Research article 12 Sep 2013
Research article | 12 Sep 2013
Late Holocene variations in Pacific surface circulation and biogeochemistry inferred from proteinaceous deep-sea corals
T. P. Guilderson et al.
Related authors
D. D. Lucas, C. Yver Kwok, P. Cameron-Smith, H. Graven, D. Bergmann, T. P. Guilderson, R. Weiss, and R. Keeling
Geosci. Instrum. Method. Data Syst., 4, 121–137, https://doi.org/10.5194/gi-4-121-2015, https://doi.org/10.5194/gi-4-121-2015, 2015
Short summary
Short summary
Multiobjective optimization is used to design Pareto optimal greenhouse gas (GHG) observing networks. A prototype GHG network is designed to optimize scientific performance and measurement costs. The Pareto frontier is convex, showing the trade-offs between performance and cost and the diminishing returns in trading one for the other. Other objectives and constraints that are important in the design of practical GHG monitoring networks can be incorporated into our method.
T. M. Hill, C. R. Myrvold, H. J. Spero, and T. P. Guilderson
Biogeosciences, 11, 3845–3854, https://doi.org/10.5194/bg-11-3845-2014, https://doi.org/10.5194/bg-11-3845-2014, 2014
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
David A. Koweek, Kerry J. Nickols, Paul R. Leary, Steve Y. Litvin, Tom W. Bell, Timothy Luthin, Sarah Lummis, David A. Mucciarone, and Robert B. Dunbar
Biogeosciences, 14, 31–44, https://doi.org/10.5194/bg-14-31-2017, https://doi.org/10.5194/bg-14-31-2017, 2017
Short summary
Short summary
This paper presents results from a year-long study of a kelp forest offshore of Pacific Grove, California. We use tools and techniques from chemistry to study the kelp forest. We find very large chemical variability in the kelp forest, primarily between the surface of the water and the bottom of the forest. There are many reasons for this variability; we conclude that both regional upwelling and kelp growth are responsible for contributing to this variability.
Justine Kimball, Robert Eagle, and Robert Dunbar
Biogeosciences, 13, 6487–6505, https://doi.org/10.5194/bg-13-6487-2016, https://doi.org/10.5194/bg-13-6487-2016, 2016
Short summary
Short summary
Deep-sea corals are a potentially valuable archive of temperature and ocean chemistry. We analyzed clumped isotope signatures (Δ47) in live-collected aragonitic scleractinian and high-Mg calcitic gorgonian deep-sea corals and compared results to published data and found offsets between taxa. The observed patterns in deep-sea corals may record distinct mineral equilibrium signatures due to very slow growth rates, kinetic isotope effects, and/or variable acid digestion fractionation factors.
H. B. DeJong, R. B. Dunbar, D. Mucciarone, and D. A. Koweek
Biogeosciences, 12, 6881–6896, https://doi.org/10.5194/bg-12-6881-2015, https://doi.org/10.5194/bg-12-6881-2015, 2015
Short summary
Short summary
We calculate the carbonate saturation state of surface water from the Ross Sea and along a transect between the Ross Sea and southern Chile using ~ 1700 total alkalinity measurements. Our results suggest that variability in surface carbonate saturation state is driven by biological productivity. We argue that in the Ross Sea the aragonite saturation state of surface water during the early spring never falls below 1.2.
D. D. Lucas, C. Yver Kwok, P. Cameron-Smith, H. Graven, D. Bergmann, T. P. Guilderson, R. Weiss, and R. Keeling
Geosci. Instrum. Method. Data Syst., 4, 121–137, https://doi.org/10.5194/gi-4-121-2015, https://doi.org/10.5194/gi-4-121-2015, 2015
Short summary
Short summary
Multiobjective optimization is used to design Pareto optimal greenhouse gas (GHG) observing networks. A prototype GHG network is designed to optimize scientific performance and measurement costs. The Pareto frontier is convex, showing the trade-offs between performance and cost and the diminishing returns in trading one for the other. Other objectives and constraints that are important in the design of practical GHG monitoring networks can be incorporated into our method.
T. M. Hill, C. R. Myrvold, H. J. Spero, and T. P. Guilderson
Biogeosciences, 11, 3845–3854, https://doi.org/10.5194/bg-11-3845-2014, https://doi.org/10.5194/bg-11-3845-2014, 2014
Related subject area
Biogeochemistry: Open Ocean
Cross-basin differences in the nutrient assimilation characteristics of induced phytoplankton blooms in the subtropical Pacific waters
Dynamics of the deep chlorophyll maximum in the Black Sea as depicted by BGC-Argo floats
Nitrate assimilation and regeneration in the Barents Sea: insights from nitrate isotopes
Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design
Southern Ocean Biogeochemical Argo detect under-ice phytoplankton growth before sea ice retreat
A new intermittent regime of convective ventilation threatens the Black Sea oxygenation status
Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean
Particulate rare earth element behavior in the North Atlantic (GEOVIDE cruise)
Compound high temperature and low chlorophyll extremes in the ocean over the satellite period
Elevated sources of cobalt in the Arctic Ocean
Increase in ocean acidity variability and extremes under increasing atmospheric CO2
Can ocean community production and respiration be determined by measuring high-frequency oxygen profiles from autonomous floats?
Oxygen budget for the north-western Mediterranean deep convection region
Assessing the value of biogeochemical Argo profiles versus ocean color observations for biogeochemical model optimization in the Gulf of Mexico
Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean
The Southern Annular Mode (SAM) influences phytoplankton communities in the seasonal ice zone of the Southern Ocean
Linking intrinsic and apparent relationships between phytoplankton and environmental forcings using machine learning ‐ What are the challenges?
Contrasted release of insoluble elements (Fe, Al, REE, Th, Pa) after dust deposition in seawater: a tank experiment approach
Profiling float observation of thermohaline staircases in the western Mediterranean Sea and impact on nutrient fluxes
Ocean carbonate system variability in the North Atlantic Subpolar surface water (1993–2017)
Characterizing the surface microlayer in the Mediterranean Sea: trace metal concentrations and microbial plankton abundance
Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology
Phytoplankton and dimethylsulfide dynamics at two contrasting Arctic ice edges
Experiment design and bacterial abundance control extracellular H2O2 concentrations during four series of mesocosm experiments
Seasonal cycling of zinc and cobalt in the Southeast Atlantic along the GEOTRACES GA10 section
Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01)
No nitrogen fixation in the Bay of Bengal?
Trends and decadal oscillations of oxygen and nutrients at 50 to 300 m depth in the equatorial and North Pacific
Physical drivers of the nitrate seasonal variability in the Atlantic cold tongue
Coccolithophore biodiversity controls carbonate export in the Southern Ocean
Arctic (Svalbard islands) active and exported diatom stocks and cell health status
How will the key marine calcifier Emiliania huxleyi respond to a warmer and more thermally variable ocean?
Ideas and perspectives: Is dark carbon fixation relevant for oceanic primary production estimates?
