022, 2022
Short summary
Short summary
Pools are common features of peatlands. We documented dissolved organic matter (DOM) composition in pools and peat of an ombrotrophic boreal peatland to understand its origin and potential role in the peatland carbon budget. The survey reveals that DOM composition differs between pools and peat, although it is derived from the peat vegetation. We investigated which processes are involved and estimated that the contribution of carbon emissions from DOM processing in pools could be substantial.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022, https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
Julia Gensel, Marc Steven Humphries, Matthias Zabel, David Sebag, Annette Hahn, and Enno Schefuß
Biogeosciences, 19, 2881–2902, https://doi.org/10.5194/bg-19-2881-2022, https://doi.org/10.5194/bg-19-2881-2022, 2022
Short summary
Short summary
We investigated organic matter (OM) and plant-wax-derived biomarkers in sediments and plants along the Mkhuze River to constrain OM's origin and transport pathways within South Africa's largest freshwater wetland. Presently, it efficiently captures OM, so neither transport from upstream areas nor export from the swamp occurs. Thus, we emphasize that such geomorphological features can alter OM provenance, questioning the assumption of watershed-integrated information in downstream sediments.
Petri Kiuru, Marjo Palviainen, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, Vincent Gauci, Iñaki Urzainki, and Annamari Laurén
Biogeosciences, 19, 1959–1977, https://doi.org/10.5194/bg-19-1959-2022, https://doi.org/10.5194/bg-19-1959-2022, 2022
Short summary
Short summary
Peatlands are large sources of methane (CH4), and peat structure controls CH4 production and emissions. We used X-ray microtomography imaging, complex network theory methods, and pore network modeling to describe the properties of peat macropore networks and the role of macropores in CH4-related processes. We show that conditions for gas transport and CH4 production vary with depth and are affected by hysteresis, which may explain the hotspots and episodic spikes in peatland CH4 emissions.
Rey Harvey Suello, Simon Lucas Hernandez, Steven Bouillon, Jean-Philippe Belliard, Luis Dominguez-Granda, Marijn Van de Broek, Andrea Mishell Rosado Moncayo, John Ramos Veliz, Karem Pollette Ramirez, Gerard Govers, and Stijn Temmerman
Biogeosciences, 19, 1571–1585, https://doi.org/10.5194/bg-19-1571-2022, https://doi.org/10.5194/bg-19-1571-2022, 2022
Short summary
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
Hao Tang, Susanne Liebner, Svenja Reents, Stefanie Nolte, Kai Jensen, Fabian Horn, and Peter Mueller
Biogeosciences, 18, 6133–6146, https://doi.org/10.5194/bg-18-6133-2021, https://doi.org/10.5194/bg-18-6133-2021, 2021
Short summary
Short summary
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning in a mesocosm experiment using two genotypes of a dominant salt-marsh grass characterized by differences in flooding sensitivity. Larger variability in microbial community structure, enzyme activity, and litter breakdown in soils with the more sensitive genotype supports our hypothesis that effects of climate change on soil microbial functioning can be controlled by plant intraspecific adaptations.
Naima Iram, Emad Kavehei, Damien T. Maher, Stuart E. Bunn, Mehran Rezaei Rashti, Bahareh Shahrabi Farahani, and Maria Fernanda Adame
Biogeosciences, 18, 5085–5096, https://doi.org/10.5194/bg-18-5085-2021, https://doi.org/10.5194/bg-18-5085-2021, 2021
Short summary
Short summary
Greenhouse gas emissions were measured and compared from natural coastal wetlands and their converted agricultural lands across annual seasonal cycles in tropical Australia. Ponded pastures emitted ~ 200-fold-higher methane than any other tested land use type, suggesting the highest greenhouse gas mitigation potential and financial incentives by the restoration of ponded pastures to natural coastal wetlands.
Pavel Alekseychik, Aino Korrensalo, Ivan Mammarella, Samuli Launiainen, Eeva-Stiina Tuittila, Ilkka Korpela, and Timo Vesala
Biogeosciences, 18, 4681–4704, https://doi.org/10.5194/bg-18-4681-2021, https://doi.org/10.5194/bg-18-4681-2021, 2021
Short summary
Short summary
Bogs of northern Eurasia represent a major type of peatland ecosystem and contain vast amounts of carbon, but carbon balance monitoring studies on bogs are scarce. The current project explores 6 years of carbon balance data obtained using the state-of-the-art eddy-covariance technique at a Finnish bog Siikaneva. The results reveal relatively low interannual variability indicative of ecosystem resilience to both cool and hot summers and provide new insights into the seasonal course of C fluxes.
Timea Katona, Benjamin Silas Gilfedder, Sven Frei, Matthias Bücker, and Adrian Flores-Orozco
Biogeosciences, 18, 4039–4058, https://doi.org/10.5194/bg-18-4039-2021, https://doi.org/10.5194/bg-18-4039-2021, 2021
Short summary
Short summary
We used electrical geophysical methods to map variations in the rates of microbial activity within a wetland. Our results show that the highest electrical conductive and capacitive properties relate to the highest concentrations of phosphates, carbon, and iron; thus, we can use them to characterize the geometry of the biogeochemically active areas or hotspots.
Jurek Müller and Fortunat Joos
Biogeosciences, 18, 3657–3687, https://doi.org/10.5194/bg-18-3657-2021, https://doi.org/10.5194/bg-18-3657-2021, 2021
Short summary
Short summary
We present long-term projections of global peatland area and carbon with a continuous transient history since the Last Glacial Maximum. Our novel results show that large parts of today’s northern peatlands are at risk from past and future climate change, with larger emissions clearly connected to larger risks. The study includes comparisons between different emission and land-use scenarios, driver attribution through factorial simulations, and assessments of uncertainty from climate forcing.
