Articles | Volume 10, issue 11
https://doi.org/10.5194/bg-10-7575-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-7575-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Pan-Arctic linkages between snow accumulation and growing-season air temperature, soil moisture and vegetation
K. A. Luus
Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
Geography and Environmental Management, University of Waterloo, Waterloo, ON, Canada
Y. Gel
Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
Department of Mathematics and Mechanics, Saint Petersburg State University, Russia
J. C. Lin
Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
Atmospheric Sciences, University of Utah, Salt Lake City, UT, USA
R. E. J. Kelly
Geography and Environmental Management, University of Waterloo, Waterloo, ON, Canada
C. R. Duguay
Geography and Environmental Management, University of Waterloo, Waterloo, ON, Canada
Related authors
Min Jung Kwon, Martin Heimann, Olaf Kolle, Kristina A. Luus, Edward A. G. Schuur, Nikita Zimov, Sergey A. Zimov, and Mathias Göckede
Biogeosciences, 13, 4219–4235, https://doi.org/10.5194/bg-13-4219-2016, https://doi.org/10.5194/bg-13-4219-2016, 2016
Short summary
Short summary
A decade-long drainage on an Arctic floodplain has altered dominant plant species and soil temperature regimes. Consequently, CO2 exchange rates between the atmosphere and the terrestrial ecosystem were modified: CO2 uptake rates by the terrestrial ecosystem decreased and CO2 emission rates to the atmosphere increased. Ongoing global warming may thaw ice-rich permafrost and make some regions drier in the Arctic, and this will reduce carbon accumulation in the terrestrial ecosystem.
Anna Karion, Colm Sweeney, John B. Miller, Arlyn E. Andrews, Roisin Commane, Steven Dinardo, John M. Henderson, Jacob Lindaas, John C. Lin, Kristina A. Luus, Tim Newberger, Pieter Tans, Steven C. Wofsy, Sonja Wolter, and Charles E. Miller
Atmos. Chem. Phys., 16, 5383–5398, https://doi.org/10.5194/acp-16-5383-2016, https://doi.org/10.5194/acp-16-5383-2016, 2016
Short summary
Short summary
Northern high-latitude carbon sources and sinks, including those resulting from degrading permafrost, are thought to be sensitive to the rapidly warming climate. Here we use carbon dioxide and methane measurements from a tower near Fairbanks AK to investigate regional Alaskan fluxes of CO2 and CH4 for 2012–2014.
K. A. Luus and J. C. Lin
Geosci. Model Dev., 8, 2655–2674, https://doi.org/10.5194/gmd-8-2655-2015, https://doi.org/10.5194/gmd-8-2655-2015, 2015
Short summary
Short summary
PolarVPRM uses a diagnostic, remote-sensing-based approach optimized for polar regions to estimate net ecosystem CO2 exchange (NEE) between the high-latitude land surface and the atmosphere. PolarVPRM NEE shows close agreement with NEE observed from eddy covariance sites, relative to other models. Examination of per-pixel trends in PolarVPRM NEE and its drivers (North America north of 55 N, 2001-2012) indicate arctic greening and boreal browning in response to changing environmental conditions.
Jeffrey J. Welch and Richard E. J. Kelly
EGUsphere, https://doi.org/10.5194/egusphere-2024-2928, https://doi.org/10.5194/egusphere-2024-2928, 2024
Short summary
Short summary
Snow density plays an important role in natural and human systems but current methods for estimating snow density are limited, especially in the Arctic. This work presents a new method using satellite data to estimate snow density in remote areas. An experiment was conducted in the Canadian Arctic to evaluate this method and it appears to replicate density estimates from manual sampling well. With more work this method could be applied to estimate snow density across large areas of the Arctic.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024, https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Short summary
This research focuses on the interaction between microwave signals and lake ice under wet conditions. Field data collected for Lake Oulujärvi in Finland were used to model backscatter under different conditions. The results of the modelling likely indicate that a combination of increased water content and roughness of different interfaces caused backscatter to increase. These results could help to identify areas where lake ice is unsafe for winter transportation.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Oliver Sonnentag, Gabriel Hould Gosselin, Melody Sandells, Chris Derksen, Branden Walker, Gesa Meyer, Richard Essery, Richard Kelly, Phillip Marsh, Julia Boike, and Matteo Detto
Biogeosciences, 21, 825–841, https://doi.org/10.5194/bg-21-825-2024, https://doi.org/10.5194/bg-21-825-2024, 2024
Short summary
Short summary
We undertake a sensitivity study of three different parameters on the simulation of net ecosystem exchange (NEE) during the snow-covered non-growing season at an Arctic tundra site. Simulations are compared to eddy covariance measurements, with near-zero NEE simulated despite observed CO2 release. We then consider how to parameterise the model better in Arctic tundra environments on both sub-seasonal timescales and cumulatively throughout the snow-covered non-growing season.