Sensitivity of ocean biogeochemistry to the iron supply from the Antarctic Ice Sheet explored with a biogeochemical model
Isotopic fractionation of carbon during uptake by phytoplankton across the South Atlantic subtropical convergence
The effect of marine aggregate parameterisations on nutrients and oxygen minimum zones in a global biogeochemical model
Sensitivity of atmospheric CO2 to regional variability in particulate organic matter remineralization depths
Nutrient distribution and nitrogen and oxygen isotopic composition of nitrate in water masses of the subtropical southern Indian Ocean
What drives the latitudinal gradient in open-ocean surface dissolved inorganic carbon concentration?
Investigating the effect of El Niño on nitrous oxide distribution in the eastern tropical South Pacific
Reciprocal bias compensation and ensuing uncertainties in model-based climate projections: pelagic biogeochemistry versus ocean mixing
Inputs and processes affecting the distribution of particulate iron in the North Atlantic along the GEOVIDE (GEOTRACES GA01) section
Atmospheric deposition fluxes over the Atlantic Ocean: a GEOTRACES case study
Phytoplankton calcifiers control nitrate cycling and the pace of transition in warming icehouse and cooling greenhouse climates
Evidence of high N2 fixation rates in the temperate northeast Atlantic
The oceanic cycle of carbon monoxide and its emissions to the atmosphere
The export flux of particulate organic carbon derived from 210Po∕210Pb disequilibria along the North Atlantic GEOTRACES GA01 transect: GEOVIDE cruise
The composition and distribution of semi-labile dissolved organic matter across the southwest Pacific
Quantitative mapping and predictive modeling of Mn nodules' distribution from hydroacoustic and optical AUV data linked by random forests machine learning
Artificial radionuclides in neon flying squid from the northwestern Pacific in 2011 following the Fukushima accident
Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya
Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021, https://doi.org/10.5194/bg-18-897-2021, 2021
Short summary
Short summary
We investigated the nutrient assimilation characteristics of deep-water-induced phytoplankton blooms across the subtropical North and South Pacific Ocean. Nutrient drawdown ratios of dissolved inorganic nitrogen to phosphate were anomalously low in the western North Pacific, likely due to the high phosphate uptake capability of low-phosphate-adapted phytoplankton. The anomalous phosphate uptake might influence the maintenance of chronic phosphate depletion in the western North Pacific.
Florian Ricour, Arthur Capet, Fabrizio D'Ortenzio, Bruno Delille, and Marilaure Grégoire
Biogeosciences, 18, 755–774, https://doi.org/10.5194/bg-18-755-2021, https://doi.org/10.5194/bg-18-755-2021, 2021
Short summary
Short summary
This paper addresses the phenology of the deep chlorophyll maximum (DCM) in the Black Sea (BS). We show that the DCM forms in March at a density level set by the winter mixed layer. It maintains this location until June, suggesting an influence of the DCM on light and nutrient profiles rather than mere adaptation to external factors. In summer, the DCM concentrates ~55 % of the chlorophyll in a 10 m layer at ~35 m depth and should be considered a major feature of the BS phytoplankton dynamics.
Robyn E. Tuerena, Joanne Hopkins, Raja S. Ganeshram, Louisa Norman, Camille de la Vega, Rachel Jeffreys, and Claire Mahaffey
Biogeosciences, 18, 637–653, https://doi.org/10.5194/bg-18-637-2021, https://doi.org/10.5194/bg-18-637-2021, 2021
Short summary
Short summary
The Barents Sea is a rapidly changing shallow sea within the Arctic. Here, nitrate, an essential nutrient, is fully consumed by algae in surface waters during summer months. Nitrate is efficiently regenerated in the Barents Sea, and there is no evidence for nitrogen loss from the sediments by denitrification, which is prevalent on other Arctic shelves. This suggests that nitrogen availability in the Barents Sea is largely determined by the supply of nutrients in water masses from the Atlantic.
David Ford
Biogeosciences, 18, 509–534, https://doi.org/10.5194/bg-18-509-2021, https://doi.org/10.5194/bg-18-509-2021, 2021
Short summary
Short summary
Biogeochemical-Argo floats are starting to routinely measure ocean chlorophyll, nutrients, oxygen, and pH. This study generated synthetic observations representing two potential Biogeochemical-Argo observing system designs and created a data assimilation scheme to combine them with an ocean model. The proposed system of 1000 floats brought clear benefits to model results, with additional floats giving further benefit. Existing satellite ocean colour observations gave complementary information.
Mark Hague and Marcello Vichi
Biogeosciences, 18, 25–38, https://doi.org/10.5194/bg-18-25-2021, https://doi.org/10.5194/bg-18-25-2021, 2021
Short summary
Short summary
This paper examines the question of what causes the rapid spring growth of microscopic marine algae (phytoplankton) in the ice-covered ocean surrounding Antarctica. One prominent hypothesis proposes that the melting of sea ice is the primary cause, while our results suggest that this is only part of the explanation. In particular, we show that phytoplankton are able to start growing before the sea ice melts appreciably, much earlier than previously thought.
Arthur Capet, Luc Vandenbulcke, and Marilaure Grégoire
Biogeosciences, 17, 6507–6525, https://doi.org/10.5194/bg-17-6507-2020, https://doi.org/10.5194/bg-17-6507-2020, 2020
Short summary
Short summary
The Black Sea is 2000 m deep, but, due to limited ventilation, only about the upper 100 m contains enough oxygen to support marine life such as fish. This oxygenation depth has been shown to be decreasing (1955–2019). Here, we evidence that atmospheric warming induced a clear shift in an important ventilation mechanism. We highlight the impact of this shift on oxygenation. There are important implications for marine life and carbon and nutrient cycling if this new ventilation regime persists.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Marion Lagarde, Nolwenn Lemaitre, Hélène Planquette, Mélanie Grenier, Moustafa Belhadj, Pascale Lherminier, and Catherine Jeandel
Biogeosciences, 17, 5539–5561, https://doi.org/10.5194/bg-17-5539-2020, https://doi.org/10.5194/bg-17-5539-2020, 2020
Natacha Le Grix, Jakob Zscheischler, Charlotte Laufkötter, Cécile S. Rousseaux, and Thomas L. Frölicher
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-412, https://doi.org/10.5194/bg-2020-412, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Marine ecosystems could suffer severe damage from the co-occurrence of a marine heatwave with extremely low chlorophyll concentration. Here, we provide a first assessment of compound marine heatwave and low chlorophyll events in the global ocean from 1998 to 2018. We reveal hotspots of these compound events in the equatorial Pacific and in the Arabian Sea, show that they mostly occur in summer at high latitudes, and that their frequency is modulated by large-scale modes of climate variability.
Randelle M. Bundy, Alessandro Tagliabue, Nicholas J. Hawco, Peter L. Morton, Benjamin S. Twining, Mariko Hatta, Abigail E. Noble, Mattias R. Cape, Seth G. John, Jay T. Cullen, and Mak A. Saito
Biogeosciences, 17, 4745–4767, https://doi.org/10.5194/bg-17-4745-2020, https://doi.org/10.5194/bg-17-4745-2020, 2020
Short summary
Short summary
Cobalt (Co) is an essential nutrient for ocean microbes and is scarce in most areas of the ocean. This study measured Co concentrations in the Arctic Ocean for the first time and found that Co levels are extremely high in the surface waters of the Canadian Arctic. Although the Co primarily originates from the shelf, the high concentrations persist throughout the central Arctic. Co in the Arctic appears to be increasing over time and might be a source of Co to the North Atlantic.