Lianlian Zhu, Zhengmiao Deng, Yonghong Xie, Xu Li, Feng Li, Xinsheng Chen, Yeai Zou, Chengyi Zhang, and Wei Wang
Biogeosciences, 18, 1–11, https://doi.org/10.5194/bg-18-1-2021, https://doi.org/10.5194/bg-18-1-2021, 2021
Short summary
Short summary
We conducted a Carex brevicuspis leaf litter input experiment to clarify the intrinsic factors controlling litter decomposition and quantify its contribution to the soil organic carbon pool at different water levels. Our results revealed that the water level in natural wetlands influenced litter decomposition mainly by leaching and microbial activity, by extension, and affected the wetland surface carbon pool.
Robert J. Parker, Chris Wilson, A. Anthony Bloom, Edward Comyn-Platt, Garry Hayman, Joe McNorton, Hartmut Boesch, and Martyn P. Chipperfield
Biogeosciences, 17, 5669–5691, https://doi.org/10.5194/bg-17-5669-2020, https://doi.org/10.5194/bg-17-5669-2020, 2020
Short summary
Short summary
Wetlands contribute the largest uncertainty to the atmospheric methane budget. WetCHARTs is a simple, data-driven model that estimates wetland emissions using observations of precipitation and temperature. We perform the first detailed evaluation of WetCHARTs against satellite data and find it performs well in reproducing the observed wetland methane seasonal cycle for the majority of wetland regions. In regions where it performs poorly, we highlight incorrect wetland extent as a key reason.
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
Lilli Zeh, Marie Theresa Igel, Judith Schellekens, Juul Limpens, Luca Bragazza, and Karsten Kalbitz
Biogeosciences, 17, 4797–4813, https://doi.org/10.5194/bg-17-4797-2020, https://doi.org/10.5194/bg-17-4797-2020, 2020
Jérémy Guilhen, Ahmad Al Bitar, Sabine Sauvage, Marie Parrens, Jean-Michel Martinez, Gwenael Abril, Patricia Moreira-Turcq, and José-Miguel Sánchez-Pérez
Biogeosciences, 17, 4297–4311, https://doi.org/10.5194/bg-17-4297-2020, https://doi.org/10.5194/bg-17-4297-2020, 2020
Short summary
Short summary
The quantity of greenhouse gases (GHGs) released to the atmosphere by human industries and agriculture, such as carbon dioxide (CO2) and nitrous oxide (N2O), has been constantly increasing for the last few decades.
This work develops a methodology which makes consistent both satellite observations and modelling of the Amazon basin to identify and quantify the role of wetlands in GHG emissions. We showed that these areas produce non-negligible emissions and are linked to land use.
Thomas Rosset, Stéphane Binet, Jean-Marc Antoine, Emilie Lerigoleur, François Rigal, and Laure Gandois
Biogeosciences, 17, 3705–3722, https://doi.org/10.5194/bg-17-3705-2020, https://doi.org/10.5194/bg-17-3705-2020, 2020
Short summary
Short summary
Peatlands export a large amount of DOC through inland waters. This study aims at identifying the mechanisms controlling the DOC concentration at the outlet of two mountainous peatlands in the French Pyrenees. Peat water temperature and water table dynamics are shown to drive seasonal- and event-scale DOC concentration variation. According to water recession times, peatlands appear as complexes of different hydrological and biogeochemical units supplying inland waters at different rates.
David Holl, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences, 17, 2853–2874, https://doi.org/10.5194/bg-17-2853-2020, https://doi.org/10.5194/bg-17-2853-2020, 2020
Short summary
Short summary
We measured greenhouse gas (GHG) fluxes at a bog site in northwestern Germany that has been heavily degraded by peat mining. During the 2-year investigation period, half of the area was still being mined, whereas the remaining half had been rewetted shortly before. We could therefore estimate the impact of rewetting on GHG flux dynamics. Rewetting had a considerable effect on the annual GHG balance and led to increased (up to 84 %) methane and decreased (up to 40 %) carbon dioxide release.
Jacob S. Diamond, Daniel L. McLaughlin, Robert A. Slesak, and Atticus Stovall
Biogeosciences, 17, 901–915, https://doi.org/10.5194/bg-17-901-2020, https://doi.org/10.5194/bg-17-901-2020, 2020
Short summary
Short summary
Many wetland systems exhibit lumpy, or uneven, soil surfaces where higher points are called hummocks and lower points are called hollows. We found that, while hummocks extended only ~ 20 cm above hollow surfaces, they exhibited distinct plant communities, plant growth, and soil properties. Differences between hummocks and hollows were the greatest in wetter sites, supporting the hypothesis that plants create and maintain their own hummocks in response to saturated soil conditions.
Terhi Riutta, Aino Korrensalo, Anna M. Laine, Jukka Laine, and Eeva-Stiina Tuittila
Biogeosciences, 17, 727–740, https://doi.org/10.5194/bg-17-727-2020, https://doi.org/10.5194/bg-17-727-2020, 2020
Short summary
Short summary
We studied the role of plant species groups in peatland methane fluxes under natural conditions and lowered water level. At a natural water level, sedges and mosses increased the fluxes. At a lower water level, the impact of plant groups on the fluxes was small. Only at a high water level did vegetation regulate the fluxes. The results are relevant for assessing peatland methane fluxes in a changing climate, as peatland water level and vegetation are predicted to change.