Dien Wu, Joshua L. Laughner, Junjie Liu, Paul I. Palmer, John C. Lin, and Paul O. Wennberg
Geosci. Model Dev., 16, 6161–6185, https://doi.org/10.5194/gmd-16-6161-2023, https://doi.org/10.5194/gmd-16-6161-2023, 2023
Short summary
Short summary
To balance computational expenses and chemical complexity in extracting emission signals from tropospheric NO2 columns, we propose a simplified non-linear Lagrangian chemistry transport model and assess its performance against TROPOMI v2 over power plants and cities. Using this model, we then discuss how NOx chemistry affects the relationship between NOx and CO2 emissions and how studying NO2 columns helps quantify modeled biases in wind directions and prior emissions.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Maria Shaposhnikova, Claude Duguay, and Pascale Roy-Léveillée
The Cryosphere, 17, 1697–1721, https://doi.org/10.5194/tc-17-1697-2023, https://doi.org/10.5194/tc-17-1697-2023, 2023
Short summary
Short summary
We explore lake ice in the Old Crow Flats, Yukon, Canada, using a novel approach that employs radar imagery and deep learning. Results indicate an 11 % increase in the fraction of lake ice that grounds between 1992/1993 and 2020/2021. We believe this is caused by widespread lake drainage and fluctuations in water level and snow depth. This transition is likely to have implications for permafrost beneath the lakes, with a potential impact on methane ebullition and the regional carbon budget.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022, https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary
Short summary
Measurements of the properties of the snow and soil were compared to simulations of the Community Land Model to see how well the model represents snow insulation. Simulations underestimated snow thermal conductivity and wintertime soil temperatures. We test two approaches to reduce the transfer of heat through the snowpack and bring simulated soil temperatures closer to measurements, with an alternative parameterisation of snow thermal conductivity being more appropriate.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Yu Cai, Claude R. Duguay, and Chang-Qing Ke
Earth Syst. Sci. Data, 14, 3329–3347, https://doi.org/10.5194/essd-14-3329-2022, https://doi.org/10.5194/essd-14-3329-2022, 2022
Short summary
Short summary
Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude regions. This study used passive microwave brightness temperature measurements to extract the ice phenology for 56 lakes across the Northern Hemisphere from 1979 to 2019. A threshold algorithm was applied according to the differences in brightness temperature between lake ice and open water. The dataset will provide valuable information about the changing ice cover of lakes over the last 4 decades.
Dustin Roten, John C. Lin, Lewis Kunik, Derek Mallia, Dien Wu, Tomohiro Oda, and Eric A. Kort
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-315, https://doi.org/10.5194/acp-2022-315, 2022
Revised manuscript not accepted
Short summary
Short summary
The systems used to monitor carbon dioxide (CO2) emissions from urban areas provides a means to observe and quantify emissions reductions from policy-related reduction efforts. Space-based instruments, such as NASA's Orbiting Carbon Observatory-3 (OCO-3), provides detailed "snapshots" of CO2 emissions from many megacities around the world. This work quantifies the amount of emission "information" contained in these snapshots and uses this information to update previous estimates of urban CO2.
Elena Zakharova, Svetlana Agafonova, Claude Duguay, Natalia Frolova, and Alexei Kouraev
The Cryosphere, 15, 5387–5407, https://doi.org/10.5194/tc-15-5387-2021, https://doi.org/10.5194/tc-15-5387-2021, 2021
Short summary
Short summary
The paper investigates the performance of altimetric satellite instruments to detect river ice onset and melting dates and to retrieve ice thickness of the Ob River. This is a first attempt to use satellite altimetry for monitoring ice in the challenging conditions restrained by the object size. A novel approach permitted elaboration of the spatiotemporal ice thickness product for the 400 km river reach. The potential of the product for prediction of ice road operation was demonstrated.
Dien Wu, John C. Lin, Henrique F. Duarte, Vineet Yadav, Nicholas C. Parazoo, Tomohiro Oda, and Eric A. Kort
Geosci. Model Dev., 14, 3633–3661, https://doi.org/10.5194/gmd-14-3633-2021, https://doi.org/10.5194/gmd-14-3633-2021, 2021
Short summary
Short summary
A model (SMUrF) is presented that estimates biogenic CO2 fluxes over cities around the globe to separate out biogenic fluxes from anthropogenic emissions. The model leverages satellite-based solar-induced fluorescence data and a machine-learning technique. We evaluate the biogenic fluxes against flux observations and show contrasts between biogenic and anthropogenic fluxes over cities, revealing urban–rural flux gradients, diurnal cycles, and the resulting imprints on atmospheric-column CO2.