Friedrich A. Burger, Jasmin G. John, and Thomas L. Frölicher
Biogeosciences, 17, 4633–4662, https://doi.org/10.5194/bg-17-4633-2020, https://doi.org/10.5194/bg-17-4633-2020, 2020
Short summary
Short summary
Ensemble simulations of an Earth system model reveal that ocean acidity extremes have increased in the past few decades and are projected to increase further in terms of frequency, intensity, duration, and volume extent. The increase is not only caused by the long-term ocean acidification due to the uptake of anthropogenic CO2, but also due to changes in short-term variability. The increase in ocean acidity extremes may enhance the risk of detrimental impacts on marine organisms.
Christopher Gordon, Katja Fennel, Clark Richards, Lynn K. Shay, and Jodi K. Brewster
Biogeosciences, 17, 4119–4134, https://doi.org/10.5194/bg-17-4119-2020, https://doi.org/10.5194/bg-17-4119-2020, 2020
Short summary
Short summary
We describe a method for correcting errors in oxygen optode measurements on autonomous platforms in the ocean. The errors result from the relatively slow response time of the sensor. The correction method includes an in situ determination of the effective response time and requires the time stamps of the individual measurements. It is highly relevant for the BGC-Argo program and also applicable to gliders. We also explore if diurnal changes in oxygen can be obtained from profiling floats.
Caroline Ulses, Claude Estournel, Marine Fourrier, Laurent Coppola, Fayçal Kessouri, Dominique Lefèvre, and Patrick Marsaleix
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-277, https://doi.org/10.5194/bg-2020-277, 2020
Revised manuscript accepted for BG
Short summary
Short summary
We analyze the seasonal cycle of O2 and estimate an annual O2 budget in the north-western Mediterranean deep convection region, using a numerical model. We show that this region acts as a large sink of atmospheric O2 and as a major source of O2 for the western Mediterranean Sea. The decrease in the deep convection intensity predicted in recent projections may have important consequences on the overall uptake of O2 in the Mediterranean Sea and on the O2 exchanges with the Atlantic Ocean.
Bin Wang, Katja Fennel, Liuqian Yu, and Christopher Gordon
Biogeosciences, 17, 4059–4074, https://doi.org/10.5194/bg-17-4059-2020, https://doi.org/10.5194/bg-17-4059-2020, 2020
Short summary
Short summary
We assess trade-offs between different types of biological observations, specifically satellite ocean color and BGC-Argo profiles and the benefits of combining both for optimizing a biogeochemical model of the Gulf of Mexico. Using all available observations leads to significant improvements in observed and unobserved variables (including primary production and C export). Our results highlight the significant benefits of BGC-Argo measurements for biogeochemical model optimization and validation.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-274, https://doi.org/10.5194/bg-2020-274, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Silicon is the second-most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 18 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and two times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Bruce L. Greaves, Andrew T. Davidson, Alexander D. Fraser, John P. McKinlay, Andrew Martin, Andrew McMinn, and Simon W. Wright
Biogeosciences, 17, 3815–3835, https://doi.org/10.5194/bg-17-3815-2020, https://doi.org/10.5194/bg-17-3815-2020, 2020
Short summary
Short summary
We observed that variation in the Southern Annular Mode (SAM) over 11 years showed a relationship with the species composition of hard-shelled phytoplankton in the seasonal ice zone (SIZ) of the Southern Ocean. Phytoplankton in the SIZ are productive during the southern spring and summer when the area is ice-free, with production feeding most Antarctic life. The SAM is known to be increasing with climate change, and changes in phytoplankton in the SIZ may have implications for higher life forms.
Christopher Holder and Anand Gnanadesikan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-262, https://doi.org/10.5194/bg-2020-262, 2020
Revised manuscript accepted for BG
Short summary
Short summary
A frequent challenge for marine ecologists is linking small-scale relationships found in a lab to broader relationships observed on large scales in the environment. We investigated whether machine learning (ML) could help connect these small and large-scale relationships. ML can recover the small-scale relationships when the small and large-scale relationships operate on similar time and spatial scales, but this breaks down when the variability in the observations is lost due to time-averaging.
Matthieu Roy-Barman, Lorna Folio, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-247, https://doi.org/10.5194/bg-2020-247, 2020
Revised manuscript under review for BG
Short summary
Short summary
The release of insoluble elements such as Aluminum (Al), Iron (Fe), Rare Earth Elements (REE), Thorium (Th) and Protactinium (Pa) when Saharan dust fall over the Mediterranean Sea was studied during tank experiments, under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
Vincent Taillandier, Louis Prieur, Fabrizio D'Ortenzio, Maurizio Ribera d'Alcalà, and Elvira Pulido-Villena
Biogeosciences, 17, 3343–3366, https://doi.org/10.5194/bg-17-3343-2020, https://doi.org/10.5194/bg-17-3343-2020, 2020
Short summary
Short summary
This study addresses the role played by vertical diffusion in the nutrient enrichment of the Levantine intermediate waters, a process particularly relevant inside thermohaline staircases. Thanks to a high profiling frequency over a 4-year period, BGC-Argo float observations reveal the temporal continuity of the layering patterns encountered during the cruise PEACETIME and their impact on vertical and lateral transfers of nitrate between the deep reservoir and the surface productive zone.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Solveig Olafsdottir, and Virginie Racapé
Biogeosciences, 17, 2553–2577, https://doi.org/10.5194/bg-17-2553-2020, https://doi.org/10.5194/bg-17-2553-2020, 2020
Short summary
Short summary
In this study, we investigate the evolution of CO2 uptake and ocean acidification in the North Atlantic Subpolar surface water. Our results show an important reduction in the capacity of the ocean to absorb CO2 from the atmosphere (1993–2007), due to a rapid increase in the fCO2 and associated with a rapid decrease in pH. Conversely, data obtained during the last decade (2008–2017) show a stagnation of fCO2 (increasing the ocean sink for CO2) and pH.
Antonio Tovar-Sánchez, Araceli Rodríguez-Romero, Anja Engel, Birthe Zäncker, Franck Fu, Emilio Marañón, María Pérez-Lorenzo, Matthieu Bressac, Thibaut Wagener, Sylvain Triquet, Guillaume Siour, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 17, 2349–2364, https://doi.org/10.5194/bg-17-2349-2020, https://doi.org/10.5194/bg-17-2349-2020, 2020
Short summary
Short summary
Residence times of particulate metals derived from aerosol deposition in the Sea Surface Microlayer of the Mediterranean Sea ranged from a couple of minutes (e.g., for Fe) to a few hours (e.g., for Cu). Microbial activity seems to play an important role in in this process and in the concentration and distribution of metals between diferent water layers.