M. Graham Clark, Elyn R. Humphreys, and Sean K. Carey
Biogeosciences, 17, 667–682, https://doi.org/10.5194/bg-17-667-2020, https://doi.org/10.5194/bg-17-667-2020, 2020
Short summary
Short summary
Natural and restored wetlands typically emit methane to the atmosphere. However, we found that a wetland constructed after oil sand mining in boreal Canada using organic soils from local peatlands had negligible emissions of methane in its first 3 years. Methane production was likely suppressed due to an abundance of alternate inorganic electron acceptors. Methane emissions may increase in the future if the alternate electron acceptors continue to decrease.
Hendrik Reuter, Julia Gensel, Marcus Elvert, and Dominik Zak
Biogeosciences, 17, 499–514, https://doi.org/10.5194/bg-17-499-2020, https://doi.org/10.5194/bg-17-499-2020, 2020
Short summary
Short summary
Using infrared spectroscopy, we developed a routine to disentangle microbial nitrogen (N) and plant N in decomposed litter. In a decomposition experiment in three wetland soils, this routine revealed preferential protein depolymerization as a decomposition-site-dependent parameter, unaffected by variations in initial litter N content. In Sphagnum peat, preferential protein depolymerization led to a N depletion of still-unprocessed litter tissue, i.e., a gradual loss of litter quality.
Kevan J. Minick, Bhaskar Mitra, Asko Noormets, and John S. King
Biogeosciences, 16, 4671–4686, https://doi.org/10.5194/bg-16-4671-2019, https://doi.org/10.5194/bg-16-4671-2019, 2019
Short summary
Short summary
Sea level rise alters hydrology and vegetation in coastal wetlands. We studied effects of freshwater, saltwater, and wood on soil microbial activity in a freshwater forested wetland. Saltwater reduced CO2/CH4 production compared to freshwater, suggesting large changes in greenhouse gas production and microbial activity are possible due to saltwater intrusion into freshwater wetlands but that the availability of C in the form of dead wood (as forests transition to marsh) may alter the magnitude.
Jyrki Jauhiainen, Jukka Alm, Brynhildur Bjarnadottir, Ingeborg Callesen, Jesper R. Christiansen, Nicholas Clarke, Lise Dalsgaard, Hongxing He, Sabine Jordan, Vaiva Kazanavičiūtė, Leif Klemedtsson, Ari Lauren, Andis Lazdins, Aleksi Lehtonen, Annalea Lohila, Ainars Lupikis, Ülo Mander, Kari Minkkinen, Åsa Kasimir, Mats Olsson, Paavo Ojanen, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Lars Vesterdal, and Raija Laiho
Biogeosciences, 16, 4687–4703, https://doi.org/10.5194/bg-16-4687-2019, https://doi.org/10.5194/bg-16-4687-2019, 2019
Short summary
Short summary
We collated peer-reviewed publications presenting GHG flux data for drained organic forest soils in boreal and temperate climate zones, focusing on data that have been used, or have the potential to be used, for estimating net annual soil GHG emission/removals. We evaluated the methods in data collection and identified major gaps in background/environmental data. Based on these, we developed suggestions for future GHG data collection to increase data applicability in syntheses and inventories.
Steffen Buessecker, Kaitlyn Tylor, Joshua Nye, Keith E. Holbert, Jose D. Urquiza Muñoz, Jennifer B. Glass, Hilairy E. Hartnett, and Hinsby Cadillo-Quiroz
Biogeosciences, 16, 4601–4612, https://doi.org/10.5194/bg-16-4601-2019, https://doi.org/10.5194/bg-16-4601-2019, 2019
Short summary
Short summary
We investigated the potential for chemical reduction of nitrite into nitrous oxide (N2O) in soils from tropical peat. Among treatments, irradiation resulted in the lowest biological interference and least change of native soil chemistry (iron and organic matter). Nitrite depletion was as high in live or irradiated soils, and N2O production was significant in all tests. Thus, nonbiological production of N2O may be widely underestimated in wetlands and tropical peatlands.
Cited articles
Aliev, A. E.: Solid state NMR spectroscopy, in: Nuclear Magnetic Resonance, edited by: Hodgkinson, P., The Royal Society of Chemistry, 139–187, https://doi.org/10.1039/9781788010665-00139, 2020.
Anderson, J. A. R. and Muller, J.: Palynological study of a holocene peat and a miocene coal deposit from NW Borneo, Rev. Palaeobot. Palyno., 19, 291–351, https://doi.org/10.1016/0034-6667(75)90049-4, 1975.
Aravena, R., Warner, B. G., Charman, D. J., Belyea, L. R., Mathur, S. P., and Dinel, H.: Carbon Isotopic Composition of Deep Carbon Gases in an Ombrogenous Peatland, Northwestern Ontario, Canada, Radiocarbon, 35, 271–276, https://doi.org/10.1017/S0033822200064948, 1993.
Bader, C., Müller, M., Schulin, R., and Leifeld, J.: Peat decomposability in managed organic soils in relation to land use, organic matter composition and temperature, Biogeosciences, 15, 703–719, https://doi.org/10.5194/bg-15-703-2018, 2018.
Baldock, J. A., Masiello, C. A., Gélinas, Y., and Hedges, J. I.: Cycling and composition of organic matter in terrestrial and marine ecosystems, Mar. Chem., 92, 39–64, https://doi.org/10.1016/j.marchem.2004.06.016, 2004.
Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C., and Mechoso, C. R.: A Recent Systematic Increase in Vapor Pressure Deficit over Tropical South America, Sci. Rep., 9, 15331, https://doi.org/10.1038/s41598-019-51857-8, 2019.