Amy Hrdina, Jennifer G. Murphy, Anna Gannet Hallar, John C. Lin, Alexander Moravek, Ryan Bares, Ross C. Petersen, Alessandro Franchin, Ann M. Middlebrook, Lexie Goldberger, Ben H. Lee, Munkh Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 21, 8111–8126, https://doi.org/10.5194/acp-21-8111-2021, https://doi.org/10.5194/acp-21-8111-2021, 2021
Short summary
Short summary
Wintertime air pollution in the Salt Lake Valley is primarily composed of ammonium nitrate, which is formed when gas-phase ammonia and nitric acid react. The major point in this work is that the chemical composition of snow tells a very different story to what we measured in the atmosphere. With the dust–sea salt cations observed in PM2.5 and particle sizing data, we can estimate how much nitric acid may be lost to dust–sea salt that is not accounted for and how much more PM2.5 this could form.
Ingmar Nitze, Sarah W. Cooley, Claude R. Duguay, Benjamin M. Jones, and Guido Grosse
The Cryosphere, 14, 4279–4297, https://doi.org/10.5194/tc-14-4279-2020, https://doi.org/10.5194/tc-14-4279-2020, 2020
Short summary
Short summary
In summer 2018, northwestern Alaska was affected by widespread lake drainage which strongly exceeded previous observations. We analyzed the spatial and temporal patterns with remote sensing observations, weather data and lake-ice simulations. The preceding fall and winter season was the second warmest and wettest on record, causing the destabilization of permafrost and elevated water levels which likely led to widespread and rapid lake drainage during or right after ice breakup.
Paul Donchenko, Joshua King, and Richard Kelly
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-283, https://doi.org/10.5194/tc-2020-283, 2020
Publication in TC not foreseen
Short summary
Short summary
Estimating Arctic sea ice surface elevation from the CryoSat-2 instrument may not fully compensate for the incomplete penetration of radar through the snow cover and overestimate the ice thickness. This study investigates the accuracy of the ice surface measurement and how it is affected by the properties snow and ice properties. It was found that deep or salty snow, and rough ice can make the surface appear higher, but including these properties in the calculation may improve the estimate.
Colleen Mortimer, Lawrence Mudryk, Chris Derksen, Kari Luojus, Ross Brown, Richard Kelly, and Marco Tedesco
The Cryosphere, 14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020, https://doi.org/10.5194/tc-14-1579-2020, 2020
Short summary
Short summary
Existing stand-alone passive microwave SWE products have markedly different climatological SWE patterns compared to reanalysis-based datasets. The AMSR-E SWE has low spatial and temporal correlations with the four reanalysis-based products evaluated and GlobSnow and perform poorly in comparisons with snow transect data from Finland, Russia, and Canada. There is better agreement with in situ data when multiple SWE products, excluding the stand-alone passive microwave SWE products, are combined.
Alexander Moravek, Jennifer G. Murphy, Amy Hrdina, John C. Lin, Christopher Pennell, Alessandro Franchin, Ann M. Middlebrook, Dorothy L. Fibiger, Caroline C. Womack, Erin E. McDuffie, Randal Martin, Kori Moore, Munkhbayar Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 19, 15691–15709, https://doi.org/10.5194/acp-19-15691-2019, https://doi.org/10.5194/acp-19-15691-2019, 2019
Short summary
Short summary
Ammonium nitrate is a major component of fine particulate matter of wintertime air pollution in the Great Salt Lake Region (UT, USA). We investigate the sources of ammonia in the region by using aircraft observations and comparing them to modelled ammonia mixing ratios based on emission inventory estimates. The results suggest that ammonia emissions are underestimated, specifically in regions with high agricultural activity, while ammonia in Salt Lake City is mainly of local origin.
Ryan Bares, Logan Mitchell, Ben Fasoli, David R. Bowling, Douglas Catharine, Maria Garcia, Byron Eng, Jim Ehleringer, and John C. Lin
Earth Syst. Sci. Data, 11, 1291–1308, https://doi.org/10.5194/essd-11-1291-2019, https://doi.org/10.5194/essd-11-1291-2019, 2019
Short summary
Short summary
We overview two near-surface trace gas measurement networks with the aim of describing procedures, locations, and data structure with sufficient detail to serve as an in-depth method reference. Additionally, we developed a novel method for quantifying measurement uncertainty produced by these networks providing insight into appropriate applications of the data and differences in data collection methods. This uncertainty metric is broadly applicable to many trace gas and air quality datasets.
