Articles | Volume 10, issue 1
https://doi.org/10.5194/bg-10-1-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-1-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models
A. F. Bouwman
PBL Netherlands Environmental Assessment Agency, P.O. Box 303, 3720 AH Bilthoven, The Netherlands
Department of Earth Sciences – Geochemistry, Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands
M. F. P. Bierkens
Department of Physical Geography – Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, The Netherlands
Deltares, P.O. Box 85467, 3508 AL Utrecht, The Netherlands
J. Griffioen
Deltares, P.O. Box 85467, 3508 AL Utrecht, The Netherlands
Department of Innovation, Environmental and Energy Sciences – Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TA Utrecht, The Netherlands
TNO Geological Survey, P.O. Box 80 015, 3508 AL Utrecht, The Netherlands
M. M. Hefting
Ecology and Biodiversity, Department of Biology, Faculty of Natural Sciences, Utrecht University, P.O. Box 800.84, 3508 TB Utrecht, The Netherlands
J. J. Middelburg
Department of Earth Sciences – Geochemistry, Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands
H. Middelkoop
Department of Physical Geography – Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, The Netherlands
C. P. Slomp
Department of Earth Sciences – Geochemistry, Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands
Related authors
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Wim Joost van Hoek, Lauriane Vilmin, Arthur H. W. Beusen, José M. Mogollón, Xiaochen Liu, Joep J. Langeveld, Alexander F. Bouwman, and Jack J. Middelburg
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-205, https://doi.org/10.5194/gmd-2019-205, 2019
Revised manuscript not accepted
Short summary
Short summary
In this study we present CARBON-DISC 1.0. It couples the global water balance model PCR-GLOBWB with global carbon inputs from the Integrated Model to Assess the Global Environment (IMAGE) at a 0.5° resolution and calculates gridcell-to-gridcell transport, C transformations, C emissions, C burial and primary production on a monthly timestep and without calibration.
Joep Langeveld, Alexander F. Bouwman, Wim Joost van Hoek, Lauriane Vilmin, Arthur H. W. Beusen, José M. Mogollón, and Jack J. Middelburg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-238, https://doi.org/10.5194/bg-2019-238, 2019
Preprint withdrawn
Short summary
Short summary
We compiled a global database on annual average dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in soil solutions. We use this database to construct the first global models and maps on DOC in soil pore water. Highest concentrations in shallow soils occur in forests of cooler, humid zones. Highest concentrations in deeper soils are calculated for Histosols. Our research enables a spatially explicit first estimation of dissolved carbon in soil solution on the global scale.
Susanne Rolinski, Christoph Müller, Jens Heinke, Isabelle Weindl, Anne Biewald, Benjamin Leon Bodirsky, Alberte Bondeau, Eltje R. Boons-Prins, Alexander F. Bouwman, Peter A. Leffelaar, Johnny A. te Roller, Sibyll Schaphoff, and Kirsten Thonicke
Geosci. Model Dev., 11, 429–451, https://doi.org/10.5194/gmd-11-429-2018, https://doi.org/10.5194/gmd-11-429-2018, 2018
Short summary
Short summary
One-third of the global land area is covered with grasslands which are grazed by or mowed for livestock feed. These areas contribute significantly to the carbon capture from the atmosphere when managed sensibly. To assess the effect of this management, we included different options of grazing and mowing into the global model LPJmL 3.6. We found in polar regions even low grazing pressure leads to soil carbon loss whereas in temperate regions up to 1.4 livestock units per hectare can be sustained.
Jun Liu, Lex Bouwman, Jiaye Zang, Chenying Zhao, Xiaochen Liu, and Xiangbin Ran
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-42, https://doi.org/10.5194/bg-2016-42, 2016
Manuscript not accepted for further review
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Robin Klomp, Olga M. Żygadłowska, Mike S. M. Jetten, Véronique E. Oldham, Niels A. G. M. van Helmond, Caroline P. Slomp, and Wytze K. Lenstra
EGUsphere, https://doi.org/10.5194/egusphere-2024-1706, https://doi.org/10.5194/egusphere-2024-1706, 2024
Short summary
Short summary
In marine sediments, dissolved Mn is present as either Mn(III) or Mn(II). We apply a reactive transport model to geochemical data for a seasonally anoxic and sulfidic coastal basin to determine the pathways of formation and removal of dissolved Mn(III) in the sediment. We demonstrate a critical role for reactions with Fe(II) and show evidence for substantial benthic release of dissolved Mn(III). Given the mobility of Mn(III), these findings have important implications for marine Mn cycling.
Nicole Gyakowah Otoo, Edwin H. Sutanudjaja, Michelle T. H. van Vliet, Aafke M. Schipper, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-112, https://doi.org/10.5194/hess-2024-112, 2024
Preprint under review for HESS
Short summary
Short summary
The contribution of groundwater to groundwater dependent ecosystems (GDEs) is declining as a result of an increase in groundwater abstractions and climate change. This may lead to loss of habitat and biodiversity. This proposed framework enables the mapping and understanding of the temporal and spatial dynamics of GDEs on a large scale. The next step is to assess the global impacts of climate change and water use on GDEs' extent and health.
Barry van Jaarsveld, Niko Wanders, Edwin H. Sutanudjaja, Jannis Hoch, Bram Droppers, Joren Janzing, Rens L. P. H. van Beek, and Marc F. P. Bierkens
EGUsphere, https://doi.org/10.5194/egusphere-2024-1025, https://doi.org/10.5194/egusphere-2024-1025, 2024
Short summary
Short summary
Policy makers use global hydrological models to develop water management strategies and policies. However, if these models provided information at higher resolutions that would be better. We present a first of its kind, truly global hyper-resolution model and show that hyper-resolution brings about better estimates of river discharge and this is especially true for smaller catchments. Our results also suggest future hyper-resolution model need to include more detailed landcover information.
Sneha Chevuru, Rens L. P. H. van Beek, Michelle T. H. van Vliet, Jerom P. M. Aerts, and Marc F. P. Bierkens
EGUsphere, https://doi.org/10.5194/egusphere-2024-465, https://doi.org/10.5194/egusphere-2024-465, 2024
Short summary
Short summary
This paper integrates PCR-GLOBWB 2 hydrological model with WOFOST crop growth model to analyze mutual feedbacks between hydrology and crop growth. It quantifies one-way and two-way feedbacks between hydrology and crop growth, revealing patterns in crop yield and irrigation water use. Dynamic interactions enhance understanding of climate variability impacts on food production, highlighting the importance of two-way model coupling for accurate assessments.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022, https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Short summary
Draining peat causes high CO2 emissions, and rewetting could potentially help solve this problem. In the dry year 2020 we measured that subsurface irrigation reduced CO2 emissions by 28 % and 83 % on two research sites. We modelled a peat parcel and found that the reduction depends on seepage and weather conditions and increases when using pressurized irrigation or maintaining high ditchwater levels. We found that soil temperature and moisture are suitable as indicators of peat CO2 emissions.
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Olivier Sulpis, Matthew P. Humphreys, Monica M. Wilhelmus, Dustin Carroll, William M. Berelson, Dimitris Menemenlis, Jack J. Middelburg, and Jess F. Adkins
Geosci. Model Dev., 15, 2105–2131, https://doi.org/10.5194/gmd-15-2105-2022, https://doi.org/10.5194/gmd-15-2105-2022, 2022
Short summary
Short summary
A quarter of the surface of the Earth is covered by marine sediments rich in calcium carbonates, and their dissolution acts as a giant antacid tablet protecting the ocean against human-made acidification caused by massive CO2 emissions. Here, we present a new model of sediment chemistry that incorporates the latest experimental findings on calcium carbonate dissolution kinetics. This model can be used to predict how marine sediments evolve through time in response to environmental perturbations.
Md Feroz Islam, Paul P. Schot, Stefan C. Dekker, Jasper Griffioen, and Hans Middelkoop
Hydrol. Earth Syst. Sci., 26, 903–921, https://doi.org/10.5194/hess-26-903-2022, https://doi.org/10.5194/hess-26-903-2022, 2022
Short summary
Short summary
The potential of sedimentation in the lowest parts of polders (beels) through controlled flooding with dike breach (tidal river management – TRM) to counterbalance relative sea level rise (RSLR) in 234 beels of SW Bangladesh is determined in this study, using 2D models and multiple regression. Lower beels located closer to the sea have the highest potential. Operating TRM only during the monsoon season is sufficient to raise the land surface of most beels by more than 3 times the yearly RSLR.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Gerrit Müller, Jack J. Middelburg, and Appy Sluijs
Earth Syst. Sci. Data, 13, 3565–3575, https://doi.org/10.5194/essd-13-3565-2021, https://doi.org/10.5194/essd-13-3565-2021, 2021
Short summary
Short summary
Rivers are major freshwater resources, connectors and transporters on Earth. As the composition of river waters and particles results from processes in their catchment, such as erosion, weathering, environmental pollution, nutrient and carbon cycling, Earth-spanning databases of river composition are needed for studies of these processes on a global scale. While extensive resources on water and nutrient composition exist, we provide a database of river particle composition.
Jan L. Gunnink, Hung Van Pham, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 3297–3319, https://doi.org/10.5194/essd-13-3297-2021, https://doi.org/10.5194/essd-13-3297-2021, 2021
Short summary
Short summary
In the Mekong Delta (Vietnam) groundwater is important for domestic, agricultural and industrial use. Increased pumping of groundwater has caused land subsidence and increased the risk of salinization, thereby endangering the livelihood of the population in the delta. We made a model of the salinity of the groundwater by integrating different sources of information and determined fresh groundwater volumes. The resulting model can be used by researchers and policymakers.
Edward R. Jones, Michelle T. H. van Vliet, Manzoor Qadir, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, https://doi.org/10.5194/essd-13-237-2021, 2021
Short summary
Short summary
Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation. This study provides a global outlook on the state of domestic and industrial wastewater production, collection, treatment and reuse. Our results can serve as a baseline in evaluating progress towards policy goals (e.g. Sustainable Development Goals) and as input data in large-scale water resource assessments (e.g. water quality modelling).
Liang Yu, Joachim C. Rozemeijer, Hans Peter Broers, Boris M. van Breukelen, Jack J. Middelburg, Maarten Ouboter, and Ype van der Velde
Hydrol. Earth Syst. Sci., 25, 69–87, https://doi.org/10.5194/hess-25-69-2021, https://doi.org/10.5194/hess-25-69-2021, 2021
Short summary
Short summary
The assessment of the collected water quality information is for the managers to find a way to improve the water environment to satisfy human uses and environmental needs. We found groundwater containing high concentrations of nutrient mixes with rain water in the ditches. The stable solutes are diluted during rain. The change in nutrients over time is determined by and uptaken by organisms and chemical processes. The water is more enriched with nutrients and looked
dirtierduring winter.
Martijn Hermans, Nils Risgaard-Petersen, Filip J. R. Meysman, and Caroline P. Slomp
Biogeosciences, 17, 5919–5938, https://doi.org/10.5194/bg-17-5919-2020, https://doi.org/10.5194/bg-17-5919-2020, 2020
Short summary
Short summary
This paper demonstrates that the recently discovered cable bacteria are capable of using a mineral, known as siderite, as a source for the formation of iron oxides. This work also demonstrates that the activity of cable bacteria can lead to a distinct subsurface layer in the sediment that can be used as a marker for their activity.
Anne Roepert, Lubos Polerecky, Esmee Geerken, Gert-Jan Reichart, and Jack J. Middelburg
Biogeosciences, 17, 4727–4743, https://doi.org/10.5194/bg-17-4727-2020, https://doi.org/10.5194/bg-17-4727-2020, 2020
Short summary
Short summary
We investigated, for the first time, the spatial distribution of chlorine and fluorine in the shell walls of four benthic foraminifera species: Ammonia tepida, Amphistegina lessonii, Archaias angulatus, and Sorites marginalis. Cross sections of specimens were imaged using nanoSIMS. The distribution of Cl and F was co-located with organics in the rotaliids and rather homogeneously distributed in miliolids. We suggest that the incorporation is governed by the biomineralization pathway.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Jingjing Guo, Miriam Glendell, Jeroen Meersmans, Frédérique Kirkels, Jack J. Middelburg, and Francien Peterse
Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020, https://doi.org/10.5194/bg-17-3183-2020, 2020
Short summary
Short summary
The fluxes of soil organic carbon (OC) transport from land to sea are poorly constrained, mostly due to the lack of a specific tracer for soil OC. Here we evaluate the use of specific molecules derived from soil bacteria as a tracer for soil OC in a small river catchment. We find that the initial soil signal is lost upon entering the aquatic environment. However, the local environmental history of the catchment is reflected by these molecules in the lake sediments that act as their sink.
Niels A. G. M. van Helmond, Elizabeth K. Robertson, Daniel J. Conley, Martijn Hermans, Christoph Humborg, L. Joëlle Kubeneck, Wytze K. Lenstra, and Caroline P. Slomp
Biogeosciences, 17, 2745–2766, https://doi.org/10.5194/bg-17-2745-2020, https://doi.org/10.5194/bg-17-2745-2020, 2020
Short summary
Short summary
We studied the removal of phosphorus (P) and nitrogen (N) in the eutrophic Stockholm archipelago (SA). High sedimentation rates and sediment P contents lead to high P burial. Benthic denitrification is the primary nitrate-reducing pathway. Together, these mechanisms limit P and N transport to the open Baltic Sea. We expect that further nutrient load reduction will contribute to recovery of the SA from low-oxygen conditions and that the sediments will continue to remove part of the P and N loads.
Esther Stouthamer, Gilles Erkens, Kim Cohen, Dries Hegger, Peter Driessen, Hans Peter Weikard, Mariet Hefting, Ramon Hanssen, Peter Fokker, Jan van den Akker, Frank Groothuijse, and Marleen van Rijswick
Proc. IAHS, 382, 815–819, https://doi.org/10.5194/piahs-382-815-2020, https://doi.org/10.5194/piahs-382-815-2020, 2020
Short summary
Short summary
Ongoing subsidence is a complex problem for the Netherlands. Old strategies for coping have limits. In the Dutch National Scientific Research Program on Land Subsidence (2020–2025), we will develop an integrative approach to achieve feasible, legitimate and sustainable solutions for managing the negative societal effects of land subsidence, connecting fundamental research on subsidence processes to socio-economic impact of subsidence and to governance and legal framework design.
Julien Richirt, Bettina Riedel, Aurélia Mouret, Magali Schweizer, Dewi Langlet, Dorina Seitaj, Filip J. R. Meysman, Caroline P. Slomp, and Frans J. Jorissen
Biogeosciences, 17, 1415–1435, https://doi.org/10.5194/bg-17-1415-2020, https://doi.org/10.5194/bg-17-1415-2020, 2020
Short summary
Short summary
The paper presents the response of benthic foraminiferal communities to seasonal absence of oxygen coupled with the presence of hydrogen sulfide, considered very harmful for several living organisms.
Our results suggest that the foraminiferal community mainly responds as a function of the duration of the adverse conditions.
This knowledge is especially useful to better understand the ecology of benthic foraminifera but also in the context of palaeoceanographic interpretations.
Joeri van Engelen, Jarno Verkaik, Jude King, Eman R. Nofal, Marc F. P. Bierkens, and Gualbert H. P. Oude Essink
Hydrol. Earth Syst. Sci., 23, 5175–5198, https://doi.org/10.5194/hess-23-5175-2019, https://doi.org/10.5194/hess-23-5175-2019, 2019
Short summary
Short summary
The Nile Delta is an important agricultural area with a fast-growing population, relying increasingly on groundwater. However, saline groundwater extends far land-inward, rendering groundwater close to the coastal zone useless for consumption or agriculture. It normally is assumed that this is caused by mixing due to velocity differences, but here we show that it might also be caused by the coastline being located more land-inward 8000 years ago.