Barreto, C. and Lindo, Z.: Decomposition in Peatlands: Who Are the Players and What Affects Them?, Front. Young Minds, 8, 107, https://doi.org/10.3389/frym.2020.00107, 2020.
Barros, V. R., Field, C. B., Dokken, D. J., Mastrandrea, M. D., and Mach, K. J. (Eds.): Central and South America, in: Climate Change 2014: Impacts, Adaptation and Vulnerability, Cambridge University Press, Cambridge, 1499–1566, https://doi.org/10.1017/CBO9781107415386.007, 2014.
Beilman, D. W., Massa, C., Nichols, J. E., Elison Timm, O., Kallstrom, R., and Dunbar-Co, S.: Dynamic Holocene Vegetation and North Pacific Hydroclimate Recorded in a Mountain Peatland, Moloka`i, Hawai`i, Front. Earth Sci., 7, 188, https://doi.org/10.3389/feart.2019.00188, 2019.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Broek, T. A. B., Ognibene, T. J., McFarlane, K. J., Moreland, K. C., Brown, T. A., and Bench, G.: Conversion of the LLNL/CAMS 1 MV biomedical AMS system to a semi-automated natural abundance 14C spectrometer: system optimization and performance evaluation, Nucl. Instrum. Meth. B, 499, 124–132, https://doi.org/10.1016/j.nimb.2021.01.022, 2021.
Chadwick, R., Good, P., Martin, G., and Rowell, D. P.: Large rainfall changes consistently projected over substantial areas of tropical land, Nat. Clim. Change, 6, 177–181, https://doi.org/10.1038/nclimate2805, 2016.
Chanton, J. P., Bauer, J. E., Glaser, P. A., Siegel, D. I., Kelley, C. A., Tyler, S. C., Romanowicz, E. H., and Lazrus, A.: Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands, Geochim. Cosmochim. Ac., 59, 3663–3668, https://doi.org/10.1016/0016-7037(95)00240-Z, 1995.
Chanton, J. P., Glaser, P. H., Chasar, L. S., Burdige, D. J., Hines, M. E., Siegel, D. I., Tremblay, L. B., and Cooper, W. T.: Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands, Global Biogeochem. Cy., 22, 2008GB003274, https://doi.org/10.1029/2008GB003274, 2008.
Clymo, R. S., Turunen, J., and Tolonen, K.: Carbon Accumulation in Peatland, Oikos, 81, 368, https://doi.org/10.2307/3547057, 1998.
Cobb, A. R., Hoyt, A. M., Gandois, L., Eri, J., Dommain, R., Abu Salim, K., Kai, F. M., Haji Su'ut, N. S., and Harvey, C. F.: How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands, P. Natl. Acad. Sci. USA, 114, https://doi.org/10.1073/pnas.1701090114, 2017.
Cobb, A. R., Dommain, R., Yeap, K., Hannan, C., Dadap, N. C., Bookhagen, B., Glaser, P. H., and Harvey, C. F.: A unified explanation for the morphology of raised peatlands, Nature, 625, 79–84, https://doi.org/10.1038/s41586-023-06807-w, 2024.
Cohen, A. D., Raymond, R., Ramirez, A., Morales, Z., and Ponce, F.: The Changuinola peat deposit of northwestern Panama: a tropical, back-barrier, peat(coal)-forming environment, Int. J. Coal Geol., 12, 157–192, https://doi.org/10.1016/0166-5162(89)90050-5, 1989.
Conrad, R.: Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: A mini review, Pedosphere, 30, 25–39, https://doi.org/10.1016/S1002-0160(18)60052-9, 2020.
Corbett, J. E., Tfaily, M. M., Burdige, D. J., Cooper, W. T., Glaser, P. H., and Chanton, J. P.: Partitioning pathways of CO2 production in peatlands with stable carbon isotopes, Biogeochemistry, 114, 327–340, https://doi.org/10.1007/s10533-012-9813-1, 2013.
Cusack, D. F., Markesteijn, L., Condit, R., Lewis, O. T., and Turner, B. L.: Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots, Biogeochemistry, 137, 253–266, https://doi.org/10.1007/s10533-017-0416-8, 2018.
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E., Bocko, Y. E., and Ifo, S. A.: Age, extent and carbon storage of the central Congo Basin peatland complex, Nature, 542, 86–90, https://doi.org/10.1038/nature21048, 2017.
Dhandapani, S., Girkin, N. T., and Evers, S.: Spatial variability of surface peat properties and carbon emissions in a tropical peatland oil palm monoculture during a dry season, Soil Use Manage., 38, 381–395, https://doi.org/10.1111/sum.12741, 2022.
Dhandapani, S., Evers, S., Boyd, D., Evans, C. D., Page, S., Parish, F., and Sjogersten, S.: Assessment of differences in peat physico-chemical properties, surface subsidence and GHG emissions between the major land-uses of Selangor peatlands, CATENA, 230, 107255, https://doi.org/10.1016/j.catena.2023.107255, 2023.
Dommain, R., Couwenberg, J., and Joosten, H.: Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability, Quaternary Sci. Rev., 30, 999–1010, https://doi.org/10.1016/j.quascirev.2011.01.018, 2011.
Dommain, R., Cobb, A. R., Joosten, H., Glaser, P. H., Chua, A. F. L., Gandois, L., Kai, F., Noren, A., Salim, K. A., Su'ut, N. S. H., and Harvey, C. F.: Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia), J. Geophys. Res.-Biogeo., 120, 617–640, https://doi.org/10.1002/2014JG002796, 2015.