Pieter Demuynck, Toby Tyrrell, Alberto Naveira Garabato, Mark Christopher Moore, and Adrian Peter Martin
Biogeosciences, 17, 2289–2314, https://doi.org/10.5194/bg-17-2289-2020, https://doi.org/10.5194/bg-17-2289-2020, 2020
Short summary
Short summary
The availability of macronutrients N and Si is of key importance to sustain life in the Southern Ocean. N and Si are available in abundance at the southern boundary of the Southern Ocean due to constant supply from the deep ocean. In the more northern regions of the Southern Ocean, a decline in macronutrient concentration is noticed, especially strong for Si rather than N. This paper uses a simplified biogeochemical model to investigate processes responsible for this decline in concentration.
Martine Lizotte, Maurice Levasseur, Virginie Galindo, Margaux Gourdal, Michel Gosselin, Jean-Éric Tremblay, Marjolaine Blais, Joannie Charette, and Rachel Hussherr
Biogeosciences, 17, 1557–1581, https://doi.org/10.5194/bg-17-1557-2020, https://doi.org/10.5194/bg-17-1557-2020, 2020
Short summary
Short summary
This study brings further support to the premise that the prevalence of younger and thinner icescapes over older and thicker ones in the Canadian High Arctic favors the early development of under-ice microorganisms as well as their production of the climate-relevant gas dimethylsulfide (DMS). Given the rapid rate of climate-driven changes in Arctic sea ice, our results suggest implications for the timing and magnitude of DMS pulses in the Arctic, with ramifications for climate forecasting.
Mark J. Hopwood, Nicolas Sanchez, Despo Polyviou, Øystein Leiknes, Julián Alberto Gallego-Urrea, Eric P. Achterberg, Murat V. Ardelan, Javier Aristegui, Lennart Bach, Sengul Besiktepe, Yohann Heriot, Ioanna Kalantzi, Tuba Terbıyık Kurt, Ioulia Santi, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1309–1326, https://doi.org/10.5194/bg-17-1309-2020, https://doi.org/10.5194/bg-17-1309-2020, 2020
Short summary
Short summary
Hydrogen peroxide, H2O2, is formed naturally in sunlight-exposed water by photochemistry. At high concentrations it is undesirable to biological cells because it is a stressor. Here, across a range of incubation experiments in diverse marine environments (Gran Canaria, the Mediterranean, Patagonia and Svalbard), we determine that two factors consistently affect the H2O2 concentrations irrespective of geographical location: bacteria abundance and experiment design.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-42, https://doi.org/10.5194/bg-2020-42, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper ocean trace metal cycling.
Manon Tonnard, Hélène Planquette, Andrew R. Bowie, Pier van der Merwe, Morgane Gallinari, Floriane Desprez de Gésincourt, Yoan Germain, Arthur Gourain, Marion Benetti, Gilles Reverdin, Paul Tréguer, Julia Boutorh, Marie Cheize, François Lacan, Jan-Lukas Menzel Barraqueta, Leonardo Pereira-Contreira, Rachel Shelley, Pascale Lherminier, and Géraldine Sarthou
Biogeosciences, 17, 917–943, https://doi.org/10.5194/bg-17-917-2020, https://doi.org/10.5194/bg-17-917-2020, 2020
Short summary
Short summary
We investigated the spatial distribution of dissolved Fe during spring 2014, in order to understand the processes influencing the biogeochemical cycle in the North Atlantic. Our results highlighted elevated Fe close to riverine inputs at the Iberian Margin and glacial inputs at the Newfoundland and Greenland margins. Atmospheric deposition appeared to be a minor source of Fe. Convection was an important source of Fe in the Irminger Sea, which was depleted in Fe relative to nitrate.
Carolin R. Löscher, Wiebke Mohr, Hermann W. Bange, and Donald E. Canfield
Biogeosciences, 17, 851–864, https://doi.org/10.5194/bg-17-851-2020, https://doi.org/10.5194/bg-17-851-2020, 2020
Short summary
Short summary
Oxygen minimum zones (OMZs) are ocean areas severely depleted in oxygen as a result of physical, chemical, and biological processes. Biologically, organic material is produced in the sea surface and exported to deeper waters, where it respires. In the Bay of Bengal (BoB), an OMZ is present, but there are traces of oxygen left. Our study now suggests that this is because one key process, nitrogen fixation, is absent in the BoB, thus preventing primary production and consecutive respiration.
Lothar Stramma, Sunke Schmidtko, Steven J. Bograd, Tsuneo Ono, Tetjana Ross, Daisuke Sasano, and Frank A. Whitney
Biogeosciences, 17, 813–831, https://doi.org/10.5194/bg-17-813-2020, https://doi.org/10.5194/bg-17-813-2020, 2020
Short summary
Short summary
The influence of climate signals in the Pacific, especially the Pacific Decadal Oscillation and the North Pacific Gyre Oscillation, as well as El Niño–La Niña and an 18.6-year nodal tidal cycle on oxygen and nutrient trends is investigated. At different locations in the Pacific Ocean different climate signals dominate. Hence, not only trends related to warming but also the influence of climate signals need to be investigated to understand oxygen and nutrient changes in the ocean.
Marie-Hélène Radenac, Julien Jouanno, Christine Carine Tchamabi, Mesmin Awo, Bernard Bourlès, Sabine Arnault, and Olivier Aumont
Biogeosciences, 17, 529–545, https://doi.org/10.5194/bg-17-529-2020, https://doi.org/10.5194/bg-17-529-2020, 2020
Short summary
Short summary
Satellite data and a remarkable set of in situ measurements show a main bloom of microscopic seaweed, the phytoplankton, in summer and a secondary bloom in December in the central equatorial Atlantic. They are driven by a strong vertical supply of nitrate in May–July and a shorter and moderate supply in November. In between, transport of low-nitrate water from the west explains most nitrate losses in the sunlit layer. Horizontal eddy-induced processes also contribute to seasonal nitrate removal.
Andrés S. Rigual Hernández, Thomas W. Trull, Scott D. Nodder, José A. Flores, Helen Bostock, Fátima Abrantes, Ruth S. Eriksen, Francisco J. Sierro, Diana M. Davies, Anne-Marie Ballegeer, Miguel A. Fuertes, and Lisa C. Northcote
Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, https://doi.org/10.5194/bg-17-245-2020, 2020
Short summary
Short summary
Coccolithophores account for a major fraction of the carbonate produced in the world's oceans. However, their contribution in the subantarctic Southern Ocean remains undocumented. We quantitatively partition calcium carbonate fluxes amongst coccolithophore species in the Australian–New Zealand sector of the Southern Ocean. We provide new insights into the importance of species other than Emiliania huxleyi in the carbon cycle and assess their possible response to projected environmental change.