Wim Joost van Hoek, Lauriane Vilmin, Arthur H. W. Beusen, José M. Mogollón, Xiaochen Liu, Joep J. Langeveld, Alexander F. Bouwman, and Jack J. Middelburg
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-205, https://doi.org/10.5194/gmd-2019-205, 2019
Revised manuscript not accepted
Short summary
Short summary
In this study we present CARBON-DISC 1.0. It couples the global water balance model PCR-GLOBWB with global carbon inputs from the Integrated Model to Assess the Global Environment (IMAGE) at a 0.5° resolution and calculates gridcell-to-gridcell transport, C transformations, C emissions, C burial and primary production on a monthly timestep and without calibration.
Joep Langeveld, Alexander F. Bouwman, Wim Joost van Hoek, Lauriane Vilmin, Arthur H. W. Beusen, José M. Mogollón, and Jack J. Middelburg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-238, https://doi.org/10.5194/bg-2019-238, 2019
Preprint withdrawn
Short summary
Short summary
We compiled a global database on annual average dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in soil solutions. We use this database to construct the first global models and maps on DOC in soil pore water. Highest concentrations in shallow soils occur in forests of cooler, humid zones. Highest concentrations in deeper soils are calculated for Histosols. Our research enables a spatially explicit first estimation of dissolved carbon in soil solution on the global scale.
Rémon M. Saaltink, Maria Barciela-Rial, Thijs van Kessel, Stefan C. Dekker, Hugo J. de Boer, Claire Chassange, Jasper Griffioen, Martin J. Wassen, and Johan C. Winterwerp
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-194, https://doi.org/10.5194/hess-2019-194, 2019
Revised manuscript not accepted
Short summary
Short summary
This paper focusses on exploring an alternative approach that uses natural processes, rather than a technological solution, to speed up drainage of soft sediment. In a controlled column experiment, we studied how Phragmites australis can act as an ecological engineer that enhances drainage. The presented results provide information needed for predictive modelling of plants as ecological engineers to speed up soil forming processes in the construction of wetlands with soft cohesive sediment.
Floris Loys Naus, Paul Schot, Koos Groen, Kazi Matin Ahmed, and Jasper Griffioen
Hydrol. Earth Syst. Sci., 23, 1431–1451, https://doi.org/10.5194/hess-23-1431-2019, https://doi.org/10.5194/hess-23-1431-2019, 2019
Short summary
Short summary
In this paper, we postulate a possible evolution of the groundwater salinity around a village in southwestern Bangladesh, based on high-density fieldwork. We identified that the thickness of the surface clay layer, the surface elevation and the present-day land use determine whether fresh or saline groundwater has formed. The outcomes show how the large groundwater salinity variation in southwestern Bangladesh can be understood, which is valuable for the water management in the region.
Nicole M. J. Geerlings, Eva-Maria Zetsche, Silvia Hidalgo-Martinez, Jack J. Middelburg, and Filip J. R. Meysman
Biogeosciences, 16, 811–829, https://doi.org/10.5194/bg-16-811-2019, https://doi.org/10.5194/bg-16-811-2019, 2019
Short summary
Short summary
Multicellular cable bacteria form long filaments that can reach lengths of several centimeters. They affect the chemistry and mineralogy of their surroundings and vice versa. How the surroundings affect the cable bacteria is investigated. They show three different types of biomineral formation: (1) a polymer containing phosphorus in their cells, (2) a sheath of clay surrounding the surface of the filament and (3) the encrustation of a filament via a solid phase containing iron and phosphorus.
Erik Gustafsson, Mathilde Hagens, Xiaole Sun, Daniel C. Reed, Christoph Humborg, Caroline P. Slomp, and Bo G. Gustafsson
Biogeosciences, 16, 437–456, https://doi.org/10.5194/bg-16-437-2019, https://doi.org/10.5194/bg-16-437-2019, 2019
Short summary
Short summary
This work highlights that iron (Fe) dynamics plays a key role in the release of alkalinity from sediments, as exemplified for the Baltic Sea. It furthermore demonstrates that burial of Fe sulfides should be included in alkalinity budgets of low-oxygen basins. The sedimentary alkalinity generation may undergo large changes depending on both organic matter loads and oxygen conditions. Enhanced release of alkalinity from the seafloor can increase the CO2 storage capacity of seawater.
Ilja J. Kocken, Marlow Julius Cramwinckel, Richard E. Zeebe, Jack J. Middelburg, and Appy Sluijs
Clim. Past, 15, 91–104, https://doi.org/10.5194/cp-15-91-2019, https://doi.org/10.5194/cp-15-91-2019, 2019
Short summary
Short summary
Marine organic carbon burial could link the 405 thousand year eccentricity cycle in the long-term carbon cycle to that observed in climate records. Here, we simulate the response of the carbon cycle to astronomical forcing. We find a strong 2.4 million year cycle in the model output, which is present as an amplitude modulator of the 405 and 100 thousand year eccentricity cycles in a newly assembled composite record.
Wytze K. Lenstra, Matthias Egger, Niels A. G. M. van Helmond, Emma Kritzberg, Daniel J. Conley, and Caroline P. Slomp
Biogeosciences, 15, 6979–6996, https://doi.org/10.5194/bg-15-6979-2018, https://doi.org/10.5194/bg-15-6979-2018, 2018
Short summary
Short summary
We show that burial rates of phosphorus (P) in an estuary in the northern Baltic Sea are very high. We demonstrate that at high sedimentation rates, P retention in the sediment is related to the formation of vivianite. With a reactive transport model, we assess the sensitivity of sedimentary vivianite formation. We suggest that enrichments of iron and P in the sediment are linked to periods of enhanced riverine input of Fe, which subsequently strongly enhances P burial in coastal sediments.
Daniel Zamrsky, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 10, 1591–1603, https://doi.org/10.5194/essd-10-1591-2018, https://doi.org/10.5194/essd-10-1591-2018, 2018
Short summary
Short summary
An increasing number of coastal areas worldwide are facing a threat of groundwater quality degradation by saltwater intrusion. Groundwater flow models help to get a better idea of the volumes of fresh groundwater reserves in these areas. Our research provides information on aquifer thickness, which is one of the most important parameters for such models. However, we found that geological complexity of coastal aquifer systems is at least equally as important a factor for accurate predictions.
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018, https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
Edwin H. Sutanudjaja, Rens van Beek, Niko Wanders, Yoshihide Wada, Joyce H. C. Bosmans, Niels Drost, Ruud J. van der Ent, Inge E. M. de Graaf, Jannis M. Hoch, Kor de Jong, Derek Karssenberg, Patricia López López, Stefanie Peßenteiner, Oliver Schmitz, Menno W. Straatsma, Ekkamol Vannametee, Dominik Wisser, and Marc F. P. Bierkens
Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, https://doi.org/10.5194/gmd-11-2429-2018, 2018
Short summary
Short summary
PCR-GLOBWB 2 is an integrated hydrology and water resource model that fully integrates water use simulation and consolidates all features that have been developed since PCR-GLOBWB 1 was introduced. PCR-GLOBWB 2 can have a global coverage at 5 arcmin resolution and supersedes PCR-GLOBWB 1, which has a resolution of 30 arcmin only. Comparing the 5 arcmin with 30 arcmin simulations using discharge data, we clearly find improvement in the model performance of the higher-resolution model.
Eveline Christien van der Deijl, Marcel van der Perk, and Hans Middelkoop
Earth Surf. Dynam., 6, 187–201, https://doi.org/10.5194/esurf-6-187-2018, https://doi.org/10.5194/esurf-6-187-2018, 2018
Short summary
Short summary
To study the effectiveness of river delta restoration, we used field observations and elevation data to quantify the magnitude and spatial patterns of aggradation and erosion in a restored wetland in the Rhine-Meuse delta. Erosion and aggradation rates decrease over time, but aggradation compensates for sea-level rise and soil subsidence. Channels in the centre had aggraded, whereas the inlet and outlet eroded. Furthermore, sediment is in general uniformly distributed over the intertidal area.
Nikki Dijkstra, Mathilde Hagens, Matthias Egger, and Caroline P. Slomp
Biogeosciences, 15, 861–883, https://doi.org/10.5194/bg-15-861-2018, https://doi.org/10.5194/bg-15-861-2018, 2018
Short summary
Short summary
We show that post-depositional formation of iron(II) phosphate as vivianite strongly alters the phosphorus record in sediments of the Bornholm Basin (Baltic Sea). These minerals began to precipitate in the lake sediments just after the last lake–marine transition ~ 7.5 kyr BP, migrated downwards and are now a stable feature. Formation of vivianite may affect sedimentary phosphorus records in other systems as well. This should be considered when using such records to reconstruct past environments.
Sebastian Huizer, Max Radermacher, Sierd de Vries, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 22, 1065–1080, https://doi.org/10.5194/hess-22-1065-2018, https://doi.org/10.5194/hess-22-1065-2018, 2018
Short summary
Short summary
For a large beach nourishment called the Sand Engine we have examined the impact of groundwater recharge, tides, storm surges, and geomorphological changes on the growth of the fresh groundwater resources between 2011 and 2016. With detailed model simulations of these coastal processes we were able to get a good match with field measurements, and demonstrated the importance of wave runup and coastal erosion in studies on fresh groundwater in such dynamic coastal environments.
Susanne Rolinski, Christoph Müller, Jens Heinke, Isabelle Weindl, Anne Biewald, Benjamin Leon Bodirsky, Alberte Bondeau, Eltje R. Boons-Prins, Alexander F. Bouwman, Peter A. Leffelaar, Johnny A. te Roller, Sibyll Schaphoff, and Kirsten Thonicke
Geosci. Model Dev., 11, 429–451, https://doi.org/10.5194/gmd-11-429-2018, https://doi.org/10.5194/gmd-11-429-2018, 2018
Short summary
Short summary
One-third of the global land area is covered with grasslands which are grazed by or mowed for livestock feed. These areas contribute significantly to the carbon capture from the atmosphere when managed sensibly. To assess the effect of this management, we included different options of grazing and mowing into the global model LPJmL 3.6. We found in polar regions even low grazing pressure leads to soil carbon loss whereas in temperate regions up to 1.4 livestock units per hectare can be sustained.
Brian J. Dermody, Murugesu Sivapalan, Elke Stehfest, Detlef P. van Vuuren, Martin J. Wassen, Marc F. P. Bierkens, and Stefan C. Dekker
Earth Syst. Dynam., 9, 103–118, https://doi.org/10.5194/esd-9-103-2018, https://doi.org/10.5194/esd-9-103-2018, 2018
Short summary
Short summary
Ensuring sustainable food and water security is an urgent and complex challenge. As the world becomes increasingly globalised and interdependent, food and water management policies may have unintended consequences across regions, sectors and scales. Current decision-making tools do not capture these complexities and thus miss important dynamics. We present a modelling framework to capture regional and sectoral interdependence and cross-scale feedbacks within the global food system.
Jack J. Middelburg
Biogeosciences, 15, 413–427, https://doi.org/10.5194/bg-15-413-2018, https://doi.org/10.5194/bg-15-413-2018, 2018
Short summary
Short summary
Organic carbon processing at the seafloor is studied by geologists to better understand the sedimentary record, by biogeochemists to quantify burial and respiration, by organic geochemists to elucidate compositional changes, and by ecologists to follow carbon transfers within food webs. These disciplinary approaches have their strengths and weaknesses. This award talk provides a synthesis, highlights the role of animals in sediment carbon processing and presents some new concepts.
Jassin Petersen, Christine Barras, Antoine Bézos, Carole La, Lennart J. de Nooijer, Filip J. R. Meysman, Aurélia Mouret, Caroline P. Slomp, and Frans J. Jorissen
Biogeosciences, 15, 331–348, https://doi.org/10.5194/bg-15-331-2018, https://doi.org/10.5194/bg-15-331-2018, 2018
Short summary
Short summary
In Lake Grevelingen, a coastal ecosystem, foraminifera experience important temporal variations in oxygen concentration and in pore water manganese. The high resolution of LA-ICP-MS allows us to analyse the chambers of foraminiferal shells separately and to obtain signals from a series of calcification events. We estimate the variability in Mn/Ca observed within single shells due to biomineralization and show that a substantial part of the signal is related to environmental variability.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
Joyce H. C. Bosmans, Ludovicus P. H. van Beek, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 5603–5626, https://doi.org/10.5194/hess-21-5603-2017, https://doi.org/10.5194/hess-21-5603-2017, 2017
Short summary
Short summary
We investigate how changes in land cover, such as deforestation, affect river runoff and evaporation from the land surface. We use computer simulations to show that the impact of land cover changes is significant and, when globally averaged, it is as important as more direct human impacts through water use (such as irrigation). There is large spatial variability in the impact of land cover change, with the largest changes when tall vegetation (such as forests) is replaced by crop fields.
Jannis M. Hoch, Jeffrey C. Neal, Fedor Baart, Rens van Beek, Hessel C. Winsemius, Paul D. Bates, and Marc F. P. Bierkens
Geosci. Model Dev., 10, 3913–3929, https://doi.org/10.5194/gmd-10-3913-2017, https://doi.org/10.5194/gmd-10-3913-2017, 2017
Short summary
Short summary
To improve flood hazard assessments, it is vital to model all relevant processes. We here present GLOFRIM, a framework for coupling hydrologic and hydrodynamic models to increase the number of physical processes represented in hazard computations. GLOFRIM is openly available, versatile, and extensible with more models. Results also underpin its added value for model benchmarking, showing that not only model forcing but also grid properties and the numerical scheme influence output accuracy.
Kees Nooren, Wim Z. Hoek, Tim Winkels, Annika Huizinga, Hans Van der Plicht, Remke L. Van Dam, Sytze Van Heteren, Manfred J. Van Bergen, Maarten A. Prins, Tony Reimann, Jakob Wallinga, Kim M. Cohen, Philip Minderhoud, and Hans Middelkoop
Earth Surf. Dynam., 5, 529–556, https://doi.org/10.5194/esurf-5-529-2017, https://doi.org/10.5194/esurf-5-529-2017, 2017
Short summary
Short summary
We demonstrate that the world's largest beach-ridge plain in southern Mexico was formed under an ample long-term fluvial sediment supply. The beach-ridge elevation is strongly influenced by aeolian accretion during the time when the ridge is located next to the beach. The beach-ridge elevation is negatively correlated with the progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment.
Yoshihide Wada, Marc F. P. Bierkens, Ad de Roo, Paul A. Dirmeyer, James S. Famiglietti, Naota Hanasaki, Megan Konar, Junguo Liu, Hannes Müller Schmied, Taikan Oki, Yadu Pokhrel, Murugesu Sivapalan, Tara J. Troy, Albert I. J. M. van Dijk, Tim van Emmerik, Marjolein H. J. Van Huijgevoort, Henny A. J. Van Lanen, Charles J. Vörösmarty, Niko Wanders, and Howard Wheater
Hydrol. Earth Syst. Sci., 21, 4169–4193, https://doi.org/10.5194/hess-21-4169-2017, https://doi.org/10.5194/hess-21-4169-2017, 2017
Short summary
Short summary
Rapidly increasing population and human activities have altered terrestrial water fluxes on an unprecedented scale. Awareness of potential water scarcity led to first global water resource assessments; however, few hydrological models considered the interaction between terrestrial water fluxes and human activities. Our contribution highlights the importance of human activities transforming the Earth's water cycle, and how hydrological models can include such influences in an integrated manner.
Naze Candogan Yossef, Rens van Beek, Albrecht Weerts, Hessel Winsemius, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 4103–4114, https://doi.org/10.5194/hess-21-4103-2017, https://doi.org/10.5194/hess-21-4103-2017, 2017
Short summary
Short summary
This paper presents a skill assessment of the global seasonal streamflow forecasting system FEWS-World. For 20 large basins of the world, forecasts using the ESP procedure are compared to forecasts using actual S3 seasonal meteorological forecast ensembles by ECMWF. The results are discussed in the context of prevailing hydroclimatic conditions per basin. The study concludes that in general, the skill of ECMWF S3 forecasts is close to that of the ESP forecasts.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Emmy E. Stigter, Niko Wanders, Tuomo M. Saloranta, Joseph M. Shea, Marc F. P. Bierkens, and Walter W. Immerzeel
The Cryosphere, 11, 1647–1664, https://doi.org/10.5194/tc-11-1647-2017, https://doi.org/10.5194/tc-11-1647-2017, 2017
Martyn P. Clark, Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard
Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, https://doi.org/10.5194/hess-21-3427-2017, 2017
Short summary
Short summary
The diversity in hydrologic models has led to controversy surrounding the “correct” approach to hydrologic modeling. In this paper we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, summarize modeling advances that address these challenges, and define outstanding research needs.