Duffy, K., Gouhier, T. C., and Ganguly, A. R.: Climate-mediated shifts in temperature fluctuations promote extinction risk, Nat. Clim. Change, 12, 1037–1044, https://doi.org/10.1038/s41558-022-01490-7, 2022.
Farmer, J., Matthews, R., Smith, J. U., Smith, P., and Singh, B. K.: Assessing existing peatland models for their applicability for modelling greenhouse gas emissions from tropical peat soils, Curr. Opin. Env. Sust., 3, 339–349, https://doi.org/10.1016/j.cosust.2011.08.010, 2011.
Feng, S. and Fu, Q.: Expansion of global drylands under a warming climate, Atmos. Chem. Phys., 13, 10081–10094, https://doi.org/10.5194/acp-13-10081-2013, 2013.
Fritts, R.: Tropical Wetlands Emit More Methane Than Previously Thought, Eos, 103, https://doi.org/10.1029/2022EO220443, 2022.
Gandois, L., Teisserenc, R., Cobb, A. R., Chieng, H. I., Lim, L. B. L., Kamariah, A. S., Hoyt, A., and Harvey, C. F.: Origin, composition, and transformation of dissolved organic matter in tropical peatlands, Geochim. Cosmochim. Ac., 137, 35–47, https://doi.org/10.1016/j.gca.2014.03.012, 2014.
Girkin, N. T., Turner, B. L., Ostle, N., Craigon, J., and Sjögersten, S.: Root exudate analogues accelerate CO2 and CH4 production in tropical peat, Soil Biol. Biochem., 117, 48–55, https://doi.org/10.1016/j.soilbio.2017.11.008, 2018.
Girkin, N. T., Vane, C. H., Cooper, H. V., Moss-Hayes, V., Craigon, J., Turner, B. L., Ostle, N., and Sjögersten, S.: Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland, Biogeochemistry, 142, 231–245, https://doi.org/10.1007/s10533-018-0531-1, 2019.
Girkin, N. T., Dhandapani, S., Evers, S., Ostle, N., Turner, B. L., and Sjögersten, S.: Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat, Biogeochemistry, 147, 87–97, https://doi.org/10.1007/s10533-019-00632-y, 2020.
Girkin, N. T., Cooper, H. V., Ledger, M. J., O'Reilly, P., Thornton, S. A., Åkesson, C. M., Cole, L. E. S., Hapsari, K. A., Hawthorne, D., and Roucoux, K. H.: Tropical peatlands in the Anthropocene: The present and the future, Anthropocene, 40, 100354, https://doi.org/10.1016/j.ancene.2022.100354, 2022.
Goldstein, A., Turner, W. R., Spawn, S. A., Anderson-Teixeira, K. J., Cook-Patton, S., Fargione, J., Gibbs, H. K., Griscom, B., Hewson, J. H., Howard, J. F., Ledezma, J. C., Page, S., Koh, L. P., Rockström, J., Sanderman, J., and Hole, D. G.: Protecting irrecoverable carbon in Earth's ecosystems, Nat. Clim. Change, 10, 287–295, https://doi.org/10.1038/s41558-020-0738-8, 2020.
Gruca-Rokosz, R. and Koszelnik, P.: Production pathways for CH4 and CO2 in sediments of two freshwater ecosystems in south-eastern Poland, PLOS ONE, 13, e0199755, https://doi.org/10.1371/journal.pone.0199755, 2018.
Hedgpeth, A., Hoyt, A., Cavanaugh, K., McFarlane, K., and Cusack, D.: Changuinola peat soil characteristics and gas emission raw data October 2019, ESS-DIVE repository [data set], https://doi.org/10.15485/2566016, 2025.
Hirano, T., Jauhiainen, J., Inoue, T., and Takahashi, H.: Controls on the Carbon Balance of Tropical Peatlands, Ecosystems, 12, 873–887, https://doi.org/10.1007/s10021-008-9209-1, 2009.
Hodgkins, S. B., Richardson, C. J., Dommain, R., Wang, H., Glaser, P. H., Verbeke, B., Winkler, B. R., Cobb, A. R., Rich, V. I., Missilmani, M., Flanagan, N., Ho, M., Hoyt, A. M., Harvey, C. F., Vining, S. R., Hough, M. A., Moore, T. R., Richard, P. J. H., De La Cruz, F. B., Toufaily, J., Hamdan, R., Cooper, W. T., and Chanton, J. P.: Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance, Nat. Commun., 9, 3640, https://doi.org/10.1038/s41467-018-06050-2, 2018.
Holmes, M. E., Chanton, J. P., Tfaily, M. M., and Ogram, A.: CO2 and CH4 isotope compositions and production pathways in a tropical peatland, Global Biogeochem. Cy., 29, 1–18, https://doi.org/10.1002/2014GB004951, 2015.
Hornibrook, E. R. C., Longstaffe, F. J., and Fyfe, W. S.: Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments, Geochim. Cosmochim. Ac., 64, 1013–1027, https://doi.org/10.1016/S0016-7037(99)00321-X, 2000.
Hoyos-Santillan, J., Lomax, B. H., Large, D., Turner, B. L., Boom, A., Lopez, O. R., and Sjögersten, S.: Getting to the root of the problem: litter decomposition and peat formation in low- land Neotropical peatlands, Biogeochemistry, 126, 115–129, https://doi.org/10.1007/s10533-015-0147-7, 2015a.
Hoyos-Santillan, J., Lomax, B. H., Large, D., Turner, B. L., Boom, A., Lopez, O. R., and Sjögersten, S.: Getting to the root of the problem: litter decomposition and peat formation in lowland Neotropical peatlands, Biogeochemistry, 126, 115–129, https://doi.org/10.1007/s10533-015-0147-7, 2015b.