Susana Agustí, Jeffrey W. Krause, Israel A. Marquez, Paul Wassmann, Svein Kristiansen, and Carlos M. Duarte
Biogeosciences, 17, 35–45, https://doi.org/10.5194/bg-17-35-2020, https://doi.org/10.5194/bg-17-35-2020, 2020
Short summary
Short summary
We found that 24 % of the total diatoms community in the Arctic water column (450 m depth) was located below the photic layer. Healthy diatom communities in active spring–bloom stages remained in the photic layer. Dying diatom communities exported a large fraction of the biomass to the aphotic zone, fuelling carbon sequestration and benthic ecosystems in the Arctic. The results of the study conform to a conceptual model where diatoms grow during the bloom until silicic acid stocks are depleted.
Xinwei Wang, Feixue Fu, Pingping Qu, Joshua D. Kling, Haibo Jiang, Yahui Gao, and David A. Hutchins
Biogeosciences, 16, 4393–4409, https://doi.org/10.5194/bg-16-4393-2019, https://doi.org/10.5194/bg-16-4393-2019, 2019
Short summary
Short summary
In this study, we examine the responses of E. huxleyi to a future warmer and more thermally variable ocean. Elevated temperatures and thermal variation have negative effects on growth rate and physiology that are especially pronounced at high temperatures, but high-frequency thermal variation may reduce the risk of extreme high-temperature events. These findings have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate.
Federico Baltar and Gerhard J. Herndl
Biogeosciences, 16, 3793–3799, https://doi.org/10.5194/bg-16-3793-2019, https://doi.org/10.5194/bg-16-3793-2019, 2019
Short summary
Short summary
Around half of the global primary production (PP) is produced in the ocean. Here we quantified how much oceanic PP estimates would increase if we included the dark DIC fixation rates (which are usually excluded in the carbon-14 method) into the PP estimation. We found that the inclusion of dark DIC fixation would increase PP estimates by 5–22 %. This represents ca. 1.2 to 11 Pg C yr−1 of newly synthesized organic carbon available for the marine food web.
Renaud Person, Olivier Aumont, Gurvan Madec, Martin Vancoppenolle, Laurent Bopp, and Nacho Merino
Biogeosciences, 16, 3583–3603, https://doi.org/10.5194/bg-16-3583-2019, https://doi.org/10.5194/bg-16-3583-2019, 2019
Short summary
Short summary
The Antarctic Ice Sheet is considered a possibly important but largely overlooked source of iron (Fe). Here we explore its fertilization capacity by evaluating the response of marine biogeochemistry to Fe release from icebergs and ice shelves in a global ocean model. Large regional impacts are simulated, leading to only modest primary production and carbon export increases at the scale of the Southern Ocean. Large uncertainties are due to low observational constraints on modeling choices.
Robyn E. Tuerena, Raja S. Ganeshram, Matthew P. Humphreys, Thomas J. Browning, Heather Bouman, and Alexander P. Piotrowski
Biogeosciences, 16, 3621–3635, https://doi.org/10.5194/bg-16-3621-2019, https://doi.org/10.5194/bg-16-3621-2019, 2019
Short summary
Short summary
The carbon isotopes in algae can be used to predict food sources and environmental change. We explore how dissolved carbon is taken up by algae in the South Atlantic Ocean and how this affects their carbon isotope signature. We find that cell size controls isotope fractionation. We use our results to investigate how climate change may impact the carbon isotopes in algae. We suggest a shift to smaller algae in this region would decrease the carbon isotope ratio at the base of the food web.
Daniela Niemeyer, Iris Kriest, and Andreas Oschlies
Biogeosciences, 16, 3095–3111, https://doi.org/10.5194/bg-16-3095-2019, https://doi.org/10.5194/bg-16-3095-2019, 2019
Short summary
Short summary
Recent studies suggest spatial variations of the marine particle flux length scale. Using a global biogeochemical ocean model, we investigate whether changes in particle size and size-dependent sinking can explain this variation. We address uncertainties by varying aggregate properties and circulation. Both aspects have an impact on the representation of nutrients, oxygen and oxygen minimum zones. The formation and sinking of large aggregates in productive areas lead to deeper flux penetration.
Jamie D. Wilson, Stephen Barker, Neil R. Edwards, Philip B. Holden, and Andy Ridgwell
Biogeosciences, 16, 2923–2936, https://doi.org/10.5194/bg-16-2923-2019, https://doi.org/10.5194/bg-16-2923-2019, 2019
Short summary
Short summary
The remains of plankton rain down from the surface ocean to the deep ocean, acting to store CO2 in the deep ocean. We used a model of biology and ocean circulation to explore the importance of this process in different regions of the ocean. The amount of CO2 stored in the deep ocean is most sensitive to changes in the Southern Ocean. As plankton in the Southern Ocean are likely those most impacted by future climate change, the amount of CO2 they store in the deep ocean could also be affected.
Natalie C. Harms, Niko Lahajnar, Birgit Gaye, Tim Rixen, Kirstin Dähnke, Markus Ankele, Ulrich Schwarz-Schampera, and Kay-Christian Emeis
Biogeosciences, 16, 2715–2732, https://doi.org/10.5194/bg-16-2715-2019, https://doi.org/10.5194/bg-16-2715-2019, 2019
Short summary
Short summary
The Indian Ocean subtropical gyre is a large oligotrophic area that is likely to adjust to continued warming by increasing stratification, reduced nutrient supply and decreasing biological production. In this study, we investigated concentrations of nutrients and stable isotopes of nitrate. We determine the lateral influence of water masses entering the gyre from the northern Indian Ocean and from the Southern Ocean and quantify the input of nitrogen by N2 fixation into the surface layer.
Yingxu Wu, Mathis P. Hain, Matthew P. Humphreys, Sue Hartman, and Toby Tyrrell
Biogeosciences, 16, 2661–2681, https://doi.org/10.5194/bg-16-2661-2019, https://doi.org/10.5194/bg-16-2661-2019, 2019
Short summary
Short summary
This study takes advantage of the GLODAPv2 database to investigate the processes driving the surface ocean dissolved inorganic carbon distribution, with the focus on its latitudinal gradient between the polar oceans and the low-latitude oceans. Based on our quantitative study, we find that temperature-driven CO2 gas exchange and high-latitude upwelling of DIC- and TA-rich deep waters are the two major drivers, with the importance of the latter not having been previously realized.
Qixing Ji, Mark A. Altabet, Hermann W. Bange, Michelle I. Graco, Xiao Ma, Damian L. Arévalo-Martínez, and Damian S. Grundle
Biogeosciences, 16, 2079–2093, https://doi.org/10.5194/bg-16-2079-2019, https://doi.org/10.5194/bg-16-2079-2019, 2019
Short summary
Short summary
A strong El Niño event occurred in the Peruvian coastal region in 2015–2016, during which higher sea surface temperatures co-occurred with significantly lower sea-to-air fluxes of nitrous oxide, an important greenhouse gas and ozone depletion agent. Stratified water column during El Niño retained a larger amount of nitrous oxide that was produced via multiple microbial pathways; and intense nitrous oxide effluxes could occur when normal upwelling is resumed after El Niño.