Patricia López López, Edwin H. Sutanudjaja, Jaap Schellekens, Geert Sterk, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 3125–3144, https://doi.org/10.5194/hess-21-3125-2017, https://doi.org/10.5194/hess-21-3125-2017, 2017
Short summary
Short summary
We perform various calibration experiments of a large-scale hydrological model using satellite-based products of evapotranspiration and soil moisture in the Oum Er Rbia River basin in Morocco. In addition, we study the impact on discharge estimates of three global precipitation products in comparison with model parameter calibration. Results show that evapotranspiration and soil moisture observations can be used for model calibration, resulting in discharge estimates of acceptable accuracy.
Jannis M. Hoch, Arjen V. Haag, Arthur van Dam, Hessel C. Winsemius, Ludovicus P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 117–132, https://doi.org/10.5194/hess-21-117-2017, https://doi.org/10.5194/hess-21-117-2017, 2017
Short summary
Short summary
Modelling inundations is pivotal to assess current and future flood hazard, and to define sound measures and policies. Yet, many models focus on the hydrologic or hydrodynamic aspect of floods only. We combined both by spatially coupling a hydrologic with a hydrodynamic model. This way we are able to balance the weaknesses of each model with the strengths of the other. We found that model coupling can indeed strongly improve discharge simulation, and see big potential in our approach.
Dick van Oevelen, Christina E. Mueller, Tomas Lundälv, and Jack J. Middelburg
Biogeosciences, 13, 5789–5798, https://doi.org/10.5194/bg-13-5789-2016, https://doi.org/10.5194/bg-13-5789-2016, 2016
Short summary
Short summary
Cold-water corals form true hotspots of biodiversity in the cold and dark deep sea, but need to live off of only small amounts of food that reach the deep sea. Using chemical tracers, this study investigated whether cold-water corals are picky eaters. We found that under low food conditions, they do not differentiate between food sources but they do differentiate at high food concentrations. This adaptation suggests that they are well adapted to exploit short food pulses efficiently.
Rolf Hut, Niels Drost, Maarten van Meersbergen, Edwin Sutanudjaja, Marc Bierkens, and Nick van de Giesen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-225, https://doi.org/10.5194/gmd-2016-225, 2016
Revised manuscript not accepted
Short summary
Short summary
A system that predicts the amount of water flowing in each river on earth, 9 days ahead, is build using existing parts of open source computer code build by different researchers in other projects.
The glue between all pre-existing parts are all open interfaces which means that the pieces system click together like a house of LEGOs. It is easy to remove a piece (a brick) and replace it with another, improved, piece.
The resulting predictions are available online at forecast.ewatercycle.org
Matthias Egger, Peter Kraal, Tom Jilbert, Fatimah Sulu-Gambari, Célia J. Sapart, Thomas Röckmann, and Caroline P. Slomp
Biogeosciences, 13, 5333–5355, https://doi.org/10.5194/bg-13-5333-2016, https://doi.org/10.5194/bg-13-5333-2016, 2016
Short summary
Short summary
By combining detailed geochemical analyses with diagenetic modeling, we provide new insights into how methane dynamics may strongly overprint burial records of iron, sulfur and phosphorus in marine systems subject to changes in organic matter loading or water column salinity. A better understanding of these processes will improve our ability to read ancient sediment records and thus to predict the potential consequences of global warming and human-enhanced inputs of nutrients to the ocean.
Rémon Saaltink, Stefan C. Dekker, Jasper Griffioen, and Martin J. Wassen
Biogeosciences, 13, 4945–4957, https://doi.org/10.5194/bg-13-4945-2016, https://doi.org/10.5194/bg-13-4945-2016, 2016
Short summary
Short summary
We identified biogeochemical plant–soil feedback processes that occur when oxidation, drying and modification by plants alter sediment conditions. Wetland construction in Markermeer (a lake in the Netherlands) is used as a case study. Natural processes will be utilized during and after construction to accelerate ecosystem development. We conducted a 6-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineer.
Sebastian Huizer, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 20, 3149–3166, https://doi.org/10.5194/hess-20-3149-2016, https://doi.org/10.5194/hess-20-3149-2016, 2016
Short summary
Short summary
The anticipation of sea-level rise has led to an innovative project called the Sand Engine, where a large volume of sand was placed on the Dutch coast. The intention is that the sand is redistributed by wind, current and tide, reinforcing coastal defence structures. Model simulations show that this large sand replenishment can result in a substantial growth of fresh groundwater resources. Thus, sand replenishments could combine coastal protection with an increase of fresh groundwater resources.
Clare Woulds, Steven Bouillon, Gregory L. Cowie, Emily Drake, Jack J. Middelburg, and Ursula Witte
Biogeosciences, 13, 4343–4357, https://doi.org/10.5194/bg-13-4343-2016, https://doi.org/10.5194/bg-13-4343-2016, 2016
Short summary
Short summary
Estuarine sediments are important locations for carbon cycling and burial. We used tracer experiments to investigate how site conditions affect the way in which seafloor biological communities cycle carbon. We showed that while total respiration rates are primarily determined by temperature, total carbon processing by the biological community is strongly related to
its biomass. Further, we saw a distinct pattern of carbon cycling in sandy sediment, in which uptake by bacteria dominates.
Patricia López López, Niko Wanders, Jaap Schellekens, Luigi J. Renzullo, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 20, 3059–3076, https://doi.org/10.5194/hess-20-3059-2016, https://doi.org/10.5194/hess-20-3059-2016, 2016
Short summary
Short summary
We perform a joint assimilation experiment of high-resolution satellite soil moisture and discharge observations in the Murrumbidgee River basin with a large-scale hydrological model. Additionally, we study the impact of high- and low-resolution meteorological forcing on the model performance. We show that the assimilation of high-resolution satellite soil moisture and discharge observations has a significant impact on discharge simulations and can bring them closer to locally calibrated models.
Bas van der Grift, Hans Peter Broers, Wilbert Berendrecht, Joachim Rozemeijer, Leonard Osté, and Jasper Griffioen
Hydrol. Earth Syst. Sci., 20, 1851–1868, https://doi.org/10.5194/hess-20-1851-2016, https://doi.org/10.5194/hess-20-1851-2016, 2016
Short summary
Short summary
High-frequency water quality measurements at a pumping station where excess water is pumped out of a polder catchment have indicated that nitrate from agricultural areas is drained away relatively quickly in wet periods, but that phosphate is actually retained much more in polder systems than in free drainage areas. Phosphate emissions occur, therefore, not predominantly in winter, but due to the delayed release from the bed sediments and by feeding from the groundwater, rather in summer.
Arthur H. W. Beusen, Alexander F. Bouwman, Ludovicus P. H. Van Beek, José M. Mogollón, and Jack J. Middelburg
Biogeosciences, 13, 2441–2451, https://doi.org/10.5194/bg-13-2441-2016, https://doi.org/10.5194/bg-13-2441-2016, 2016
Short summary
Short summary
Intensifying anthropogenic activity over the 20th century including agriculture, water consumption, urbanization, and aquaculture has almost doubled the global nitrogen (N) and phosphorus (P) delivery to streams and steadily increased the N : P ratio in freshwater bodies. Concurrently, the cumulative number of reservoirs has driven a rise in freshwater nutrient retention and removal. Still, river nutrient transport to the ocean has also nearly doubled, potentially stressing coastal environments.
Inge E. M. de Graaf, Rens L. P. H. van Beek, Tom Gleeson, Nils Moosdorf, Oliver Schmitz, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-121, https://doi.org/10.5194/hess-2016-121, 2016
Revised manuscript not accepted
Short summary
Short summary
In this study we want to understand groundwater flows at the global scale better. We simulated groundwater storage and fluctuations in confined and unconfined aquifer systems. This is the first study that includes confined systems at the global scale. Confined systems change timing and amplitude of head fluctuations, flow paths, and groundwater-surface water interactions. Hotspots of groundwater depletion are identified and resulted in a global estimate of 6700 km3.
Maria Stergiadi, Marcel van der Perk, Ton C. M. de Nijs, and Marc F. P. Bierkens
Biogeosciences, 13, 1519–1536, https://doi.org/10.5194/bg-13-1519-2016, https://doi.org/10.5194/bg-13-1519-2016, 2016
Short summary
Short summary
We modelled the effects of changes in climate and land management on soil organic carbon (SOC) and dissolved organic carbon (DOC) levels in sandy and loamy soils under forest, grassland, and arable land. Climate change causes a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC slightly increases. A reduction in fertilizer application leads to a decrease in SOC and DOC levels under arable land but has a negligible effect under grassland.
Jun Liu, Lex Bouwman, Jiaye Zang, Chenying Zhao, Xiaochen Liu, and Xiangbin Ran
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-42, https://doi.org/10.5194/bg-2016-42, 2016
Manuscript not accepted for further review
F. Schuurman, M. G. Kleinhans, and H. Middelkoop
Earth Surf. Dynam., 4, 25–45, https://doi.org/10.5194/esurf-4-25-2016, https://doi.org/10.5194/esurf-4-25-2016, 2016
Short summary
Short summary
We studied the propagation of natural and human-induced perturbations in large braided sand-bed rivers using a physics-based 3-D model. The results show that the perturbations not only affect the local morphology but their effects amplify while propagating through the braided network. This occurs by destabilization of bifurcations in combination with reshaping of bars and branches. These results could have a major impact on the assessment of engineering measures in large braided sand-bed rivers.
A. H. W. Beusen, L. P. H. Van Beek, A. F. Bouwman, J. M. Mogollón, and J. J. Middelburg
Geosci. Model Dev., 8, 4045–4067, https://doi.org/10.5194/gmd-8-4045-2015, https://doi.org/10.5194/gmd-8-4045-2015, 2015
Short summary
Short summary
The IMAGE-Global Nutrient Model (GNM) is used to study the impact of multiple environmental changes on N and P delivery to surface water and transport and in-stream retention in rivers, lakes, wetlands and reservoirs over prolonged time periods. N and P are delivered to water bodies via diffuse sources (agriculture and natural ecosystems) and wastewater. N and P retention in a water body is calculated on the basis of the residence time of the water and nutrient uptake velocity.
W. W. Immerzeel, N. Wanders, A. F. Lutz, J. M. Shea, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 19, 4673–4687, https://doi.org/10.5194/hess-19-4673-2015, https://doi.org/10.5194/hess-19-4673-2015, 2015
Short summary
Short summary
The water resources of the upper Indus river basin (UIB) are important for millions of people, yet little is known about the rain and snow fall in the high-altitude regions because of the inaccessibility, the climatic complexity and the lack of observations. In this study we use mass balance of glaciers to reconstruct the amount of precipitation in the UIB and we conclude that this amount is much higher than previously thought.
B. R. Voortman, R. P. Bartholomeus, S. E. A. T. M. van der Zee, M. F. P. Bierkens, and J. P. M. Witte
Hydrol. Earth Syst. Sci., 19, 3787–3805, https://doi.org/10.5194/hess-19-3787-2015, https://doi.org/10.5194/hess-19-3787-2015, 2015
Short summary
Short summary
This study explores the magnitude of energy and water fluxes in an inland dune ecosystem in the Netherlands. We parameterized the Penman-Monteith evapotranspiration model for four different surfaces: bare sand, moss, grass and heather. The knowledge presented in this paper will help improve the simulations of water recharge in sand dunes by hydrological models, and allow the quantification of the cost and benefit of nature conservation in terms of groundwater recharge.
C. Lenz, T. Jilbert, D.J. Conley, M. Wolthers, and C.P. Slomp
Biogeosciences, 12, 4875–4894, https://doi.org/10.5194/bg-12-4875-2015, https://doi.org/10.5194/bg-12-4875-2015, 2015
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
A. Lourens, M. F. P. Bierkens, and F. C. van Geer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-4191-2015, https://doi.org/10.5194/hessd-12-4191-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We present a method to find the most likely properties (layer thickness and conductivity) for each litho-class of the constituting layers of an aquitard, using a readily calibrated groundwater model. The prior litho-class properties are uncertain, and based on borehole data. The groundwater model parameters are assumed to be the truth. The combination of prior data and calibration result yields the most likely litho-class properties. The method is applicable to aquifers as well.
M. Hagens, C. P. Slomp, F. J. R. Meysman, D. Seitaj, J. Harlay, A. V. Borges, and J. J. Middelburg
Biogeosciences, 12, 1561–1583, https://doi.org/10.5194/bg-12-1561-2015, https://doi.org/10.5194/bg-12-1561-2015, 2015
Short summary
Short summary
This study looks at the combined impacts of hypoxia and acidification, two major environmental stressors affecting coastal systems, in a seasonally stratified basin. Here, the surface water experiences less seasonality in pH than the bottom water despite higher process rates. This is due to a substantial reduction in the acid-base buffering capacity of the bottom water as it turns hypoxic in summer. This highlights the crucial role of the buffering capacity as a modulating factor in pH dynamics.
I. E. M. de Graaf, E. H. Sutanudjaja, L. P. H. van Beek, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 19, 823–837, https://doi.org/10.5194/hess-19-823-2015, https://doi.org/10.5194/hess-19-823-2015, 2015
Short summary
Short summary
In this paper we present a high-resolution global-scale groundwater model of an upper aquifer. An equilibrium water table at its natural state is constructed. Aquifer parameterization is based on available global datasets on lithology and conductivity combined with estimated aquifer thickness. The results showed groundwater levels are well simulated for many regions of the world. Simulated flow paths showed the relevance of including lateral groundwater flows in global scale hydrological models.
A. C. Cunningham, J. Wallinga, N. Hobo, A. J. Versendaal, B. Makaske, and H. Middelkoop
Earth Surf. Dynam., 3, 55–65, https://doi.org/10.5194/esurf-3-55-2015, https://doi.org/10.5194/esurf-3-55-2015, 2015
Short summary
Short summary
Rivers transport sediment from mountains to coast, but on the way sediment is trapped and re-eroded multiple times. We looked at Rhine river sediments to see if they preserve evidence of how geomorphic variables have changed over time. We found that measured signals potentially relate to water level and river management practices. These relationships can be treated as hypotheses to guide further research, and our statistical approach will increase the utility of research in this field.
B. J. Dermody, R. P. H. van Beek, E. Meeks, K. Klein Goldewijk, W. Scheidel, Y. van der Velde, M. F. P. Bierkens, M. J. Wassen, and S. C. Dekker
Hydrol. Earth Syst. Sci., 18, 5025–5040, https://doi.org/10.5194/hess-18-5025-2014, https://doi.org/10.5194/hess-18-5025-2014, 2014
Short summary
Short summary
Our virtual water network of the Roman World shows that virtual water trade and irrigation provided the Romans with resilience to interannual climate variability. Virtual water trade enabled the Romans to meet food demands from regions with a surplus. Irrigation provided stable water supplies for agriculture, particularly in large river catchments. However, virtual water trade also stimulated urbanization and population growth, which eroded Roman resilience to climate variability over time.
B. van der Grift, J. C. Rozemeijer, J. Griffioen, and Y. van der Velde
Hydrol. Earth Syst. Sci., 18, 4687–4702, https://doi.org/10.5194/hess-18-4687-2014, https://doi.org/10.5194/hess-18-4687-2014, 2014
Short summary
Short summary
Exfiltration of anoxic groundwater containing Fe(II) to surface water is an important mechanism controlling P speciation in the lowland catchments. Due to changes in pH and temperature, the Fe(II) oxidation rates were much lower in winter than in summer. This study also shows a fast transformation of dissolved P to structural P during the initial stage of the Fe oxidation process resulting in low dissolved P concentrations in the surface water throughout the year.