Hoyos-Santillan, J., Lomax, B. H., Large, D., Turner, B. L., Boom, A., Lopez, O. R., and Sjögersten, S.: Quality not quantity: Organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles, Soil Biol. Biochem., 103, 86–96, https://doi.org/10.1016/j.soilbio.2016.08.017, 2016.
Hoyos-Santillan, J., Lomax, B. H., Large, D., Turner, B. L., Lopez, O. R., Boom, A., Sepulveda-Jauregui, A., and Sjögersten, S.: Evaluation of vegetation communities, water table, and peat composition as drivers of greenhouse gas emissions in lowland tropical peatlands, Sci. Total Environ., 688, 1193–1204, https://doi.org/10.1016/j.scitotenv.2019.06.366, 2019.
Hoyt, A.: Methane production and transport in a tropical peatland, AGU Fall Meeting Abstracts, AGU Fall Meeting Abstracts, San Francisco, California, 15–19 December 2014, B24C-06, 2014.
Hoyt, A., Cadillo-Quiroz, H., Xu, X., Torn, M., Bazán Pacaya, A., Jacobs, M., Shapiama Peña, R., Ramirez Navarro, D., Urquiza-Muñoz, D., and Trumbore, S.: Isotopic Insights into Methane Production and Emission in Diverse Amazonian Peatlands, oral, https://doi.org/10.5194/egusphere-egu2020-12960, 2020.
Hoyt, A. M., Gandois, L., Eri, J., Kai, F. M., Harvey, C. F., and Cobb, A. R.: CO2 emissions from an undrained tropical peatland: Interacting influences of temperature, shading and water table depth, Glob. Change Biol., 25, 2885–2899, https://doi.org/10.1111/gcb.14702, 2019.
Ingram, H. A. P.: Ecohydrology of Scottish peatlands, T. Roy. Soc. Edin.-Earth, 78, 287–296, https://doi.org/10.1017/S0263593300011226, 1987.
Jastrow, J. D., Amonette, J. E., and Bailey, V. L.: Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration, Climatic Change, 80, 5–23, https://doi.org/10.1007/s10584-006-9178-3, 2007.
Jauhiainen, J., Takahashi, H., Heikkinen, J. E. P., Martikainen, P. J., and Vasander, H.: Carbon fluxes from a tropical peat swamp forest floor, Glob. Change Biol., 11, 1788–1797, https://doi.org/10.1111/j.1365-2486.2005.001031.x, 2005.
Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S., and Vasander, H.: Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment, Environ. Res. Lett., 9, 105013, https://doi.org/10.1088/1748-9326/9/10/105013, 2014.
Kettridge, N., Turetsky, M. R., Sherwood, J. H., Thompson, D. K., Miller, C. A., Benscoter, B. W., Flannigan, M. D., Wotton, B. M., and Waddington, J. M.: Moderate drop in water table increases peatland vulnerability to post-fire regime shift, Sci. Rep., 5, 8063, https://doi.org/10.1038/srep08063, 2015.
Kotsyurbenko, O. R., Chin, K.-J., Glagolev, M. V., Stubner, S., Simankova, M. V., Nozhevnikova, A. N., and Conrad, R.: Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog, Environ. Microbiol., 6, 1159–1173, https://doi.org/10.1111/j.1462-2920.2004.00634.x, 2004.
Lähteenoja, O., Reátegui, Y. R., Räsänen, M., Torres, D. D. C., Oinonen, M., and Page, S.: The large Amazonian peatland carbon sink in the subsiding Pastaza-Marañón foreland basin, Peru, Glob. Change Biol., 18, 164–178, https://doi.org/10.1111/j.1365-2486.2011.02504.x, 2012.
Lampela, M., Jauhiainen, J., and Vasander, H.: Surface peat structure and chemistry in a tropical peat swamp forest, Plant Soil, 382, 329–347, https://doi.org/10.1007/s11104-014-2187-5, 2014.
Lawrence, C. R., Beem-Miller, J., Hoyt, A. M., Monroe, G., Sierra, C. A., Stoner, S., Heckman, K., Blankinship, J. C., Crow, S. E., McNicol, G., Trumbore, S., Levine, P. A., Vindušková, O., Todd-Brown, K., Rasmussen, C., Hicks Pries, C. E., Schädel, C., McFarlane, K., Doetterl, S., Hatté, C., He, Y., Treat, C., Harden, J. W., Torn, M. S., Estop-Aragonés, C., Asefaw Berhe, A., Keiluweit, M., Della Rosa Kuhnen, Á., Marin-Spiotta, E., Plante, A. F., Thompson, A., Shi, Z., Schimel, J. P., Vaughn, L. J. S., von Fromm, S. F., and Wagai, R.: An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0, Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, 2020 (data available at: https://soilradiocarbon.org/, last access: January 2024).
Liebner, S., Ganzert, L., Kiss, A., Yang, S., Wagner, D., and Svenning, M. M.: Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost, Front. Microbiol., 6, 1–10, https://doi.org/10.3389/fmicb.2015.00356, 2015.
Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G., Beilman, D. W., Benavides, J. C., Blewett, J., Camill, P., Charman, D. J., Chawchai, S., Hedgpeth, A., Kleinen, T., Korhola, A., Large, D., Mansilla, C. A., Müller, J., Van Bellen, S., West, J. B., Yu, Z., Bubier, J. L., Garneau, M., Moore, T., Sannel, A. B. K., Page, S., Väliranta, M., Bechtold, M., Brovkin, V., Cole, L. E. S., Chanton, J. P., Christensen, T. R., Davies, M. A., De Vleeschouwer, F., Finkelstein, S. A., Frolking, S., Gałka, M., Gandois, L., Girkin, N., Harris, L. I., Heinemeyer, A., Hoyt, A. M., Jones, M. C., Joos, F., Juutinen, S., Kaiser, K., Lacourse, T., Lamentowicz, M., Larmola, T., Leifeld, J., Lohila, A., Milner, A. M., Minkkinen, K., Moss, P., Naafs, B. D. A., Nichols, J., O'Donnell, J., Payne, R., Philben, M., Piilo, S., Quillet, A., Ratnayake, A. S., Roland, T. P., Sjögersten, S., Sonnentag, O., Swindles, G. T., Swinnen, W., Talbot, J., Treat, C., Valach, A. C., and Wu, J.: Expert assessment of future vulnerability of the global peatland carbon sink, Nat. Clim. Change, 11, 70–77, https://doi.org/10.1038/s41558-020-00944-0, 2021.
McNicol, G., Knox, S. H., Guilderson, T. P., Baldocchi, D. D., and Silver, W. L.: Where old meets new: An ecosystem study of methanogenesis in a reflooded agricultural peatland, Glob. Change Biol., 26, 772–785, https://doi.org/10.1111/gcb.14916, 2020.
Mobilian, C. and Craft, C. B.: Wetland Soils: Physical and Chemical Properties and Biogeochemical Processes, in: Encyclopedia of Inland Waters, edited by: Mehner, T. and Tockner, K., Elsevier, Second edition, https://doi.org/10.1016/B978-0-12-819166-8.00049-9, 157–168, 2022.
Moore, S., Evans, C. D., Page, S. E., Garnett, M. H., Jones, T. G., Freeman, C., Hooijer, A., Wiltshire, A. J., Limin, S. H., and Gauci, V.: Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes, Nature, 493, 660–663, https://doi.org/10.1038/nature11818, 2013.
Noon, M. L., Goldstein, A., Ledezma, J. C., Roehrdanz, P. R., Cook-Patton, S. C., Spawn-Lee, S. A., Wright, T. M., Gonzalez-Roglich, M., Hole, D. G., Rockström, J., and Turner, W. R.: Mapping the irrecoverable carbon in Earth's ecosystems, Nat. Sustain., 5, 37–46, https://doi.org/10.1038/s41893-021-00803-6, 2021.
Norris, M. W., Turnbull, J. C., Howarth, J. D., and Vandergoes, M. J.: Pretreatment of Terrestrial Macrofossils, Radiocarbon, 62, 349–360, https://doi.org/10.1017/RDC.2020.8, 2020.
Nottingham, A. T., Bååth, E., Reischke, S., Salinas, N., and Meir, P.: Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes, Glob. Change Biol., 25, 827–838, https://doi.org/10.1111/gcb.14502, 2019.
Ofiti, N. O. E., Schmidt, M. W. I., Abiven, S., Hanson, P. J., Iversen, C. M., Wilson, R. M., Kostka, J. E., Wiesenberg, G. L. B., and Malhotra, A.: Climate warming and elevated CO2 alter peatland soil carbon sources and stability, Nat. Commun., 14, 7533, https://doi.org/10.1038/s41467-023-43410-z, 2023.
Omar, M. S., Ifandi, E., Sukri, R. S., Kalaitzidis, S., Christanis, K., Lai, D. T. C., Bashir, S., and Tsikouras, B.: Peatlands in Southeast Asia: A comprehensive geological review, Earth-Sci. Rev., 232, 104149, https://doi.org/10.1016/j.earscirev.2022.104149, 2022.
Osaki, M., Kato, T., Kohyama, T., Takahashi, H., Haraguchi, A., Yabe, K., Tsuji, N., Shiodera, S., Rahajoe, J. S., Atikah, T. D., Oide, A., Matsui, K., Wetadewi, R. I., and Silsigia, S.: Basic Information About Tropical Peatland Ecosystems, in: Tropical Peatland Eco-management, edited by: Osaki, M., Tsuji, N., Foead, N., and Rieley, J., Springer Singapore, Singapore, https://doi.org/10.1007/978-981-33-4654-3_1, 3–62, 2021.
Page, S. E., Rieley, J. O., and Banks, C. J.: Global and regional importance of the tropical peatland carbon pool, Glob. Change Biol., 17, 798–818, https://doi.org/10.1111/j.1365-2486.2010.02279.x, 2011.
Phillips, S. and Bustin, R. M.: Sedimentology of the Changuinola peat deposit: Organic and clastic sedimentary response to punctuated coastal subsidence, Geol. Soc. Am. Bull., 108, 794–814, https://doi.org/10.1130/0016-7606(1996)108<0794:SOTCPD>2.3.CO;2, 1996.
Phillips, S., Rouse, G. E., and Bustin, R. M.: Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panamá, Palaeogeogr. Palaeocl., 128, 301–338, https://doi.org/10.1016/S0031-0182(97)81129-7, 1997.
Petrenko, V. V., Severinghaus, J. P., Brook, E. J., Mühle, J., Headly, M., Harth, C. M., Schaefer, H., Reeh, N., Weiss, R. F., Lowe, D., and Smith, A. M.: A novel method for obtaining very large ancient air samples from ablating glacial ice for analyses of methane radiocarbon, J. Glaciol., 54, 233–244, https://doi.org/10.3189/002214308784886135, 2008.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 2 April 2025), 2022.