Ulrike Löptien and Heiner Dietze
Biogeosciences, 16, 1865–1881, https://doi.org/10.5194/bg-16-1865-2019, https://doi.org/10.5194/bg-16-1865-2019, 2019
Short summary
Short summary
Anthropogenic greenhouse gas emissions trigger complex climate feedbacks. Output form Earth system models provides a basis for related political decision-making. One challenge is to arrive at reliable model parameter estimates for the ocean biogeochemistry module. We illustrate pitfalls through which flaws in the ocean module are masked by wrongly tuning the biogeochemistry and discuss ensuing uncertainties in climate projections.
Arthur Gourain, Hélène Planquette, Marie Cheize, Nolwenn Lemaitre, Jan-Lukas Menzel Barraqueta, Rachel Shelley, Pascale Lherminier, and Géraldine Sarthou
Biogeosciences, 16, 1563–1582, https://doi.org/10.5194/bg-16-1563-2019, https://doi.org/10.5194/bg-16-1563-2019, 2019
Short summary
Short summary
The GEOVIDE cruise (May–June 2014, R/V Pourquoi Pas?) aimed to provide a better understanding of trace metal biogeochemical cycles in the North Atlantic. As particles play a key role in the global biogeochemical cycle of trace elements in the ocean, we discuss the distribution of particulate iron (PFe). Lithogenic sources appear to dominate the PFe cycle through margin and benthic inputs.
Jan-Lukas Menzel Barraqueta, Jessica K. Klar, Martha Gledhill, Christian Schlosser, Rachel Shelley, Hélène F. Planquette, Bernhard Wenzel, Geraldine Sarthou, and Eric P. Achterberg
Biogeosciences, 16, 1525–1542, https://doi.org/10.5194/bg-16-1525-2019, https://doi.org/10.5194/bg-16-1525-2019, 2019
Short summary
Short summary
We used surface water dissolved aluminium concentrations collected in four different GEOTRACES cruises to determine atmospheric deposition fluxes to the ocean. We calculate atmospheric deposition fluxes for largely under-sampled regions of the Atlantic Ocean and thus provide new constraints for models of atmospheric deposition. The use of the MADCOW model is of major importance as dissolved aluminium is analysed within the GEOTRACES project at high spatial resolution.
Karin F. Kvale, Katherine E. Turner, Angela Landolfi, and Katrin J. Meissner
Biogeosciences, 16, 1019–1034, https://doi.org/10.5194/bg-16-1019-2019, https://doi.org/10.5194/bg-16-1019-2019, 2019
Short summary
Short summary
Drivers motivating the evolution of calcifying phytoplankton are poorly understood. We explore differences in global ocean chemistry with and without calcifiers during rapid climate changes. We find the presence of phytoplankton calcifiers stabilizes the volume of low oxygen regions and consequently stabilizes the concentration of nitrate, which is an important nutrient required for photosynthesis. By stabilizing nitrate concentrations, calcifiers improve their growth conditions.
Debany Fonseca-Batista, Xuefeng Li, Virginie Riou, Valérie Michotey, Florian Deman, François Fripiat, Sophie Guasco, Natacha Brion, Nolwenn Lemaitre, Manon Tonnard, Morgane Gallinari, Hélène Planquette, Frédéric Planchon, Géraldine Sarthou, Marc Elskens, Julie LaRoche, Lei Chou, and Frank Dehairs
Biogeosciences, 16, 999–1017, https://doi.org/10.5194/bg-16-999-2019, https://doi.org/10.5194/bg-16-999-2019, 2019
Short summary
Short summary
Dinitrogen fixation and primary production were investigated using stable isotope incubation experiments along two transects off the Western Iberian Margin in May 2014 close to the end of the phytoplankton spring bloom. We observed substantial N2 fixation activities (up to 1533 µmol N m-2 d-1) associated with a predominance of unicellular cyanobacteria and non-cyanobacterial diazotrophs, which seemed to be promoted by the presence of bloom-derived organic matter and excess phosphorus.
Ludivine Conte, Sophie Szopa, Roland Séférian, and Laurent Bopp
Biogeosciences, 16, 881–902, https://doi.org/10.5194/bg-16-881-2019, https://doi.org/10.5194/bg-16-881-2019, 2019
Short summary
Short summary
The ocean is a source of atmospheric carbon monoxide, a key component for the oxidizing capacity of the atmosphere. We use a global ocean biogeochemistry model to dynamically assess the oceanic CO budget and its emission to the atmosphere at the global scale. The total emissions of CO to the atmosphere are 4.0 Tg C yr−1. The oceanic CO emission maps produced are relevant for use by atmospheric chemical models, especially to study the oxidizing capacity of the atmosphere above the remote ocean.
Yi Tang, Nolwenn Lemaitre, Maxi Castrillejo, Montserrat Roca-Martí, Pere Masqué, and Gillian Stewart
Biogeosciences, 16, 309–327, https://doi.org/10.5194/bg-16-309-2019, https://doi.org/10.5194/bg-16-309-2019, 2019
Short summary
Short summary
Oceanographers try to understand the ocean’s role in the global carbon cycle. Trace levels of natural radionuclides can inform this connection and their half-lives provide an estimate of the timing of processes. We used the 210Po and 210Pb pair to examine the export of carbon from the surface ocean to depth along the GEOVIDE GEOTRACES cruise track. We found that the flux was regionally variable, that upwelling was an important regional factor, and that both large and small particles drove flux.
Christos Panagiotopoulos, Mireille Pujo-Pay, Mar Benavides, France Van Wambeke, and Richard Sempéré
Biogeosciences, 16, 105–116, https://doi.org/10.5194/bg-16-105-2019, https://doi.org/10.5194/bg-16-105-2019, 2019
Iason-Zois Gazis, Timm Schoening, Evangelos Alevizos, and Jens Greinert
Biogeosciences, 15, 7347–7377, https://doi.org/10.5194/bg-15-7347-2018, https://doi.org/10.5194/bg-15-7347-2018, 2018
Short summary
Short summary
The use of high-resolution hydroacoustic and optic data acquired by an autonomous underwater vehicle can give us detailed sea bottom topography and valuable information regarding manganese nodules' spatial distribution. Moreover, the combined use of these data sets with a random forest machine learning model can extend this spatial prediction beyond the areas with available photos, providing researchers with a new mapping tool for further investigation and links with other data.
Wen Yu, Mathew P. Johansen, Jianhua He, Wu Men, and Longshan Lin
Biogeosciences, 15, 7235–7242, https://doi.org/10.5194/bg-15-7235-2018, https://doi.org/10.5194/bg-15-7235-2018, 2018
Short summary
Short summary
To better understand the impact of the Fukushima accident on commercial marine species, neon flying squid samples obtained from the NW Pacific in Nov 2011 were analyzed for a range of radionuclides. Elevated levels of Cs-134 and Ag-110m from the Fukushima accident were found in the samples, with an extremely high concentration ratio for Ag-110m. However, the radiological dose for squid living in the study area, and for human consumers of these squid, was far below the recommended dose limits.
Cited articles
Altabet, M. A.: Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformation in the open ocean, Deep-Sea Res. II, 35, 535–554, 1988.