A. de Kluijver, P. L. Schoon, J. A. Downing, S. Schouten, and J. J. Middelburg
Biogeosciences, 11, 6265–6276, https://doi.org/10.5194/bg-11-6265-2014, https://doi.org/10.5194/bg-11-6265-2014, 2014
J. R. Delsman, K. R. M. Hu-a-ng, P. C. Vos, P. G. B. de Louw, G. H. P. Oude Essink, P. J. Stuyfzand, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 3891–3905, https://doi.org/10.5194/hess-18-3891-2014, https://doi.org/10.5194/hess-18-3891-2014, 2014
A. Sluijs, L. van Roij, G. J. Harrington, S. Schouten, J. A. Sessa, L. J. LeVay, G.-J. Reichart, and C. P. Slomp
Clim. Past, 10, 1421–1439, https://doi.org/10.5194/cp-10-1421-2014, https://doi.org/10.5194/cp-10-1421-2014, 2014
N. Wanders, D. Karssenberg, A. de Roo, S. M. de Jong, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 2343–2357, https://doi.org/10.5194/hess-18-2343-2014, https://doi.org/10.5194/hess-18-2343-2014, 2014
J. J. Middelburg
Biogeosciences, 11, 2357–2371, https://doi.org/10.5194/bg-11-2357-2014, https://doi.org/10.5194/bg-11-2357-2014, 2014
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014, https://doi.org/10.5194/bg-11-977-2014, 2014
Y. Wada, D. Wisser, and M. F. P. Bierkens
Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, https://doi.org/10.5194/esd-5-15-2014, 2014
C. E. Mueller, A. I. Larsson, B. Veuger, J. J. Middelburg, and D. van Oevelen
Biogeosciences, 11, 123–133, https://doi.org/10.5194/bg-11-123-2014, https://doi.org/10.5194/bg-11-123-2014, 2014
L. Pozzato, D. Van Oevelen, L. Moodley, K. Soetaert, and J. J. Middelburg
Biogeosciences, 10, 6879–6891, https://doi.org/10.5194/bg-10-6879-2013, https://doi.org/10.5194/bg-10-6879-2013, 2013
A. F. Lutz, W. W. Immerzeel, A. Gobiet, F. Pellicciotti, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 17, 3661–3677, https://doi.org/10.5194/hess-17-3661-2013, https://doi.org/10.5194/hess-17-3661-2013, 2013
E. Vannametee, D. Karssenberg, M. R. Hendriks, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 17, 2981–3004, https://doi.org/10.5194/hess-17-2981-2013, https://doi.org/10.5194/hess-17-2981-2013, 2013
B. Veuger, A. Pitcher, S. Schouten, J. S. Sinninghe Damsté, and J. J. Middelburg
Biogeosciences, 10, 1775–1785, https://doi.org/10.5194/bg-10-1775-2013, https://doi.org/10.5194/bg-10-1775-2013, 2013
A. de Kluijver, K. Soetaert, J. Czerny, K. G. Schulz, T. Boxhammer, U. Riebesell, and J. J. Middelburg
Biogeosciences, 10, 1425–1440, https://doi.org/10.5194/bg-10-1425-2013, https://doi.org/10.5194/bg-10-1425-2013, 2013
K. A. Koho, K. G. J. Nierop, L. Moodley, J. J. Middelburg, L. Pozzato, K. Soetaert, J. van der Plicht, and G-J. Reichart
Biogeosciences, 10, 1131–1141, https://doi.org/10.5194/bg-10-1131-2013, https://doi.org/10.5194/bg-10-1131-2013, 2013
Related subject area
Biogeochemistry: Rivers & Streams
The role of nitrogen and iron biogeochemical cycles in the production and export of dissolved organic matter in agricultural headwater catchments
From Iron Curtain to green belt: shift from heterotrophic to autotrophic nitrogen retention in the Elbe River over 35 years of passive restoration
The influence of burn severity on dissolved organic carbon concentrations across a stream network differs based on seasonal wetness conditions
Molecular level characterization of supraglacial dissolved organic matter sources and exported pools on the southern Greenland Ice Sheet
High seasonal and spatial dynamics of bio- and photodegradation in boreal humic waters
Seasonal particulate organic carbon dynamics of the Kolyma River tributaries, Siberia
Geomorphologic controls and anthropogenic impacts on dissolved organic carbon from mountainous rivers: insights from optical properties and carbon isotopes
Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway
Physical and stoichiometric controls on stream respiration in a headwater stream
Local processes with a global impact: unraveling the dynamics of gas evasion in a step-and-pool configuration
Complex dissolved organic matter (DOM) on the roof of the world – Tibetan DOM molecular characteristics indicate sources, land use effects, and processing along the fluvial–limnic continuum
Maximum respiration rates in hyporheic zone sediments are primarily constrained by organic carbon concentration and secondarily by organic matter chemistry
Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams
Particulate organic matter in the Lena River and its delta: from the permafrost catchment to the Arctic Ocean
Stable isotopic evidence for the excess leaching of unprocessed atmospheric nitrate from forested catchments under high nitrogen saturation
Nitrogen isotopes reveal a particulate-matter-driven biogeochemical reactor in a temperate estuary
High-resolution vertical biogeochemical profiles in the hyporheic zone reveal insights into microbial methane cycling
Organic matter transformations are disconnected between surface water and the hyporheic zone
CO2 emissions from peat-draining rivers regulated by water pH
Effects of peatland management on aquatic carbon concentrations and fluxes
Resistance and resilience of stream metabolism to high flow disturbances
Enhanced bioavailability of dissolved organic matter (DOM) in human-disturbed streams in Alpine fluvial networks
Spatial and temporal variability of pCO2 and CO2 emissions from the Dong River in south China
Fluvial carbon dioxide emission from the Lena River basin during the spring flood
Diel patterns in stream nitrate concentration produced by in-stream processes
Complex interactions of in-stream dissolved organic matter and nutrient spiralling unravelled by Bayesian regression analysis
Spatial–temporal variations in riverine carbon strongly influenced by local hydrological events in an alpine catchment
Rapid soil organic carbon decomposition in river systems: effects of the aquatic microbial community and hydrodynamical disturbance
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition
Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada
Temporary and net sinks of atmospheric CO2 due to chemical weathering in subtropical catchment with mixing carbonate and silicate lithology
From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia
Distribution and flux of dissolved iron in the peatland-draining rivers and estuaries of Sarawak, Malaysian Borneo
Comparisons of dissolved organic matter and its optical characteristics in small low and high Arctic catchments
High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment
Dissolved inorganic nitrogen in a tropical estuary in Malaysia: transport and transformation
Behaviour of Dissolved Phosphorus with the associated nutrients in relation to phytoplankton biomass of the Rajang River-South China Sea continuum
Synchrony in catchment stream colour levels is driven by both local and regional climate
The post-monsoon carbon biogeochemistry of the Hooghly–Sundarbans estuarine system under different levels of anthropogenic impacts
Riverine particulate C and N generated at the permafrost thaw front: case study of western Siberian rivers across a 1700 km latitudinal transect
Geochemistry of the dissolved loads during high-flow season of rivers in the southeastern coastal region of China: anthropogenic impact on chemical weathering and carbon sequestration
CO2 partial pressure and CO2 emission along the lower Red River (Vietnam)
Stable isotopes of nitrate reveal different nitrogen processing mechanisms in streams across a land use gradient during wet and dry periods
Riverine carbon export in the arid to semiarid Wuding River catchment on the Chinese Loess Plateau
Use of argon to measure gas exchange in turbulent mountain streams
Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges
Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation
QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks
Diel fluctuations of viscosity-driven riparian inflow affect streamflow DOC concentration
A comprehensive biogeochemical record and annual flux estimates for the Sabaki River (Kenya)
Thibault Lambert, Rémi Dupas, and Patrick Durand
Biogeosciences, 21, 4533–4547, https://doi.org/10.5194/bg-21-4533-2024, https://doi.org/10.5194/bg-21-4533-2024, 2024
Short summary
Short summary
This study investigates dissolved organic carbon (DOC) export in headwater catchments. Results show small links between DOC, nitrates, and the iron cycle throughout the year, calling into question our current conceptualization of DOC export at the catchment scale. Indeed, this study evidences that the winter period, referred as a non-productive period in our current conceptual model, acts as an active period for DOC production in riparian soils and DOC export toward stream waters.
Alexander Wachholz, James W. Jawitz, and Dietrich Borchardt
Biogeosciences, 21, 3537–3550, https://doi.org/10.5194/bg-21-3537-2024, https://doi.org/10.5194/bg-21-3537-2024, 2024
Short summary
Short summary
Human activities are rivers' main source of nitrogen, causing eutrophication and other hazards. However, rivers can serve as a natural defense mechanism against this by retaining nitrogen. We show that the Elbe River retains more nitrogen during times of high pollution. With improvements in water quality, less nitrogen is retained. We explain this with changed algal and bacterial activities, which correspond to pollution and have many implications for the river and adjacent ecosystems.
Katie A. Wampler, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 21, 3093–3120, https://doi.org/10.5194/bg-21-3093-2024, https://doi.org/10.5194/bg-21-3093-2024, 2024
Short summary
Short summary
Following a high-severity wildfire, we sampled 129 sites during four different times of the year across a stream network to quantify dissolved organic carbon. The results from our study suggested that dissolved organic carbon may decrease with increasing burn severity. They also suggest that landscape characteristics can override wildfire impacts, with the seasonal timing of sampling influencing the observed response of dissolved organic carbon concentrations to wildfire.
Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio
EGUsphere, https://doi.org/10.5194/egusphere-2024-492, https://doi.org/10.5194/egusphere-2024-492, 2024
Short summary
Short summary
This study provides new insights into the transformation of dissolved organic matter (DOM) that takes place as meltwater flows through the porous crust of weathering ice that covers glacier ice surfaces during the melt season. Movement of water through the weathering crust is slow, allowing microorganisms and sunlight to alter the DOM in glacial meltwater. This is important as supraglacial meltwaters deliver DOM and nutrients to microorganisms living in downstream receiving aquatic environments.
Artem V. Chupakov, Anna Chupakova, Svetlana A. Zabelina, Liudmila S. Shirokova, and Oleg S. Pokrovsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-233, https://doi.org/10.5194/egusphere-2024-233, 2024
Short summary
Short summary
In boreal (non-permafrost) humic (>15 mg DOC/L) waters of a forest lake and a bog, the experimentally measured rate of photodegradation is 4 times higher than that of biodegradation. However, given the shallow (0.5 m) light-penetrating layer versus the full depth of water column (2–10 m), the biodegradation may provide the largest contribution to CO2 emission from the water surfaces
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Shuai Chen, Jun Zhong, Lishan Ran, Yuanbi Yi, Wanfa Wang, Zelong Yan, Si-liang Li, and Khan M. G. Mostofa
Biogeosciences, 20, 4949–4967, https://doi.org/10.5194/bg-20-4949-2023, https://doi.org/10.5194/bg-20-4949-2023, 2023
Short summary
Short summary
This study found the source of dissolved organic carbon and its optical properties (e.g., aromaticity, humification) are related to human land use and catchment slope in anthropogenically impacted subtropical mountainous rivers. The study highlights that the combination of dual carbon isotopes and optical properties represents a useful tool in tracing the origin of dissolved organic carbon and its in-stream processes.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Jancoba Dorley, Joel Singley, Tim Covino, Kamini Singha, Michael Gooseff, David Van Horn, and Ricardo González-Pinzón
Biogeosciences, 20, 3353–3366, https://doi.org/10.5194/bg-20-3353-2023, https://doi.org/10.5194/bg-20-3353-2023, 2023
Short summary
Short summary
We quantified how microbial respiration is controlled by discharge and the supply of C, N, and P in a stream. We ran two rounds of experiments adding a conservative tracer, an indicator of aerobic respiration, and nutrient treatments: a) N, b) N+C, c) N+P, and d) C+N+P. Microbial respiration remained similar between rounds and across nutrient treatments. This suggests that complex interactions between hydrology, resource supply, and biological community drive in-stream respiration.
Paolo Peruzzo, Matteo Cappozzo, Nicola Durighetto, and Gianluca Botter
Biogeosciences, 20, 3261–3271, https://doi.org/10.5194/bg-20-3261-2023, https://doi.org/10.5194/bg-20-3261-2023, 2023
Short summary
Short summary
Small cascades greatly enhance mountain stream gas emissions through the turbulent energy dissipation rate and air bubbles entrained into the water. We numerically studied the local contribution of these mechanisms driving gas transfer velocity used to quantify the outgassing. The gas evasion is primarily due to bubbles concentrated in irregular spots of limited area. Consequently, the gas exchange velocity is scale-dependent and unpredictable, posing concerns about its use in similar scenarios.
Philipp Maurischat, Michael Seidel, Thorsten Dittmar, and Georg Guggenberger
Biogeosciences, 20, 3011–3026, https://doi.org/10.5194/bg-20-3011-2023, https://doi.org/10.5194/bg-20-3011-2023, 2023
Short summary
Short summary
Production and consumption of organic matter (OM) on the Tibetan Plateau are important for this sensitive ecosystem. We investigated the chemical composition of dissolved organic matter and the most mobile fraction of OM in glaciers, wetlands, and groundwater as well as in the rivers and a large terminal lake. Our data show that the sources differ in the molecular composition of OM, that the stream is influenced by agriculture, and that the lake strongly changes the inflowing organic matter.
James C. Stegen, Vanessa A. Garayburu-Caruso, Robert E. Danczak, Amy E. Goldman, Lupita Renteria, Joshua M. Torgeson, and Jacqueline Hager
Biogeosciences, 20, 2857–2867, https://doi.org/10.5194/bg-20-2857-2023, https://doi.org/10.5194/bg-20-2857-2023, 2023
Short summary
Short summary
Chemical reactions in river sediments influence how clean the water is and how much greenhouse gas comes out of a river. Our study investigates why some sediments have higher rates of chemical reactions than others. We find that to achieve high rates, sediments need to have two things: only a few different kinds of molecules, but a lot of them. This result spans about 80 rivers such that it could be a general rule, helpful for predicting the future of rivers and our planet.
Andrew L. Robison, Nicola Deluigi, Camille Rolland, Nicolas Manetti, and Tom Battin
Biogeosciences, 20, 2301–2316, https://doi.org/10.5194/bg-20-2301-2023, https://doi.org/10.5194/bg-20-2301-2023, 2023
Short summary
Short summary
Climate change is affecting mountain ecosystems intensely, including the loss of glaciers and the uphill migration of plants. How these changes will affect the streams draining these landscapes is unclear. We sampled streams across a gradient of glacier and vegetation cover in Switzerland and found glacier loss reduced the carbon dioxide sink from weathering, while vegetation cover increased dissolved organic carbon in the stream. These changes are important to consider for mountains globally.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Masaaki Chiwa, Tamao Kasahara, and Ken'ichi Shinozuka
Biogeosciences, 20, 753–766, https://doi.org/10.5194/bg-20-753-2023, https://doi.org/10.5194/bg-20-753-2023, 2023
Short summary
Short summary
By monitoring the concentration and Δ17O of stream nitrate in three forested streams, the new nitrogen saturation index of forested catchments (Matm/Datm ratio) was estimated. We found that (1) the unprocessed atmospheric nitrate in our studied forested stream (FK1 catchment) was the highest ever reported in forested streams; (2) the Matm/Datm ratio can be used as a robust index for evaluating nitrogen saturation in forested catchments as the Matm/Datm ratio is independent of the precipitation.
Kirstin Dähnke, Tina Sanders, Yoana Voynova, and Scott D. Wankel
Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-19-5879-2022, https://doi.org/10.5194/bg-19-5879-2022, 2022
Short summary
Short summary
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal regions. We investigated the production and removal of nitrogen-bearing compounds in the freshwater section of the tidal Elbe Estuary and found that particles in the water column are key for the production and removal of water column nitrate. Using a stable isotope approach, we pinpointed regions where additional removal of nitrate or input from sediments plays an important role in estuarine biogeochemistry.