Ribeiro, K., Pacheco, F. S., Ferreira, J. W., De Sousa-Neto, E. R., Hastie, A., Krieger Filho, G. C., Alvalá, P. C., Forti, M. C., and Ometto, J. P.: Tropical peatlands and their contribution to the global carbon cycle and climate change, Glob. Change Biol., 27, 489–505, https://doi.org/10.1111/gcb.15408, 2021.
Sjögersten, S., Cheesman, A. W., Lopez, O., and Turner, B. L.: Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland, Biogeochemistry, 104, 147–163, https://doi.org/10.1007/s10533-010-9493-7, 2011.
Stuiver, M. and Polach, H. A.: Discussion Reporting of 14C Data, Radiocarbon, 19, 355–363, https://doi.org/10.1017/S0033822200003672, 1977.
Sugimoto, A. and Wada, E.: Carbon isotopic composition of bacterial methane in a soil incubation experiment: Contributions of acetate and, Geochim. Cosmochim. Ac., 57, 4015–4027, https://doi.org/10.1016/0016-7037(93)90350-6, 1993.
Sun, C. L., Brauer, S. L., Cadillo-Quiroz, H., Zinder, S. H., and Yavitt, J. B.: Seasonal Changes in Methanogenesis and Methanogenic Community in Three Peatlands, New York State, Front. Microbiol., 3, 1–8, https://doi.org/10.3389/fmicb.2012.00081, 2012.
Thormann, M. N.: Diversity and function of fungi in peatlands: A carbon cycling perspective, Can. J. Soil Sci., 86, 281–293, https://doi.org/10.4141/S05-082, 2006.
Troxler, T. G.: Patterns of phosphorus, nitrogen and δ15N along a peat development gradient in a coastal mire, Panama, J. Trop. Ecol., 23, 683–691, https://doi.org/10.1017/S0266467407004464, 2007.
Troxler, T. G., Ikenaga, M., Scinto, L., Boyer, J. N., Condit, R., Perez, R., Gann, G. D., and Childers, D. L.: Patterns of Soil Bacteria and Canopy Community Structure Related to Tropical Peatland Development, Wetlands, 32, 769–782, https://doi.org/10.1007/s13157-012-0310-z, 2012.
United Nations Environment Programme, Global Environment Facility, Asia Pacific Network for Global Change Research, Global Environment Centre (Malaysia), and Wetlands International (Eds.): Assessment on peatlands, biodiversity, and climate change, Global Environment Centre & Wetlands International, Wageningen, Kuala Lumpur, 2008.
Upton, A., Vane, C. H., Girkin, N., Turner, B. L., and Sjögersten, S.: Does litter input determine carbon storage and peat organic chemistry in tropical peatlands?, Geoderma, 326, 76–87, https://doi.org/10.1016/j.geoderma.2018.03.030, 2018.
Vogel, J. S., Southon, J. R., Nelson, D. E., and Brown, T. A.: Performance of catalytically condensed carbon for use in accelerator mass spectrometry, Nucl. Instrum. Meth. B, 5, 289–293, https://doi.org/10.1016/0168-583X(84)90529-9, 1984.
Wiesenberg, G. L. B., Dorodnikov, M., and Kuzyakov, Y.: Source determination of lipids in bulk soil and soil density fractions after four years of wheat cropping, Geoderma, 156, 267–277, https://doi.org/10.1016/j.geoderma.2010.02.026, 2010.
Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C. W., Pfeifer-Meister, L., Medvedeff, C., McFarlane, K. J., Kostka, J. E., Kolton, M., Kolka, R. K., Kluber, L. A., Keller, J. K., Guilderson, T. P., Griffiths, N. A., Chanton, J. P., Bridgham, S. D., and Hanson, P. J.: Stability of peatland carbon to rising temperatures, Nat. Commun., 7, 13723, https://doi.org/10.1038/ncomms13723, 2016.
Wilson, R. M., Griffiths, N. A., Visser, A., McFarlane, K. J., Sebestyen, S. D., Oleheiser, K. C., Bosman, S., Hopple, A. M., Tfaily, M. M., Kolka, R. K., Hanson, P. J., Kostka, J. E., Bridgham, S. D., Keller, J. K., and Chanton, J. P.: Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment, J. Geophys. Res.-Biogeo., 126, e2021JG006511, https://doi.org/10.1029/2021JG006511, 2021.
Wright, E. L., Black, C. R., Cheesman, A. W., Drage, T., Large, D., Turner, B. L., and Sjögersten, S.: Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland: CARBON FLUXES IN A NEOTROPICAL PEATLAND, Glob. Change Biol., 17, 2867–2881, https://doi.org/10.1111/j.1365-2486.2011.02448.x, 2011.
Wright, E. L., Black, C. R., Turner, B. L., and Sjögersten, S.: Environmental controls of temporal and spatial variability in CO2 and CH4 fluxes in a neotropical peatland, Glob. Change Biol., 19, 3775–3789, https://doi.org/10.1111/gcb.12330, 2013.
Zhang, Y., Ma, A., Zhuang, G., and Zhuang, X.: The acetotrophic pathway dominates methane production in Zoige alpine wetland coexisting with hydrogenotrophic pathway, Sci. Rep., 9, 9141, https://doi.org/10.1038/s41598-019-45590-5, 2019.
Short summary
Tropical peatlands store ancient carbon and have been identified as both being vulnerable to future climate change and taking a long time to recover after a disturbance. It is unknown if these gases are produced from decomposition of 1000-year-old peat. Radiocarbon dating shows emitted gases are young, indicating that surface carbon (rather than old peat) drives emissions. Preserving these ecosystems can trap old carbon, mitigating climate change.
Tropical peatlands store ancient carbon and have been identified as both being vulnerable to...
Altmetrics
Final-revised paper
Preprint