Altabet, M. A.: Nitrogen isotopic evidence for micronutrient control of fractional NO3 utilization in the equatorial Pacific, Limnol. Oceanog., 46, 368–380, 2001.
Athens, J. S., Ward, J. V., and Blinn, D. W.: Vegetation history of Laysan Island, Northwestern Hawaiian Islands, Pacific Science, 61, 17–37, 2007.
Bidigare, R. R., Benitez-Nelson, C, Leonard, C. L., Quay, P. D., Parsons, M. L., Foley, D. G., and Seki, M. P.: Influence of a cyclonic eddy on microheterotroph biomass and carbon export in the lee of Hawaii, Geophys. Res. Lett., 30, 1318, https://doi.org/10.1029/2002GL016393, 2003.
Boyce, D. G., Lewis, M. R., and Worm, B.: Global phytoplankton decline over the last century, Nature, 466, 591–596, https://doi.org/10.1038/nature09268, 2010.
Casciotti, K. L., Trull, T. W., Glover, D. M., and Davies, D.: Constraints on nitrogen cycling at the subtropical North Pacific Station ALOHA from isotopic measurements of nitrate and particulate nitrogen, Deep-Sea Res. II, 55, 1661–1672, 2008.
Chu, P.-S. and Chen, H.: Interannual and interdecadal rainfall variations in the Hawaiian Islands, J. Climate, 18, 4796–4813, 2005.
Church, M. J., Mahaffey, C., Letelier, R. M., Lukas, R., Zehr, J. P., and Karl, D. M.: Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre, Global Biogoechem. Cy., 23, GB2020, https://doi.org/10.1029/2008GB003418, 2009.
Clement, A. C., Seager, R., and Cane, M. A.: Suppression of El Nino during the mid-Holocene by changes in the Earths's orbit, Paleoceanography, 15, 731–737, https://doi.org/10.1029/1999PA000466, 2000.
Corno, G., Karl, D. M., Church, M. J., Letelier, R. M., Lukas, R., Bidigare, R. B., and Abbott, M. A.: Impact of climate forcing on ecosystem processes in the North Pacific Subtropical Gyre, J. Geophys. Res., 112, C04021, https://doi.org/10.1029/2006JC003730, 2007.
Dean, W. E., Zheng, Y., Ortiz, J. D., and VanGeen, A.: Sediment Cd and Mo accumulation in the oxygen minimum zone off western Baja California linked to global climate over the past 52 kyr, Paleoceanography, 21, PA4209, https://doi.org/10.1029/2005PA001239, 2006.
Diaz, H. F. and Giambelluca, T. W.: Changes in atmospheric circulation patterns associated with high and low rainfall regimes in the Hawaiian Islands region on multiple time scales, Glob. Planet. Change, 98/99, 97–108, 2012.
Dore, J. E., Brum, J. R., Tupas, L. M., and Karl, D. M.: Seasonal and interannual variability in sources of nitrogen supporting export in the oligotrophic subtropical North Pacific Ocean, Limnol. Oceanogr, 47, 1595–1607, 2002.
Dore, J. E., Letelier, R. M., Church, M. J., Lukas, R., and Karl, D. M.: Summer phytoplankton blooms in the oligotrophic North Pacific subtropical gyre: Historical perspective and recent observations, Prog. Oceanogr., 76, 2–38, https://doi.org/10.1016/j.pocean.2007.10.002, 2008.
Druffel, E. R. M., Griffith, S., Guilderson, T. P., Kashgarian, M., Southon, J., and Schrag, D. P.: Changes of subtropical North Pacific radiocarbon and correlation with climate variability, Radiocarbon, 43, 15–25, 2001.
Eppley, R. W., Sharp, J. H., Renger, E. H., Perry, M. J., and Harrison, W. G.: Nitrogen assimilation by phytoplankton and other microorganisms in the surface waters of the central North Pacific Ocean, Mar. Biol., 39, 111–120, 1977.
Fine, R. C., Peterson, W. J., and Ostlund, H. G.: The penetration of tritium into the tropical Pacific, J. Phys. Oceanography, 17, 553–564, 1987.
Firing, J. and Brainard, R. E.: Ten years of shipboard ADCP measurements along the Northwestern Hawaiian Islands, Atoll Res. Bull 543, 347–363, 2006.
Flament, P.: The Ocean Atlas of Hawaii, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, HI, 1996.
Ganeshram, R. S., Pedersen, T. F., Calvert, S. E., McNeill, G. W., and Fontugne, M. R.: Glacial-interglacial variability in denitrificaiton in the world's oceans: Causes and consequences, Paleoceanography, 15, 361–376, 2000.
Georicke, R. and Fry, B.: Variations of marine plankton $\delta ^13$C with latitude, temperature, and dissolved CO2 in the world ocean, Global Biogeochem. Cy., 8, 85–90, 1994.
Gruber, N., Keeling, C. D., and Stocker, T. F.: Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the northwestern Sargasso Sea, Deep-Sea Res. I, 45, 673–717, 1998.
Heikoop, J. M., Hickmott, D. D., Risk, M. J., Shearer, C. K., and Atudorei, V.: Potential climate signals from the deep-sea gorgonian coral Primnoa resedaeformis, Hydrobiologia, 471, 117–124, 2002.
Karl, D. M.: A sea of change: Biogeochemical Variability in the North Pacific Subtropical Gyre, Ecosystems, 2, 181–214, 1999.
Karl, D. M. and Lukas, R.: The Hawaii Ocean Time-series (HOT) program: Background, rationale and field implementation, Deep Sea Res. II, 43, 129–156, 1996.
Karl, D. M., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., Paerl, H., Sigman, D., and Stal, L.: Dinitrogen fixation in the world's oceans, Biogeochemistry, 57/58, 47–98, 2002.
Karl, D. M., Bidigigae, R. R.,Church, M. J., Dore, J. E., Letelier, R. M., Mahaffey, C., and Zehr, J. P.: The nitrogen cycle in the North Pacific Trades biome: An Evolving Paradigm, in: Nitrogen in the Marine Environment, edited by: Capone, D. G., Bronk, D. A., Mulholland, M. R., and Carpenter, E. J., Academic Press, 705–769, https://doi.org/10.1016/B978-0-12-372522-6.00016-5, 2008.
Kienast, S. S., Calvert, S. E., and Pederson, T. F.: Nitrogen isotope and productivity variations along the northeast Pacific margin over the last 120 kyr: Surface and subsurface paleoceanography, Paleoceanography, 17, 1055, https://doi.org/10.1029/2001PA000650, 2002.
Kienast, M., Lehmann, M. F., Timmerman, A., Galbraith, E., Bolliet, T., Holbourn, A., Normandeau, C., and Laj, C.: A mid-Holocene transition in the nitrogen dynamics of the western equatorial Pacific: Evidence of a deepening thermocline?, Geophys. Res. Letts., 35, L23610, https://doi.org/10.1029/2008GL035464, 2008.
Kroopnick, P. M.: The dissolved O2-CO2-13C system in the eastern equatorial Pacific, Deep-Sea Res., 21, 211–227, 1974.