Tamara Michaelis, Anja Wunderlich, Ömer K. Coskun, William Orsi, Thomas Baumann, and Florian Einsiedl
Biogeosciences, 19, 4551–4569, https://doi.org/10.5194/bg-19-4551-2022, https://doi.org/10.5194/bg-19-4551-2022, 2022
Short summary
Short summary
The greenhouse gas methane (CH4) drives climate change. Microorganisms in river sediments produce CH4 when degrading organic matter, but the contribution of rivers to atmospheric CH4 concentrations is uncertain. To better understand riverine CH4 cycling, we measured concentration profiles of CH4 and relevant reactants that might influence the CH4 cycle. We found substantial CH4 production, especially in fine, organic-rich sediments during summer and signs of microbial CH4 consumption.
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Amy E. Pickard, Marcella Branagan, Mike F. Billett, Roxane Andersen, and Kerry J. Dinsmore
Biogeosciences, 19, 1321–1334, https://doi.org/10.5194/bg-19-1321-2022, https://doi.org/10.5194/bg-19-1321-2022, 2022
Short summary
Short summary
Peatlands have been subject to a range of land management regimes over the past century. This has affected the amount of carbon that drains into surrounding streams and rivers. In our study, we measured carbon concentrations in streams draining from drained, non-drained, and restored areas of the Flow Country blanket bog in N Scotland. We found that drained peatland had higher concentrations and fluxes of carbon relative to non-drained areas. Restored peatland areas were highly variable.
Brynn O'Donnell and Erin R. Hotchkiss
Biogeosciences, 19, 1111–1134, https://doi.org/10.5194/bg-19-1111-2022, https://doi.org/10.5194/bg-19-1111-2022, 2022
Short summary
Short summary
A stream is defined by flowing water, but higher flow from storms is also a frequent disturbance. This paper tests how higher flow changes stream metabolism (respiration and photosynthesis, R and P). P was less resistant to changes in flow compared to R, and P took longer to recover from storms than R (2.2 versus 0.6 d). Further work on metabolic responses to flow disturbance is critical given projected increases in storms and the influence of higher flows on ecosystem health and functioning.
Thibault Lambert, Pascal Perolo, Nicolas Escoffier, and Marie-Elodie Perga
Biogeosciences, 19, 187–200, https://doi.org/10.5194/bg-19-187-2022, https://doi.org/10.5194/bg-19-187-2022, 2022
Short summary
Short summary
The bacterial mineralization of dissolved organic matter (DOM) in inland waters contributes to CO2 emissions to the atmosphere. Human activities affect DOM sources. However, the implications on DOM mineralization are poorly known. Combining sampling and incubations, we showed that higher bacterial respiration in agro-urban streams related to a labile pool from aquatic origin. Therefore, human activities may have a limited impact on the net carbon exchanges between inland waters and atmosphere.
Boyi Liu, Mingyang Tian, Kaimin Shih, Chun Ngai Chan, Xiankun Yang, and Lishan Ran
Biogeosciences, 18, 5231–5245, https://doi.org/10.5194/bg-18-5231-2021, https://doi.org/10.5194/bg-18-5231-2021, 2021
Short summary
Short summary
Spatial and temporal patterns of pCO2 in the subtropical Dong River basin were mainly affected by C inputs and in-stream metabolism, both of which varied due to differential catchment settings, land cover, and hydrological conditions. CO2 fluxes in the wet season were 2-fold larger than in the dry season due to high pCO2 and turbulence caused by high flow velocity. The absence of high CO2 fluxes in small rivers could be associated with the depletion effect caused by abundant precipitation.
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Matthias Pucher, Peter Flödl, Daniel Graeber, Klaus Felsenstein, Thomas Hein, and Gabriele Weigelhofer
Biogeosciences, 18, 3103–3122, https://doi.org/10.5194/bg-18-3103-2021, https://doi.org/10.5194/bg-18-3103-2021, 2021
Short summary
Short summary
Dissolved organic matter is an important carbon source in aquatic ecosystems, yet the uptake processes are not totally understood. We found evidence for the release of degradation products, efficiency loss in the uptake with higher concentrations, stimulating effects, and quality-dependent influences from the benthic zone. To conduct this analysis, we included interactions in the equations of the nutrient spiralling concept and solve it with a Bayesian non-linear fitting algorithm.
Xin Wang, Ting Liu, Liang Wang, Zongguang Liu, Erxiong Zhu, Simin Wang, Yue Cai, Shanshan Zhu, and Xiaojuan Feng
Biogeosciences, 18, 3015–3028, https://doi.org/10.5194/bg-18-3015-2021, https://doi.org/10.5194/bg-18-3015-2021, 2021
Short summary
Short summary
We show a comprehensive monitoring dataset on the discharge and carbon transport in a small alpine river on the Qinghai–Tibetan Plateau, where riverine carbon increased downstream in the pre-monsoon season due to an increasing contribution of organic matter derived from seasonal permafrost thaw while it fluctuated in the monsoon season induced by sporadic precipitation. These results indicate a high sensitivity of riverine carbon in alpine headwater catchments to local hydrological events.
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences, 18, 1511–1523, https://doi.org/10.5194/bg-18-1511-2021, https://doi.org/10.5194/bg-18-1511-2021, 2021
Short summary
Short summary
We investigate the relative importance of two individual factors (hydrodynamical disturbance and aquatic microbial community) that possibly control SOC decomposition rates in river systems. We found aquatic microbial organisms led to rapid SOC decomposition, while effect of mechanical disturbance is relative minor. We propose a simple conceptual model: hydrodynamic disturbance is only important when soil aggregates are strong enough to withstand the disruptive forces imposed by water immersions.
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021, https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Short summary
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy involving soil amendments with silicate rock dust. Over 15 years, a small silicate application led to net CDR of 8.5–11.5 t CO2/ha in an acid-rain-impacted New Hampshire forest. We accounted for the total carbon cost of treatment and compared effects with an adjacent, untreated forest. Our results suggest ERW can improve the greenhouse gas balance of similar forests in addition to mitigating acid rain effects.
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020, https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Short summary
High-latitude warming thaws permafrost, exposing minerals to weathering and fluvial transport. We studied the effects of abrupt thaw and associated weathering on carbon cycling in western Canada. Permafrost collapse affected < 1 % of the landscape yet enabled carbonate weathering associated with CO2 degassing in headwaters and increased bicarbonate export across watershed scales. Weathering may become a driver of carbon cycling in ice- and mineral-rich permafrost terrain across the Arctic.
Yingjie Cao, Yingxue Xuan, Changyuan Tang, Shuai Guan, and Yisheng Peng
Biogeosciences, 17, 3875–3890, https://doi.org/10.5194/bg-17-3875-2020, https://doi.org/10.5194/bg-17-3875-2020, 2020
Short summary
Short summary
About half of the global CO2 sequestration due to chemical weathering occurs in warm and high-runoff regions. To evaluate the temporary and net sinks of atmospheric CO2 due to chemical weathering, we selected a typical subtropical catchment as our study area and did fieldwork to sample surface water along the main channel and major tributaries in 1 hydrological year. The result of mass balance calculation showed that human activities dramatically decreased the CO2 net sink.
Laure Gandois, Alison M. Hoyt, Stéphane Mounier, Gaël Le Roux, Charles F. Harvey, Adrien Claustres, Mohammed Nuriman, and Gusti Anshari
Biogeosciences, 17, 1897–1909, https://doi.org/10.5194/bg-17-1897-2020, https://doi.org/10.5194/bg-17-1897-2020, 2020
Short summary
Short summary
Worldwide, peatlands are important sources of dissolved organic matter (DOM) and trace metals (TMs) to surface waters, and these fluxes may increase with peatland degradation. In Southeast Asia, tropical peatlands are being rapidly deforested and drained. This work aims to address the fate of organic carbon and its role as a trace metal carrier in drained peatlands of Indonesia.
Xiaohui Zhang, Moritz Müller, Shan Jiang, Ying Wu, Xunchi Zhu, Aazani Mujahid, Zhuoyi Zhu, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 17, 1805–1819, https://doi.org/10.5194/bg-17-1805-2020, https://doi.org/10.5194/bg-17-1805-2020, 2020
Short summary
Short summary
This study offered detailed information on dFe concentrations, distribution and the magnitude of yield in the Rajang River, the largest river in Malaysia. Three blackwater rivers, draining from peatlands, were also included in our study. Compared with the Rajang River, the dFe concentrations and yield from three blackwater rivers were much higher. The precipitation and agricultural activities, such as palm oil plantations, may markedly increase the concentration dFe in these tropical rivers.
Caroline Coch, Bennet Juhls, Scott F. Lamoureux, Melissa J. Lafrenière, Michael Fritz, Birgit Heim, and Hugues Lantuit
Biogeosciences, 16, 4535–4553, https://doi.org/10.5194/bg-16-4535-2019, https://doi.org/10.5194/bg-16-4535-2019, 2019
Short summary
Short summary
Climate change affects Arctic ecosystems. This includes thawing of permafrost (ground below 0 °C) and an increase in rainfall. Both have substantial impacts on the chemical composition of river water. We compared the composition of small rivers in the low and high Arctic with the large Arctic rivers. In comparison, dissolved organic matter in the small rivers is more susceptible to degradation; thus, it could potentially increase carbon dioxide emissions. Rainfall events have a similar effect.
Benedikt J. Werner, Andreas Musolff, Oliver J. Lechtenfeld, Gerrit H. de Rooij, Marieke R. Oosterwoud, and Jan H. Fleckenstein
Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, https://doi.org/10.5194/bg-16-4497-2019, 2019
Short summary
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Shan Jiang, Moritz Müller, Jie Jin, Ying Wu, Kun Zhu, Guosen Zhang, Aazani Mujahid, Tim Rixen, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 16, 2821–2836, https://doi.org/10.5194/bg-16-2821-2019, https://doi.org/10.5194/bg-16-2821-2019, 2019
Short summary
Short summary
Three cruises were conducted in the Rajang River estuary, Malaysia. The results revealed that the decomposition of terrestrial organic matter and the subsequent soil leaching were the main sources of dissolved inorganic nitrogen (DIN) in the fresh river water. Porewater exchange and ammonification enhanced DIN concentrations in the estuary water, while intensities of DIN addition varied between seasons. The riverine DIN flux could reach 101.5 ton(N) / d, supporting the coastal primary producers.
Edwin Sien Aun Sia, Jing Zhang, Shan Jiang, Zhuoyi Zhu, Gonzalo Carrasco, Faddrine Holt Jang, Aazani Mujahid, and Moritz Müller
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-219, https://doi.org/10.5194/bg-2019-219, 2019
Revised manuscript not accepted
Short summary
Short summary
Nutrient loads carried by large rivers and discharged into the continental shelf and coastal waters are vital to support primary production. Our knowledge of tropical river systems is fragmented with very few seasonal studies available for Southeast Asia (SEA). We present data from three sampling campaigns on the longest river in Malaysia, the Rajang river. Our results show the generalization of SEA as a nutrient hotspot might not hold true for all regions and requires further investigation.
Brian C. Doyle, Elvira de Eyto, Mary Dillane, Russell Poole, Valerie McCarthy, Elizabeth Ryder, and Eleanor Jennings
Biogeosciences, 16, 1053–1071, https://doi.org/10.5194/bg-16-1053-2019, https://doi.org/10.5194/bg-16-1053-2019, 2019
Short summary
Short summary
This study explores the drivers of variation in the water colour of rivers, and hence organic carbon export, in a blanket peatland catchment. We used 6 years of weekly river water colour data (2011 to 2016) from three proximate river sub-catchments in western Ireland. in tandem with a range of topographical, hydrological and climate data, to discover the principle environmental drivers controlling changes in colour concentration in the rivers.
Manab Kumar Dutta, Sanjeev Kumar, Rupa Mukherjee, Prasun Sanyal, and Sandip Kumar Mukhopadhyay
Biogeosciences, 16, 289–307, https://doi.org/10.5194/bg-16-289-2019, https://doi.org/10.5194/bg-16-289-2019, 2019
Short summary
Short summary
The study focused on understanding C biogeochemistry of two adjacently located estuaries undergoing different levels of anthropogenic stresses. Different parameters related to C cycling were measured in an anthropogenically influenced and a mangrove-dominated estuary. Although the entire estuarine system acted as a source of carbon dioxide to the regional atmosphere, emission approximately 17 times higher was noticed from the anthropogenically affected estuary compared to mangrove-dominated one.
Ivan V. Krickov, Artem G. Lim, Rinat M. Manasypov, Sergey V. Loiko, Liudmila S. Shirokova, Sergey N. Kirpotin, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, https://doi.org/10.5194/bg-15-6867-2018, 2018
Short summary
Short summary
We tested the effect of climate, permafrost and physio-geographical landscape parameters on particulate C, N and P concentrations in small- and medium- sized rivers in the Western Siberian Lowland (WSL). We discovered a maximum of particulate C and N concentrations at the beginning of the permafrost appearance. A northward shift of permafrost boundaries may increase the particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2.
Wenjing Liu, Zhifang Xu, Huiguo Sun, Tong Zhao, Chao Shi, and Taoze Liu
Biogeosciences, 15, 4955–4971, https://doi.org/10.5194/bg-15-4955-2018, https://doi.org/10.5194/bg-15-4955-2018, 2018
Short summary
Short summary
The southeastern coastal region is the top acid-rain-impacted area in China. It is worth evaluating the acid deposition impacts on chemical weathering and CO2 consumption there. River water geochemistry evidenced an overestimation of CO2 sequestration if H2SO4/HNO3 involvement was ignored, which accounted for 33.6 % of the total flux by silicate weathering in this area. This study quantitatively highlights the anthropogenic acid effects on chemical weathering and associated CO2 consumption.
Thi Phuong Quynh Le, Cyril Marchand, Cuong Tu Ho, Nhu Da Le, Thi Thuy Duong, XiXi Lu, Phuong Kieu Doan, Trung Kien Nguyen, Thi Mai Huong Nguyen, and Duy An Vu
Biogeosciences, 15, 4799–4814, https://doi.org/10.5194/bg-15-4799-2018, https://doi.org/10.5194/bg-15-4799-2018, 2018
Short summary
Short summary
The Red River is a typical south-east Asian river, strongly affected by climate and human activity. This study showed the spatial and seasonal variability of CO2 emissions at the water–air interface of the lower part of this river due to natural conditions (meteo-hydrological-geomorphological characteristics) and human activities (dam impoundment, population, land use). The Red River water was supersaturated with CO2, providing a mean water–air CO2 flux of 530 ± 17 mmol m−2 d−1.
Wei Wen Wong, Jesse Pottage, Fiona Y. Warry, Paul Reich, Keryn L. Roberts, Michael R. Grace, and Perran L. M. Cook
Biogeosciences, 15, 3953–3965, https://doi.org/10.5194/bg-15-3953-2018, https://doi.org/10.5194/bg-15-3953-2018, 2018
Short summary
Short summary
Over-enrichment of nitrate can pose substantial risk to the quality of freshwater ecosystems. Hence, understanding the dynamics of nitrate is the key to better management of waterways. This study evaluates the relationship between the effects of land use and rainfall on the major sources and processing of nitrate within and between five streams in five catchments spanning an agricultural land use gradient. We found that rainfall exerted significant control over the fate of nitrate.
Lishan Ran, Mingyang Tian, Nufang Fang, Suiji Wang, Xixi Lu, Xiankun Yang, and Frankie Cho
Biogeosciences, 15, 3857–3871, https://doi.org/10.5194/bg-15-3857-2018, https://doi.org/10.5194/bg-15-3857-2018, 2018
Short summary
Short summary
We systematically assessed the transport and fate of riverine carbon in the moderate-sized Wuding catchment on the Chinese Loess Plateau by constructing a riverine carbon budget and further relating it to terrestrial ecosystem productivity. The riverine carbon export accounted for 16 % of the catchment's net ecosystem production (NEP). It seems that a significant fraction of terrestrial NEP in this catchment is laterally transported from the terrestrial biosphere to the drainage network.
Robert O. Hall Jr. and Hilary L. Madinger
Biogeosciences, 15, 3085–3092, https://doi.org/10.5194/bg-15-3085-2018, https://doi.org/10.5194/bg-15-3085-2018, 2018
Short summary
Short summary
Streams exchange oxygen with the atmosphere, but this rate is difficult to measure. We added argon to small mountain streams to estimate gas exchange. We compared these rates with sulfur hexafluoride, an intense greenhouse gas. Argon worked well to measure gas exchange, but had higher-than-predicted rates than sulfur hexafluoride. Argon exchange is more likely to represent that for oxygen because they share similar physical properties. We suggest argon to measure gas exchange in small streams.
Ji-Hyung Park, Omme K. Nayna, Most S. Begum, Eliyan Chea, Jens Hartmann, Richard G. Keil, Sanjeev Kumar, Xixi Lu, Lishan Ran, Jeffrey E. Richey, Vedula V. S. S. Sarma, Shafi M. Tareq, Do Thi Xuan, and Ruihong Yu
Biogeosciences, 15, 3049–3069, https://doi.org/10.5194/bg-15-3049-2018, https://doi.org/10.5194/bg-15-3049-2018, 2018
Short summary
Short summary
Human activities are drastically altering water and material flows in river systems across Asia. This review provides a conceptual framework for assessing the human impacts on Asian river C fluxes and an update on anthropogenic alterations of riverine C fluxes, focusing on the impacts of water pollution and river impoundments on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia.
Chung-Te Chang, Jr-Chuan Huang, Lixin Wang, Yu-Ting Shih, and Teng-Chiu Lin
Biogeosciences, 15, 2379–2391, https://doi.org/10.5194/bg-15-2379-2018, https://doi.org/10.5194/bg-15-2379-2018, 2018
Short summary
Short summary
Our analysis of ion input–output budget illustrates that hydrochemical responses to typhoon storms are distinctly different from those of regular storms. In addition, even mild land use change may have large impacts on nutrient exports/losses. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.
Camille Minaudo, Florence Curie, Yann Jullian, Nathalie Gassama, and Florentina Moatar
Biogeosciences, 15, 2251–2269, https://doi.org/10.5194/bg-15-2251-2018, https://doi.org/10.5194/bg-15-2251-2018, 2018
Short summary
Short summary
We developed the model QUALity-NETwork (QUAL-NET) to simulate water quality variations in large drainage networks. This model is accurate enough to represent processes occurring over short periods of time such as storm events and helps to fully understand water quality variations in stream networks in the context of climate change and varying human pressures. It was tested on the Loire River and provided good performances and a new understanding of the functioning of the river.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Biogeosciences, 15, 2177–2188, https://doi.org/10.5194/bg-15-2177-2018, https://doi.org/10.5194/bg-15-2177-2018, 2018
Short summary
Short summary
We studied the diel fluctuations of dissolved organic carbon (DOC) concentrations in a small stream in Luxembourg. We identified an increased proportion of DOC from terrestrial sources as responsible for the peaks in DOC in the afternoon. Warmer water temperatures in the riparian zone in the afternoon increased the amount of water flowing towards the stream. Consequently, an increased amount of DOC-rich water from the riparian zone was entering the stream.
Trent R. Marwick, Fredrick Tamooh, Bernard Ogwoka, Alberto V. Borges, François Darchambeau, and Steven Bouillon
Biogeosciences, 15, 1683–1700, https://doi.org/10.5194/bg-15-1683-2018, https://doi.org/10.5194/bg-15-1683-2018, 2018
Short summary
Short summary
A 2-year biogeochemical record provides annual sediment and element flux estimates for the non-dammed Sabaki River, Kenya, establishing a baseline for future research in light of impending construction of the first major upstream reservoir. Over 80 % of material fluxes occur across the wet season, with annual yields comparable to the adjacent, and dammed, Tana River. Observations at low-flow periods suggest large mammalian herbivores may be vectors of terrestrial subsidies to the water column.
Cited articles
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connel, P. E., and Rasmussen, J.: An introduction to the european hydrological system – systeme hydrologique européen "she", 1. History and phylosophy of a physically-based distributed modeling system, J. Hydrol., 247, 45–59, 1986.
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing the watergap 2 model of water use and availability, Hydrol. Sci., 48, 317–337, 2003.
Alexander, R. B., Smith, R. A., Schwarz, G. E., Boyer, E. W., Nolan, J. V., and Brakebill, J. W.: Differences in phosphorus and nitrogen delivery to the gulf of mexico from the mississippi river basin, Environ. Sci. Tech., 42, 822–830, 2008.
Alsdorf, D., Han, S. C., Bates, P., and Melack, J.: Seasonal water storage on the amazon floodplain measured from satellites, Remote Sens. Environ., 114, 2448–2456, 2010.
Andersson, J.-O. and Nyberg, L.: Using official map data on topography, wetlands and vegetation cover for prediction of stream water chemistry in boreal headwater catchments, Hydrol. Earth Syst. Sci., 13, 537–549, 2009.
Appelo, C. A. J. and Postma, D.: Geochemistry, groundwater and pollution, 2nd edition, Taylor and Francis, London, 536 pp., 2005.
Arnell, N. W.: Effects of ipcc sres emissions scenarios on river runoff: A global perspective, Hydrol. Earth Syst. Sci., 7, 619–641, 2003.
Arnold, J. G. and Fohrer, N.: Swat2000: Current capabilities and research opportunities in applied watershed modelling, Hydrol. Proc., 19, 563–572, 2005.
Artinger, R., Buckau, G., Geyer, S., Fritz, P., Wolf, M., and Kim, J. I.: Characterization of groundwater humic substances: Influences of sedimentary organic carbon, Appl. Geochem., 15, 97–116, 2000.
Baker, M. A. M., Valett, H. M., and Dahm, C. N.: Organic carbon supply and metabolism in a shallow groundwater ecosystem, Ecology, 81, 3133–3148, 2000.
Bardini, L., Boano, F., Cardenas, M. B., Revelli, R., and Ridolfi, L.: Nutrient cycling in bedform induced hyporheic zones, Geochim. Cosmochim. Ac., 84, 47–61, https://doi.org/10.1016/j.gca.2012.1001.1025, 2012.
Behrendt, H. and Opitz, D.: Retention of nutrients in river systems: Dependence on specific runoff and hydraulic load, Hydrobiologia, 410, 111–122, 1999.
Bernot, M. J. and Dodds, W. K.: Nitrogen retention, removal, and saturation in lotic ecosystems, Ecosystems, 8, 442–453, https://doi.org/410.1007/s10021-10003-10143-y, 2005.
Bertrand, G., Goldscheider, N., Gobat, J. M., and Hunkeler, D.: Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems, Hydrogeol. J., 20, 5–25, https://doi.org/10.1007/s10040-011-0791-5, 2012.
Beusen, A. H. W., Dekkers, A. L. M., Bouwman, A. F., Ludwig, W., and Harrison, J.: Estimation of global river transport of sediments and associated particulate C, N and P, Glob. Biogeochem. Cy., 19, GB4S05, https://doi.org/10.1029/2004GB002453, 2005.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69, 1979.
Biemans, H., Hutjes, R. W. A., Kabat, P., Strengers, B. J., Gerten, D., and Rost, S.: Effects of precipitation uncertainty on discharge calculations for main river basins, J. Hydrometeorol., 10, 1011–1025, 2009.
Billen, G., Lancelot, C., and Meybeck, M.: N, p, and si retention along the aquatic continuum from land to ocean, in: Ocean margin processes in global change, edited by: Mantoura, R. F. C., Martin, J. M., and Wollast, R., John Wiley and Sons, New York, 19–44, 1991.
Billen, G. and Garnier, J.: Nitrogen transfers through the seine drainage network: A budget based on the application of the "riverstrahler" model, Hydrobiologia, 410, 139–150, 2000.
Billen, G., Garnier, J., Ficht, A., and Cun, C.: Modeling the response of water quality in the seine river estuary to human activity in its watershed over the last 50 years, Estuaries, 24, 977–993, 2001.
Blair, N. E., Leithold, E. L., and Aller, R. C.: From bedrock to burial: The evolution of particulate organic carbon across coupled watershed-continental margin systems, Mar. Chem., 92, 141–156, 2004.
Böhlke, J.-K., Wanty, R., Tuttle, M., Delin, G., and Landon, M.: Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota, Water Resour. Res., 38, 1105, 26 pp., https://doi.org/10.1029/2001WR000663, 2002.
Bolt, G. H., and Bruggenwert, M. G. M.: Soil chemistry. A. Basic elements, in: Developments in soil science 5a, Elsevier Scienctific Publishing Company, Amsterdam, 281, 1976.
Borum, J., and Sand-Jensen, K.: Is total primary production in shallow coastal marine waters stimulated by nitrogen loading, Oikos, 76, 406-410, 1996.
Boulton, A. J., Datry, T., Kasahara, T., Mutz, M., and Stanford, J. A.: Ecology and management of the hyporheic zone: Stream-groundwater interactions of running waters and their floodplains, J. North Am. Ben. Soc., 29, 26–40, 2010.
Bouwman, A. F., Kram, T., and Klein Goldewijk, K.: Integrated modelling of global environmental change. An overview of image 2.4, in, Publication 500110002/2006, Netherlands Environmental Assessment Agency, Bilthoven, 228, 2006.
Bouwman, A. F., Pawlowski, M., Liu, C., Beusen, A. H. W., and Overbeek, C. C.: Global hindcasts and future projections of coastal nitrogen and phosphorus loads due to shellfish and seaweed aquaculture, Reviews in Fisheries Science, 19, 331–357, 2011.
Bouwman, A. F., Beusen, A. H. W., Griffioen, J., Van Groenigen, J. W., Hefting, M. M., Oenema, O., Van Puijenbroek, P. J. T. M., Seitzinger, S., Slomp, C. P., and Stehfest, E.: Global trends and uncertainties in terrestrial denitrification and n2o emissions, Philos. T. R. Soc. Lond., in press, 2012.
Brett, M. T. and Benjamin, M. M.: A review and reassessment of lake phosphorus retention and the nutrient loading concept, Freshwater Biol., 53, 194–211, https://doi.org/10.1111/j.1365-2427.2007.01862.x, 2008.
Brun, R., Reichert, P., and Kunsch, H. R.: Practical identifiability analysis of large environmental simulation models, Water Resour. Res., 37, 1015–1030, 2001.
Butcher, R. W.: Studies in the ecology of rivers: Vii. The algae of organically enriched waters, J. Ecol., 35, 186–191, 1947.
Buttle, J. M., Hazlett, P. W., Murray, C. D., Creed, I. F., Jeffries, D. S., and Semkin, R.: Prediction of groundwater characteristics in forested and harvested basins during spring snowmelt using a topographic index, Hydrol. Proc., 15, 3389–3407, 2001.
Buttle, J. M., Dillonb, P. J., and Eerkes, G. R.: Hydrologic coupling of slopes, riparian zones and streams: An example from the canadian shield, J. Hydrol., 287, 161–177, 2004.
Church, M.: Geomorphic thresholds in riverine landscapes, Freshwater Biology, 47, 541–557, https://doi.org/10.1046/j.1365-2427.2002.00919.x, 2002.
Clark, I. and Fritz, P.: Environmental isotopes in hydrogeology, Lewis Publishers Boca Raton, New York, 1997.
Cloern, J. E.: Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of san fransisco bay, california, Rev. Geophys., 34, 127–168, 1996.
Conley, D.: Terrestrial ecosystems and the global biogeochemical silica cycle, Global Biogeochem. Cy., 16, 1121, https://doi.org/10.1029/2002GB001894, 2002.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184–187, 2000.
Cox, T. J. S., Maris, T., Soetaert, K., Conley, D. J., Van Damme, S., Meire, P., Middelburg, J. J., Vos, M., and Struyf, E.: A macro-tidal freshwater ecosystem recovering from hypereutrophication: the Schelde case study, Biogeosciences, 6, 2935–2948, https://doi.org/10.5194/bg-6-2935-2009, 2009.
Dahl, M., Nilsson, B., Langhoff, J. H., and Refsgaard, J. C.: Review of classification systems and new multi-scale typology of groundwater-surface water interaction, J. Hydrol., 344, 1–16, https://doi.org/10.1016/j.jhydrol.2007.06.027, 2007.
De Wit, M., Behrendt, H., Bendoricchio, G., Bleuten, W., and Van Gaans, P.: The contribution of agriculture to nutrient pollution in three european rivers, with reference to the european nitrates directive, European Water Association (EWA), 19, 2002.
De Wit, M. J. M.: Nutrient fluxes at the river basin scale. I: The polflow model, Hydrol. Proc., 15, 743–759, 2001.
Dirmeyer, P. A., Gao, X., Zhao, M., Oki, T., and Hanasaki, N.: The second global soil wetness project (gswp-2), Bull. Am. Meteorol. Soc., 87, 1381–1397, 2006.
Dodds, W. K.: Freshwater ecology: Concepts and environmental applications, Academic Press, San Diego, 2002.
Döll, P. and Fiedler, K.: Global-scale modeling of groundwater recharge, Hydrol. Earth Syst. Sci., 12, 863–885, https://doi.org/10.5194/hess-12-863-2008, 2008.
Dooge, J. C. I.: Linear theory of hydrologic systems, United States Department of AgricultureTechnical bulletin 1468, 1973.
Doomen, A., Wijma, E., Zwolsman, J. J. G., and Middelkoop, H.: Predicting suspended sediment concentrations in the meuse river using a supply-based rating curve, Hydrol. Proc., 22, 1846–1856, 2008.
Dorioz, J. M., Wang, D., Poulenard, J., and Trévisan, D.: The effect of grass buffer strips on phosphorus dynamics: A critical review and synthe- sis as a basis for application in agricultural landscapes in france, Agriculture, Ecosyst. Environ., 117, 4–21, 2006.
Downing, J. A., Cole, J. J., Duarte, C. M., Middelburg, J. J., Melack, J. M., Prairie, Y. T., Kortelainen, P., Striegl, R. G., McDowell, W. H., and Tranvik, L. J.: Global abundance and size distribution of streams and rivers, Inland waters, 2, 229–236, https://doi.org/10.5268/IW-2.4.502, 2012.
Dürr, H. H., Meybeck, M., and Dürr, S.: Lithologic composition of the earth's continental surfaces derived from a new digital map emphasizing riverine material transfer, Global Biogeochem. Cy., 19, GB4S10, https://doi.org/10.1029/2005GB002515, 2005.
Ensign, S. H. and Doyle, M. W.: Nutrient spiraling in streams and river networks, J. Geophys. Res., 111, G04009, https://doi.org/10.1029/2005jg000114, 2006.
Fisher, S. G., Grimm, N. B., Martí, E., Holmes, R. M., and Jones Jr., J. B.: Material spiraling in stream corridors: A telescoping ecosystem model, Ecosystems, 1, 19–34, 1998.
Fleckenstein, J. H., Niswonger, R. G., and Fogg, G. E.: River-aquifer interactions, geologic heterogeneity, and low-flow management, Groundwater, 44, 837–852, https://doi.org/810.1111/j.1745-6584.2006.00190.x, 2006.
Frissel, C. A., Liss, W. J., Warren, C. E., and Hurley, M. D.: A hierarchical framework for stream habitat classification: Viewing streams in a watershed context, Environ. Manage.,, 10, 199–214, 1986.
Galloway, J. N., Schlesinger, W. H., Levy III, H., Michaels, A., and Schnoor, J. L.: Nitrogen fixation: Anthropogenic enhancement-environmental response, Global Biogeochem. Cy., 9, 235–252, 1995.
Garnier, J., Billen, G., and Coste, M.: Seasonal succession of diatoms and chlorophyceae in the drainage network of the seine river: Observations and modeling, Limnol. Oceanogr., 40, 750–765, 1995.
Gooseff, M. N.: Defining hyporheic zones - advancing our conceptual and operational definitions of where stream water and groundwater meet, Geography Compass, 4, 945–955, 2010.
Grimm, N. B., Gergel, S. E., McDowell, W. H., Boyer, E. W., Dent, C. L., Groffman, P., Hart, S. C., Harvey, J., Johnston, C., Mayorga, E., McClain, M. E., and Pinay, G.: Merging aquatic and terrestrial perspectives of nutrient biogeochemistry, Oecologia, 137, 485–501, 2003.
Grizzetti, B., Bouraoui, F., and De Marsily, G.: Assessing nitrogen pressures on european surface water, Global Biogeochem. Cy., 22, GB4023, https://doi.org/10.1029/2007gb003085, 2008.