Kroopnick, P. M.: The distribution of 13C of ΣCO2 in the world oceans, Deep-Sea Res., 32, 57–84, 1985.
Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C., and Macko, S. A.: Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: Theoretical considerations and experimental results, Geochim., Cosmochim. Acta, 59, 1131–1138, 1995.
Luo, Y-W., Ducklow, H. W., Friedrichs, M. A. M., Church, M. J., Karl, D. M., and Doney, S. C.: Interannual variability of primary productivity and dissolved organic nitrogen storage in the North Pacific Subtropical Gyre, J. Geophys. Res., 117, G03019, https://doi.org/10.1029/2011JG001830, 2012.
Maranon, E., Behrenfeld, M. J., González, N., Mouriño, B., and Zubkov, M. V.:. High variability of primary production in oligotrophic waters of the Atlantic Ocean: uncoupling from phytoplankton biomass and size structure, Mar. Ecol. Prog. Ser., 257, 1–11, 2003.
Osterberg, E., Mayewski, P., Kreutz, K., Fisher, D., Handley, M., Sneed, S., Zdanowicz, C., Zheng, J., Demuth, M., Waskiewicz, M., and Bourgeois, J.: Ice core record of rising lead pollution in the North Pacific atmosphere, Geophys. Res. Lett., 35, L05810, https://doi.org/10.1029/2007GL032680, 2008.
Quay, P. D. and Stutsman, J.: Surface layer carbon budget for the subtropical N, Pacific: d13C constraints at station ALOHA, Deep-Sea Res. Pt. I, 50, 1045–1061, 2003.
Rafter, P. A., Sigman, D. M., Charles, C. D., Kaiser, J., and Haug, G. H.: Subsurface tropical Pacific nitrogen isotopic composition of nitrate: Biogeochemical signals and their transport, Global Biogeochem. Cy., 26, GB1003, https://doi.org/10.1029/2010GB003979, 2012.
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk-Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hadjas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E.: Intcal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50 000 years CAL BP, Radiocarbon, 51, 1111–1150, 2009.
Roark, E. B., Guilderson, T. P., Flood-Page, S., Dunbar, R. B., Ingram, B. L., Fallon, S. J., and McCulloch, M.: Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska, Geophys. Res. Lett., 32, https://doi.org/10.1029/2004GL021919, 2005.
Roark, E. B., Guilderson, T. P., Dunbar, R. B., and Ingram, B. L.: Radiocarbon based ages and growth rates: Hawaiian deep sea corals, Mar. Ecol. Prog. Ser., 327, 1–14, 2006.
Roark, E. B., Guilderson, T. P., Dunbar, R. B., Fallon, S., and Mucciarone, D. A.: Extreme longevity in proteinaceous deep-sea corals, Proc. Natl. Acad. Sci., 6, 5204–5208, https://doi.org/10.1073/pnas.0810875106, 2009.
Ryther, J. H.: Potential productivity of the sea, Science, 130, 602–608, 1959.
Sherwood, O. A., Heikoop, J. M., Scott, D. B., Risk, M. J., Guilderson, T. P., and McKinney, R. A.: Stable isotopic composition of deep-sea gorgonian corals Primnoa spp.: a new archive of surface processes, Mar. Ecol. Prog. Ser., 301, 135–148, 2005.
Sherwood O. A., Scott, D. B., and Risk, M. J.: Late Holocene radiocarbon dating and aspartic acid racemization dating of deep-sea octocorals. Geochim. Cosmochim, Acta, 70, 2806–2814, https://doi.org/10.1016/j.gca.2006.03.011, 2006.
Sherwood O. A., Thresher, R. E., Fallon, S. J., Davies, D. M., and Trull, T. W.: Multi-century time-series of 15N and 14C in bamboo corals from deep Tasmanian seamounts: evidence for stable oceanographic conditions, Mar. Ecol. Prog. Ser., 397, 209–218, 2009.
Sherwood, O. A., Lehmann, M. F., Schubert, C. J., Scott, D. B., and McCarthy, M. D.: Nutrient regime shift in the western North Atlantic indicated by compound-specific δ15N of deep-sea gorgonian corals, Proc. Nat. Acad. Sci., 108, 1011–1015, https://doi.org/10.1073/pnas.1004904108, 2011.
Sinninger, F., Ocaña, O. V., and Baco, A. R.: Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids, PLoS ONE, 8, e52607, https://doi.org/10.1371/journa.pone.0052607, 2013.
Smith, J. J., Fischer, H., Wahlen, M., Mastroianni, D., and Deck, B.: Dual modes of the carbon cycle since the last glacial maximum, Nature, 400, 248–250, 1999.
Stanley, G. D. and Cairns, S. D.: Constructional Azooxanthellate coral communities: an overview with implications for the fossil record, Palaios, 3, 233–242, 1988.
Stuiver, M. and Polach, H. A.: Discussion reporting of 14C data, Radiocarbon, 19, 355–363, 1977.
Tourre, Y. M., Rajagopalan, B., Kushnir, Y., Barlow, M., and White, W. B.: Patterns of coherent decadal and interdecadal climate signals in the Pacific Basin during the 20th century, Geophys. Res. Lett., 28, 2069–2072, 2001.
Uchikawa, J., Popp, B. N., Schoonmaker, J. E., Timmermann, A., and Lorenz, S. J.: Geochemical and climate modeling evidence for Holocene aridificaiton in Hawaii: dynamic response to a weakening equatorial cold tongue, Quat. Sci. Rev., 29, 3057–3066, 2010.
Wakeham, S. G., Lee, C., Hedges, J. I., Hernes, P. J., and Peterson, M. L.: Molecular indicators of diagenetic status in marine organic matter, Geochim. Cosmochim, Acta, 61, 5363–5369, 1997.
Warner, M. J., Bullister, J. L., Wisegarver, D. P., Gammon, R. J., and Weiss, R. F.: Basin-wide distributions of chlorofluorocarbons CFC-11 and CFC-12 n the North Pacific: 1985–1989, J. Geophys. Res., 101, 20525–20542, 1996.
Wheatcroft, R.A., Jumars, P. A., Smith, C. R., and Nowell, A. R. M.: A mechanistic view of the particulate biodiffusion coefficient: step lengths, rest periods, and transport directions, J. Mar. Res., 48, 177–207, 1990.
Williams, B., Risk, M. J., Ross, S. W., and Sulak, K. J.: Deep-water antipatharians: Proxies of environmental change, Geology, 34, 773–776, 2006.
Zaunbrecher, L. K., Cobb, K. M., Beck, J. W., Charles, C. D., Druffel, E. R. M., Fairbanks, R. G., Griffin, S., and Sayani, H. R.: Coral records of central tropical Pacific radiocarbon variability during the last millennium, Paleoceanography, 25, PA4212, https://doi.org/10.1029/2009PA001788, 2010.
Zhang, J. and Quay, P. D.: The total organic carbon export rate based on 13C and 12C of DIC budgets in the equatorial Pacific region, Deep-Sea Res. II, 44, 2163–2190, 1997.
Altmetrics
Final-revised paper
Preprint