Hall, R. K., Watkins, R. L., Heggem, D. T., Jones, K. B., Kaufmann, P. R., Moore, S. B., and Gregory, S. J.: Quantifying structural physical habitat attributes using lidar and hyperspectral imagery, Environ. Monitor. Assess., 159, 63–83, 2009.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing, Hydrol. Earth Syst. Sci., 12, 1007–1025, https://doi.org/10.5194/hess-12-1007-2008, 2008.
Harrison, J., Maranger, R., Alexander, R., Giblin, A., Jacinthe, P.-A., Mayorga, E., Seitzinger, S., Sobota, D., and Wollheim, W.: The regional and global significance of nitrogen removal in lakes and reservoirs, Biogeochem., 93, 143–157, 2009.
Hartmann, J., Lauerwald, R., Hagedorn, B., and Kempe, S.: Atmospheric co2 consumption by chemical weathering in north america, Geochim. Cosmochim. Ac., 75, 7829–7854, https://doi.org/7810.1016/j.gca.2011.7810.7007, 2011.
Hartmann, J. and Moosdorf, N.: Chemical weathering rates of silicate-dominated lithological classes and associated liberation rates of phosphorus on the japanese archipelago – implications for global scale analysis, Chem. Geol., 287, 125–157, https://doi.org/10.1016/j.chemgeo.2010.12.004, 2011.
Hattermann, F. F., Krysanova, V., Habeck, A., and Bronstert, A.: Integrating wetlands and riparian zones in river basin modelling, Ecol. Modell., 199, 379–392, https://doi.org/10.1016/j.ecolmodel.2005.06.012, 2006.
Hefting, M., Clément, J. C., Dowrick, D., Cosandey, A. C., Bernal, S., Cimpian, C., Tatur, A., Burt, T. P., and Pinay, G.: Water table elevation controls on soil nitrogen cycling in riparian wetlands along a european climatic gradient, Biogeochemistry, 67, 113–134, 2004.
Hefting, M. M., Bobbink, R., and De Caluwe, H.: Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones, J. Environ. Qual., 32, 1194–1203, 2003.
Hejzlar, J., Anthony, S., Arheimer, B., Behrendt, H., Bouraoui, F., Grizzetti, B., Groenendijk, P., Jeuken, M. H. J. L., Johnsson, H., Lo Porto, A., Kronvang, B., Panagopoulos, Y., Siderius, C., Silgram, M., Venohr, M., and Zaloud\i k, J.: Nitrogen and phosphorus retention in surface waters: An inter-comparison of predictions by catchment models of different complexity, J. Environ. Monitor., 11, 584–593, 2009.
Hill, A. R.: Nitrate removal in stream riparian zones, J. Environ. Qual., 25, 743–755, 1996.
Hoffmann, C. C., Kjaergaard, C., Uusi-Kämppä, J., Bruun Hansen, H. C., and Kronvang, B.: Phosphorus retention in riparian buffers: Review of their efficiency, J. Environ. Qual., 38, 1942–1955, 2009.
Holden, J.: Peatland hydrology and carbon release: Why small-scale process matters, Philos. T. R. Soc. Lond., 363, 2891–2913, 2005.
Hooke, J. M.: Magnitude and distribution of rates of river bank erosion, Earth Surf. Proc. Land., 5, 143–157, 1980.
Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., Downing, J. A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., Freney, J., Kudeyarov, V., Murdoch, P., and Zhu Zhao-liang: Regional nitrogen budgets and riverine n and p fluxes of the drainages to the north atlantic ocean: Natural and human influences, Biogeochemistry, 35, 2235–2240, 1996.
Huet, M.: Biologie, profils en long et en travers des eaux courantes, Bulletin Francais de Pisciculture, 175, 41–53, 1954.
Humborg, C., Rahm, L., Smedberg, E., Mörth, C.-M., and Danielson, A.: Dissolved silica dynamics in boreal and arctic rivers: Vegetation control over temperature?, in: The silicon cycle, edited by: Ittekot, V., Unger, D., Humborg, C., and Tac An, N., Island Press, Washington, 53–69, 2006.
Hung, N. N.: Sediment dynamics in the floodplain of the mekong delta, vietnam, PhD, Institut für Wasserbau, Universität Stuttgart, Stuttgart, 2011.
Ingebritsen, S., Sanford, W., and Neuzil, C.: Groundwater in geologic processes, 2nd edition, Cambridge Univeristy Press, 2006.
Jardine, P. M., Dunnivant, F. M., Selim, H. M., and McCarthy, J. F.: Comparison of models for describing the transport of dissolved organic carbon in aquifer columns, Soil Sci. Soc. Am. J., 56, 393–401, 1992.
Jarvie, H. P., Neal, C., Rowland, A. P., Neal., M., Morris, P. N., Lead, J. R., Lawlor, A. J., Woods, C., Vincent, C., Guyatt, H., and Hockenhull, K.: Role of riverine colloids in macronutrient and metal partitioning and transport, along an upland-lowland land-use continuum, under low-flow conditions, Sci. Total Environ., in press, https://doi.org/10.1016/j.scitotenv.2011.11.061, 2012.
Jennerjahn, T. C., Knoppers, B. A., de Souze, W. F. L., Brunskill, G. J., Silva, E. I. L., and Adi, S.: Factors controlling dissolved silica in tropical rivers, in: The silicon cycle, edited by: Ittekot, V., Unger, D., Humborg, C., and Tac An, N., Island Press, Washington, 29–51, 2006. Jetten, V., and Favis-Mortlock, D.: Modelling soil erosion in europe, in: Soil erosion in europe edited by: Boardman, J., and Poesen, J., Wiley, https://doi.org/10.1002/0470859202.ch50, Chichester, 2006.
Jones, J. P., Sudicky, E. A., and McLaren, R. G.: Application of a fully-integrated surface-subsurface flow model at the watershed-scale: A case study, Water Resour. Res., 44, W03407, https://doi.org/10.1029/2006WR005603, 2008.
Jordan, S. J., Stoffer, J., and Nestlerode, J. A.: Wetlands as sinks for reactive nitrogen at continental and global scales: A meta-analysis, Ecosystems, 14, 144–155, 2011.
Junk, J. W., Bayley, P. B., and Sparks, R. E.: The flood pulse concept in river-floodplain systems, in: Canadian Journal Fisheries and Aquatic Sciences Special Publication, International Large River Symposium, 110–127, 1989.
Keuskamp, J. A., van Drecht, G., and Bouwman, A. F.: European-scale modelling of groundwater denitrification and associated n2o production, Environ. Pollut., 165, 67–76, https://doi.org/10.1016/j.envpol.2012.02.008, 2012.
Kirkby, M. J., Jones, R. J. A., Irvine, B., Gobin, A., Govers, G., Cerdan, O., Van Rompaey, A. J. J., Le Bissonnais, Y., Daroussin, J., King, D., Montanarella, L., Grimm, M., Vieillefont, V., Puigdefabregas, J., Boer, M., Kosmas, C., Yassoglou, N., Tsara, M., Mantel, S., Van Lynden, G. J., and Huting, J.: Pan-european soil erosion risk assessment: The pesera map, version 1 october 2003. Explanation of special publication ispra 2004 no. 73 (s.P.I.04.73), Office for Official Publications of the European Communities, LuxembourgEuropean Soil Bureau Research Report No. 16, EUR 21176, 18 pp. and 11 map in ISO B11 format, 2004.
Krause, S., Heathwaite, L., Binley, A., and Keenan, P.: Nitrate concentration changes at the groundwater-surface water interface of a small cumbrian river, Hydrol. Proc., 23, 2195–2211, 2009.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogeé, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochemical Cycles, 19, GB1015, https://doi.org/10.1029/ 2003GB002199, 2005.
Lambert, C. P., and Walling, D. E.: Floodplain sedimentation: A preliminary investigation of contemporary deposition within the lower reaches of the river culm, devon, uk, Geografiska Annaler, 69A, 393–404, 1987.
Larned, S. T., Datry, T., and Robinson, C. T.: Invertebrate and microbial responses to inundation in an ephemeral river reach in new zealand: Effects of preceding dry periods, Aquatic Sciences: Research Across Boundaries, 69, 554–567, 2007.
Laruelle, G. G., Roubeix, V., Sferratore, A., Brodherr, B., Ciuffa, D., Conley, D. J., Dürr, H. H., Garnier, J., Lancelot, C., LeThiPhuong, Q., Meunier, J. D., Meybeck, M., Michalopoulos, P., Moriceau, B., Ni Longphuirt, S., Loucaides, S., Papush, L., Presti, M., Ragueneau, O., Regnier, P., Saccone, L., Slomp, C. P., Spiteri, C., and Van Cappellen, P.: Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition, Global Biogeochem. Cy., 23, https://doi.org/10.1029/2008GB003267, 2009.
Lauerwald, R., Hartmann, J., Moosdorf, N., Dürr, H. H., and Kempe, S.: Retention of dissolved silica within the fluvial system of the conterminous USA, Biogeochemistry, 1–23, 2012.
Lawler, D. M.: The measurement of river bank erosion and lateral channel change: A review, Earth Surf. Proc. Land., 18, 777–821, 1993.
Lee, M. S., Lee, K. K., Hyun, Y., Clement, T. P., and Hamilton, D.: Nitrogen transformation and transport modeling in groundwater aquifers, Ecol. Modell., 192, 143–159, 2006.
Lehner, B. and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22, 2004.
Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography derived from spaceborne elevation data, Eos, 89, 93–94, 2008.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ., https://doi.org/10.1890/100125, 2011.
Liu, J., Liang, X., Yang, J., Ye, Y., Su, M., Nie, Z., and Chen, Y.: Size distribution and composition of phosphorus in the east tiao river, china: The significant role of colloids, J. Environ. Mon., 13, 2844–2850, https://doi.org/2810.1039/C2841EM10482A, 2011.
Loos, S., Middelkoop, H., van der Perk, M., and van Beek, R.: Large scale nutrient modelling using globally available datasets: A test for the rhine basin, J. Hydrol., 369, 403–415, 2009.
Lorenz, C. M., Van Dijk, G. M., Van Hattum, A. G. M., and Cofino, W. P.: Concepts in river ecology: Implications for indicator development, Regulated Rivers: Research and Management, 13, 501–516, 1997.
Malard, F., Tockner, K., Dole-Olivier, M. J., and Ward, J. V.: A landscape perspective of surface-subsurface hydrological exchanges in river corridors, Freshwater Biol., 47, 621–640, 2002.
Manzoni, S. and Poporato, A.: Common hydrologic and biogeochemical controls along the soil-stream continuum, Hydrol. Proc., 25, 1355–1360, https://doi.org/10.1002/hyp.7938, 2011.
Marcé, R. and Armengol, J.: Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics, Hydrol. Earth Syst. Sci., 13, 953–967, https://doi.org/10.5194/hess-13-953-2009, 2009.
Maurice, P. A., Cabaniss, S. E., Drummond, J., and Ito, E.: Hydrogeochemical controls on the variations in chemical characteristics of natural organic matter at a small freshwater wetland, Chem. Geol., 187, 59–77, 2002.
Maxwell, R. M.: Coupled surface-subsurface modeling across a range of temporal and spatial scales, Vadose Zone Journal https://doi.org/10.2136/vzj2009.0117, 2009.
Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., Bouwman, A. F., Fekete, B. M., Kroeze, C., and Van Drecht, G.: Global nutrient export from watersheds 2 (news 2): Model development and implementation, Environ. Modell. Software, 25, 837–853, 2010.
McClain, M. E., and Naiman, R. J.: Andean influences on the biogeochemistry and ecology of the amazon river, BioScience, 58, 325–338, 2008.
McIntyre, R. E. S., Adams, M. A., Ford, D. J., and Grierson, P. F.: Rewetting and litter addition influence mineralisation and microbial communities in soils from a semi-arid intermittent stream, Soil Biol. Biochem., 41, 92–101, 2009.
Melack, J.: Biogeochemistry: Riverine carbon dioxide release, Nat. Geosci., 4, 821–822, 2011.
Melles, S. J., Jones, N. E., and Schmidt, B.: Review of theoretical developments in stream ecology and their influence on stream classification and conservation planning, Freshwater Biol., 57, 415–434, 2012.
Merot, P., Squividant, H., Aurousseau, P., Hefting, M., Burt, T., Maitre, V., Kruk, M., Butturini, A., Thenail, C., and Viaud, V.: Testing a climato-topographic index for predicting wetlands distribution along an european climate gradient, Ecol. Modell., 163, 51–71, 2003.
Meybeck, M.: Carbon, nitrogen and phosphorous transport by world rivers, Am. J. Sci., 282, 401–450, 1982.
Middelkoop, H. and Asselman, N. E. M.: Spatial variability of floodplain sedimentation at the event scale in the rhine-meuse delta, The netherlands, Earth Surf. Proc. Land., 23, 561–573, 1998.
Middelkoop, H. and Van der Perk, M.: Modelling spatial patterns of overbank sedimentation on embanked floodplains, Geografiska Annaler, 80A, 95–109, 1998.
Milly, P. C. M. and Schmakin, A. B.: Global modeling of land water and energy balances, Part I: The land dynamics (lad) model, J. Hydrometeorol., 3, 283–299, 2002.
Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., and Styczen, M. E.: The european soil erosion model (eurosem): A dynamic approach for predicting sediment transport from fields and small catchments, Earth Surf. Proc. Land., 23, 527–544, 1998.
Morgan, R. P. C.: A simple approach to soil loss prediction: A revised morgan-morgan-finney model, Catena, 44, 305–322, 2001.
Newbold, J. D., Elwood, J. W., O'Neill, R. V., and Winkle, W. V.: Measuring nutrient spiraling in streams, Can. J. Fish. Aquat. Sci., 38, 860–863, 1981.
Nicholas, A. P. and Walling, D. E.: Modelling flood hydraulics and overbank deposition on river floodplains, Earth Surf. Proc. Land., 22, 59–77, 1997.
Nielsen, E. and Richardson, K.: Can changes in the fisheries yield in the kattegat (1950–1992) be linked to changes in primary production?, ICES J. Mar. Sci., 53, 988–994, 1996.
Officer, C. B. and Ryther, J. H.: The possible importance of silicon in marine eutrophication, Mar. Eco. Prog. Ser., 3, 83–91, 1980.
Oki, T., Agata, Y., Kanae, S., Saruhashi, T., Yang, D., and Musiake, K.: Global assessment of current water resources using total runoff integrating pathways, Hydrol. Sci. J., 46, 983–995, 2001.
Peierls, B. L., Caraco, N. F., Pace, M. L., and Cole, J. C.: Human influence on river nitrogen, Nature, 350, 386–387, 1991.
Petts, G. E.: Rivers: Dynamic components of catchment ecosystems, in: The river handbook. Hydrological and ecological principles, Vol. 2., edited by: Calow, P., and Petts, G. E., Blackwell Scientific Publications, Oxford, 3–22, 1994.
Pokrovsky, O. S. and Schott, J.: Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (nw russia), Chem. Geol., 190, 141–179, 2002.
Poole, G. C.: Fluvial landscape ecology: Addressing uniqueness within the river discontinuum, Freshwater Biol., 47, 641–660, 2002.
Postma, D., Boesen, C., Kristiansen, H., and Larsen, F.: Nitrate reduction in an unconfined sandy aquifer: Water chemistry, reduction processes, and geochemical modeling, Water Resour. Res., 27, 2027–2045, 1991.
Prosser, I. P. and Rustomji, P.: Sediment transport capacity relations for overland flow, Prog. Phys. Geogr., 24, 179–193, 2000.
Prosser, I. P., Rutherford, I. D., Olley, J. M., Young, W. J., Wallbrink, P. J., and Moran, C. J.: Large-scale patterns of erosion and sedimentation transport in river networks, with examples from australia, Mar. Freshw. Res., 52, 81–99, 2001.
Qualls, R. G. and Haines, B. L.: Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water, Soil Sci. Soc. Am. J., 56, 578–586, 1992.
Raat, K. J., Vrugt, J. A., Bouten, W., and Tietema, A.: Towards reduced uncertainty in catchment nitrogen modelling: Quantifying the effect of field observation uncertainty on model calibration, Hydrol. Earth Syst. Sci., 8, 751–763, 2004.
Ranalli, A. J. and Macalady, D. L.: The importance of the riparian zone and in-stream processes in nitrate attenuation in undisturbed and agricultural watersheds: A review of the scientific literature, J. Hydrol., 389, 406–415, 2010.
Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E., McDowell, W. H., and Newbold, D.: Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers, Limnol. Oceanogr., Fluids Environ., 2, 41–53, https://doi.org/10.1215/21573689-1597669, 2012.
Reddy, K. R., Kadlec, R. H., Flaig, E., and Gale, P. M.: Phosphorus retention in streams and wetlands: A review, Critical Reviews in Environ. Sci. Techn., 29, 83–146, 1999.
Reid, D. J., Quinn, G. P., Lake, P. S., and Reich, P.: Terrestrial detritus supports the food webs in lowland intermittent streams of south-eastern australia: A stable isotope study, Freshw. Biol., 53, 2036–2050, 2008.
Richards, K.: Sediment delivery and the drainage network, in: Channel network hydrology, edited by: Beven, K. and Kirkby, M. J., Wiley, Chichester, 221–254, 1993.
Richardson, C. J. and Qian, S. S.: Long-term phosphorus assimilative capacity in freshwater wetlands: A new paradigm for sustaining ecosystem structure and function, Environ. Sci. Techn., 33, 1545–1551, https://doi.org/10.1021/es980924a, 1999.
Rip, J. M. K. and McCann, K. S.: Cross-ecosystem differences in stability and the principle of energy flux, Ecol. Lett., 14, 733–740, 2011.
Rodhe, A. and Seibert, J.: Wetland occurrence in relation to topography: A test of topographic indices as moisture indicators, Agricultural and Forest Meteorology, 98–99, 325–340, 1999.
Sabater, S., Butturini, A., Clement, J. C., Burt, T., Dowrick, D., Hefting, M., Maître, V., Pinay, G., Postolache, C., Rzepecki, M., and Sabater, F.: Nitrogen removal by riparian buffers along a european climatic gradient: Patterns and factors of variation, Ecosystems, 6, 20–30, 2003.
Sanchez, P. A., Ahamed, S., Carré, F., Hartemink, A. E., Hempel, J., Huising, J., Lagacherie, P., McBratney, A. B., McKenzie, N. J., De Lourdes Mendonça-Santos, M., Minasny, B., Montanarella, L., Okoth, P., Palm, C. A., Sachs, J. D., Shepherd, K. D., Vågen, T. G., Vanlauwe, B., Walsh, M. G., Winowiecki, L. A., and Zhang, G. L.: Digital soil map of the world, Science, 325, 680–681, 2009.
Sanzone, D. M., Meyer, J. L., Marti, E., Gardiner, E. P., Tank, J. L., and Grimm, N. B.: Carbon and nitrogen transfer from a desert stream to riparian predators, Oecologia, 134, 238–250, 2003.
Sear, D. A., Armitage, P. D., and Dawson, F. H.: Groundwater dominated rivers, Hydrol. Proc., 13, 255–276, 1999.
Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., and Bouwman, A. F.: Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of global news models and their application, Global Biogeochem. Cy., 19, GB4S, https://doi.org/10.1029/2004GB002453, 2005.
Seitzinger, S. P., Mayorga, E., Bouwman, A. F., Kroeze, C., Beusen, A. H. W., Billen, G., Van Drecht, G., Dumont, E., Fekete, B. M., Garnier, J., Harrison, J., Wisser, D., and Wollheim, W. M.: Global river nutrient export: A scenario analysis of past and future trends, Global Biogeochem. Cy., 23, https://doi.org/10.1029/2009GB003587, 2010.
Sferratore, A., Billen, G., Garnier, J., and Théry, S.: Modeling nutrient (n, p, si) budget in the seine watershed: Application of the riverstrahler model using data from local to global scale, Glob. Biogeochem. Cy., 19, GB4S07, https://doi.org/10.1029/2005GB002496, 2005.
Siemens, J., Haas, M., and Kaupenjohann, M.: Dissolved organic matter induced denirtification in subsoils and aquifers?, Geoderma, 113, 253–271, 2003.
Sitch, S., Smith, B., Prentice, J. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonike, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the lpj dynamic global vegetation model, Global Change Biol., 9, 161–185, 2003.
Skahill, B. E.: Use of the hydrological simulation program – fortran (hspf) model for watershed studies, System-wide Modeling, Assessment, Restoration and Technologies (SMART)/U.S. Army Engineer Research and Development Center (ERDC), 26, 2004.
Smith, R. A., Schwarz, G. E., and Alexander, R. B.: Regional interpretation of water-quality monitoring data, Water Resour. Res., 33, 2781–2798, 1997.
Sperna Weiland, F. C.: Hydrological impacts of climate change. Interpretation of uncertainties introduced by global models of climate and hydrology, PhD, Utrecht University, 2011.
Stanley, E. H., Fisher, S. G., and Grimm, N. B.: Ecosystem expansion and contraction: A desert stream perspective, Bioscience, 47, 427–435, 1997.
Stanley, E. H., Powers, S. M., and Lottig, N. R.: The evolving legacy of disturbance in stream ecology: Concepts, contributions, and coming challenges, J. N. Am. Bent. Soc., 29, 67–83, https://doi.org/10.1899/08-027.1, 2010.
Starr, R. C. and Gillham, R. W.: Denitrification and organic carbon availability in two aquifers, Ground Water, 31, 934–947, 1993.
Statzner, B. and Higler, B.: Stream hydraulics as a major determinant of benthic invertebrate zonation patterns, Freshw. Biol., 16, 127–139, 1986.
Steiger, J., Gurnell, A. M., and Goodson, J. M.: Quantifying and characterizing contemporary riparian sedimentation, River Res. Appl., 19, 335–352, 2003.
Stergiou, K. I. and Browman, H. I.: Bridging the gap between aquatic and terrestrial ecology, Mar. Ecol. Prog. Ser., 304, 271–307, 2005.
Sterner, R. W. and Elser, J. J.: Ecological stoichiometry: The biology of elements from molecules to the biosphere, Princeton University Press, Princeton, NJ, USA, 2002.
Stordal, M. C., Santschi, P. H., and Gill, G. A.: Colloidal pumping: Evidence for the coagulation process using natural colloids tagged with 203hg, Environ. Sci. Techn., 30, 3335–3340, 1996.
Strahler, A. N.: Dynamic basis of geomorphology, Geol. Soc. Am. Bull., 63, 923–938, 1952.
Stream Solute Workshop: Concepts and methods for assessing solute dynamics in stream ecosystems, J. N. Am. Benthol. Soc., 9, 95–119, 1990.
Struyf, E., Smis, A., Van Damme, S., Garnier, J., Govers, G., Van Wesemael, B., Conley, D. J., Batelaan, O., Frot, E., Clymans, W., Vandevenne, F., Lancelot, C., Goos, P., and Meire, P.: Historical land use change has lowered terrestrial silica mobilization, Nat. Commun., 1:129, https://doi.org/10.1038/ncomms1128, 2010.
Stumm, W.: The acceleration of the hydrogeochemical cycling of phosphorus, Water Res., 7, 131–144, https://doi.org/10.1016/0043-1354(73)90158-9, 1973.
Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J., and Green, P.: Impact of humans on the flux of terrestrial sediment to the global coastal ocean, Science, 308, 376–380, 2005.
Thorp, J. H. and Delong, M. D.: The riverine productivity model: An heuristic view of carbon sources and organic processing in large river ecosystems, Oikos, 70, 305–308, 1994.
Thorp, J. H., Thoms, M. C., and Delong, M. D.: The riverine ecosystem synthesis: Biocomplexity in river networks across space and time, River Res. Appl., 22, 123–147, 2006.
Turner, R. E., Rabalais, N. N., and Justic, D.: Gulf of mexico hypoxia: Alternate states and a legacy, Environ. Sci. Technol., 42, 2323–2327, https://doi.org/10.1021/es071617k, 2008.
USEPA: Hydrological simulation program – fortran (HSPF), www.Epa.Gov/ceampubl/swater/hspf/, 2011.
Van Beek, L. P. H., Wada, Y., and Bierkens, M. F. P.: Global monthly water stress: 1. Water balance and water availability, Water Resour. Res., 47, W07517, https://doi.org/10.1029/2010wr009791, 2011.
Van de Wiel, M. J.: Numerical modelling of channel adjustment in alluvial meandering rivers with riparian vegetation, Department of Geography, University of Southampton, Southamptom, 2003.
Van Dijk, P. M., and Kwaad, F. J. P. M.: Modelling suspended sediment supply to the river rhine drainage network: A methodological study, Int. Assoc. Hydrol. Sci. Publ., 249, 165–176, 1998.
Van Drecht, G., Bouwman, A. F., Knoop, J. M., Beusen, A. H. W., and Meinardi, C. R.: Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater and surface water, Global Biogeochem. Cy., 17, 1115, https://doi.org/10.129/2003GB002060, 2003.
Van Drecht, G., Bouwman, A. F., Harrison, J., and Knoop, J. M.: Global nitrogen and phosphate in urban waste water for the period 1970–2050, Global Biogeochem. Cy., 23, GB0A03, https://doi.org/10.1029/2009GB003458, 2009.
Van Rompaey, A., Verstraeten, G., Van Oost, K., Govers, G., and Poesen, J.: Modelling mean annual sediment yield using a distributed approach, Earth Surf. Proc. Land., 26, 1221–1236, 2001.
Van Vliet, M. T. H., Ludwig, F., Zwolsman, J. J. G., Weedon, G. P., and Kabat, P.: Global river temperatures and sensitivity to atmospheric warming and changes in river flow, Water Resour. Res., 47, W02544, https://doi.org/10.1029/2010WR009198, 2011.
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing, C. E.: The river continuum concept, Can. J. Fish. Aquat. Sci., 37, 130–137, 1980.
Vaughan, I. P., Diamond, M., Gurnell, A. M., Hall, K. A., Jenkins, A., Milner, N. J., Naylor, L. A., Sear, D. A., Woodward, G., and Ormerod, S. J.: Integrating ecology with hydromorphology: A priority for river science and management, Aquatic Conservation, Mar. Freshw. Ecosyst., 19, 113–125, 2009.
Velthof, G. L., Oudendag, D., Witzke, H. P., Asman, W. A. H., Klimont, Z., and Oenema, O.: Integrated assessment of nitrogen losses from agriculture in eu-27 using miterra-europe, J. Environ. Qual., 38, 402–417, 2009.
Venohr, M., Donohue, I., Fogelberg, S., Arheimer, B., Irvine, K., and Behrendt, H.: Nitrogen retention in a river system and the effects of river morphology and lakes, Water Sci. Techn., 51, 19–29, 2005.
Verstraeten, G., and Poesen, J.: Estimating trap efficiency of small reservoirs and ponds: Methods and implications for the assessment of sediment yield, Prog. Phys. Geogr., 24, 219–251, 2000.
Vidon, P. G. and Hill, A. R.: Landscape controls on the nitrate removal in stream riparian zones, Water Resour. Res., 40, W03201, https://doi.org/10.1029/2003WR002473, 2004a.
Vidon, P. G. F. and Hill, A. R.: Landscape controls on the hydrology of stream riparian zones, J. Hydrol., 292, 210–228, https://doi.org/10.1016/j.jhydrol.2004.01.005, 2004b.
Viviroli, D. and Weingartner, R.: The hydrological significance of mountains: from regional to global scale, Hydrol. Earth Syst. Sci., 8, 1017–1030, https://doi.org/10.5194/hess-8-1017-2004, 2004.
Vollenweider, R. A., Marchetti, R., and Viviani, R.: Marine coastal eutrophication, in, Elsevier, Amsterdam, 1310, 1992.
Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P., and Syvitski, J. P. M.: Anthropogenic sediment retention: Major global impact from registered river impoundments, Global Planet. Change, 39, 169–190, 2003.
Walling, D. E.: The sediment delivery problem, J. Hydrol., 65, 209–237, 1983.
Walling, D. E., Owens, P. N., Carter, J., Leeks, G. J. L., Lewis, S., Meharg, A. A., and Wright, J.: Storage of sedimentassociated nutrients and contaminants in river channel and floodplain systems, Appl. Geochem., 18, 195–220, 2003.
Walling, D. E.: Human impact on land–ocean sediment transfer by the world's rivers, Geomorphology, 79, 192–216, 2006.
Ward, J. V. and Stanford, J. A.: The serial discontinuity concept of lotic ecosystems, in: Dynamics of lotic ecosystems, edited by: Fontaine, T. D., and Bartell, S. M., Ann Arbor Science, Ann Arbor, 29–42, 1983.
Ward, J. V., Tockner, K., Uehlinger, U., and Malard, F.: Understanding natural patterns and processes in river corridors as the basis for effective river restoration, Regulated Rivers, Res. Manage., 17, 311–323, 2001.
Webster, J.: Analysis of potassium and calcium dynamics in stream ecosystems on three southern apalachian watersheds of contrasting vegetation, PhD, University of Georgia at Athens, Athens, 1975.
Webster, J. R., and Meyer, J. L.: Organic matter budgets for streams: A synthesis, J. N. Am. Benthol. Soc., 16, 141–161, 1997.
Webster, J. R., Benfield, E. F., Ehrman, T. P., Schaeffer, M. A., Tank, J. L., Hutchens, J. J., and D'Angelo, D. J.: What happens to allochthonous material that falls into streams? A synthesis of new and published information from coweeta, Freshwater Biol., 41, 687–705, https://doi.org/10.1046/j.1365-2427.1999.00409.x, 1999.
Wen, L. S., Santschi, P. H., and Tang, D.: Interactions between radioactively labeled colloids and natural particles: Evidence for colloidal pumping, Geochim. Cosmochim. Ac., 61, 2867–2878, 1997.
Wendland, F., Blum, A., Coetsiers, M., Gorova, R., Griffioen, J., Grima, J., Hinsby, K., Kunkel, R., Marandi, A., Melo, T., Panagopoulos, A., Pauwels, H., Ruisi, M., Traversa, P., Vermooten, J., and Walraevens, K.: European aquifer typology: A practical framework for an overview of major groundwater composition at european scale, Environ. Geol., 55, 77–85, https://doi.org/10.1007/s00254-007-0966-5, 2008.
White, A. F., Schulz, M. S., Vivit, D. V., Blum, A. E., Stonestrom, D. A., and Harden, J. W.: Chemical weathering rates of a soil chronosequence on granitic alluvium: III. Hydrochemical evolution and contemporary solute fluxes and rates, Geochim. Cosmochim. Ac., 69, 1975–1996, 2005.
Whitehead, P. G., Wilson, E. J., and Butterfield, D.: A semi-distributed integrated nitrogen model for multiple source assessment in catchments (INCA): Part I – model structure and process equations, Sci. Total Environ., 210–211, 547–558, 1998a.
Whitehead, P. G., Wilson, E. J., Butterfield, D., and Seed, K.: A semi-distributed integrated flow and nitrogen model for multiple source assessment in catchments (INCA): Part II – application to large river basins in south wales and eastern england, Sci. Total Environ., 210–211, 559–583, 1998b.
Wide\'{i}n-Nilsson, E., Halldin, S., and Xu, C.: Global water-balance modelling with wasmod-m: Parameter estimation and regionalization, J. Hydrol., 340, 105–118, 2007.
Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F. P., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P. R., Kollet, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., and Whitehead, P.: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring earth's terrestrial water, Water Resour. Res., 47, W05301, https://doi.org/10.1029/2010wr010090, 2011.
Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A physically based description of floodplain inundation dynamics in a global river routing model, Water Resour. Res., 47, W04501, https://doi.org/10.1029/2010WR009726, 2011.
Zhang, Y.-C., Slomp, C. P., Broers, H. P., Passier, H. F., and Van Cappellen, P.: Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer, Geochim. Cosmochim. Ac., 73, 6716–6726, 2009.