Dien Wu, John C. Lin, Benjamin Fasoli, Tomohiro Oda, Xinxin Ye, Thomas Lauvaux, Emily G. Yang, and Eric A. Kort
Geosci. Model Dev., 11, 4843–4871, https://doi.org/10.5194/gmd-11-4843-2018, https://doi.org/10.5194/gmd-11-4843-2018, 2018
Short summary
Short summary
Urban CO2 enhancement signals can be derived using satellite column CO2 concentrations and atmospheric transport models. However, uncertainties due to model configurations, atmospheric transport, and defined background values can potentially impact the derived urban signals. In this paper, we present a modified Lagrangian model framework that extracts urban CO2 signals from satellite observations and determines potential error impacts.
Benjamin Fasoli, John C. Lin, David R. Bowling, Logan Mitchell, and Daniel Mendoza
Geosci. Model Dev., 11, 2813–2824, https://doi.org/10.5194/gmd-11-2813-2018, https://doi.org/10.5194/gmd-11-2813-2018, 2018
Short summary
Short summary
The Stochastic Time-Inverted Lagrangian Transport (STILT) model is used to determine the area upstream that influences the air arriving at a given location. We introduce a new framework that makes the STILT model faster and easier to deploy and improves results. We also show how the model can be applied to spatially complex measurement strategies using trace gas observations collected onboard a Salt Lake City, Utah, USA, light-rail train.
Richard P. Fiorella, Ryan Bares, John C. Lin, James R. Ehleringer, and Gabriel J. Bowen
Atmos. Chem. Phys., 18, 8529–8547, https://doi.org/10.5194/acp-18-8529-2018, https://doi.org/10.5194/acp-18-8529-2018, 2018
Short summary
Short summary
Fossil fuel combustion produces water; where fossil fuel combustion is concentrated in urban areas, this humidity source may represent ~ 10 % of total humidity. In turn, this water vapor addition may alter urban meteorology, though the contribution of combustion vapor is difficult to measure. Using stable water isotopes, we estimate that up to 16 % of urban humidity may arise from combustion when the atmosphere is stable during winter, and develop recommendations for application in other cities.
Xinxin Ye, Thomas Lauvaux, Eric A. Kort, Tomohiro Oda, Sha Feng, John C. Lin, Emily Yang, and Dien Wu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1022, https://doi.org/10.5194/acp-2017-1022, 2017
Revised manuscript not accepted
Short summary
Short summary
Rapid global urbanization and significant fossil fuel consumption by cities emphasize the necessity of achieving independent and accurate quantification of the carbon emissions from urban areas. In this paper, we assess the potential of using total column CO2 concentration observed from satellite to quantify fossil-fuel carbon emissions from cities. This study could give insights into the capability of satellite observations on monitoring of the emissions on local scale.
Henrique F. Duarte, Brett M. Raczka, Daniel M. Ricciuto, John C. Lin, Charles D. Koven, Peter E. Thornton, David R. Bowling, Chun-Ta Lai, Kenneth J. Bible, and James R. Ehleringer
Biogeosciences, 14, 4315–4340, https://doi.org/10.5194/bg-14-4315-2017, https://doi.org/10.5194/bg-14-4315-2017, 2017
Short summary
Short summary
We evaluate the Community Land Model (CLM4.5) against observations at an old-growth coniferous forest site that is subjected to water stress each summer. We found that, after calibration, CLM was able to reasonably simulate the observed fluxes of energy and carbon, carbon stocks, carbon isotope ratios, and ecosystem response to water stress. This study demonstrates that carbon isotopes can expose structural weaknesses in CLM and provide a key constraint that may guide future model development.
John C. Lin, Derek V. Mallia, Dien Wu, and Britton B. Stephens
Atmos. Chem. Phys., 17, 5561–5581, https://doi.org/10.5194/acp-17-5561-2017, https://doi.org/10.5194/acp-17-5561-2017, 2017
Short summary
Short summary
Mountainous areas can potentially serve as regions where the key greenhouse gas, carbon dioxide (CO2), can be absorbed from the atmosphere by vegetation, through photosynthesis. Variations in atmospheric CO2 can be used to understand the amount of biospheric fluxes in general. However, CO2 measured in mountains can be difficult to interpret due to the impact from complex atmospheric flows. We show how mountaintop CO2 data can be interpreted by carrying out a series of atmospheric simulations.
Kiana Zolfaghari, Claude R. Duguay, and Homa Kheyrollah Pour
Hydrol. Earth Syst. Sci., 21, 377–391, https://doi.org/10.5194/hess-21-377-2017, https://doi.org/10.5194/hess-21-377-2017, 2017
Short summary
Short summary
A remotely-sensed water clarity value (Kd) was applied to improve FLake model simulations of Lake Erie thermal structure using a time-invariant (constant) annual value as well as monthly values of Kd. The sensitivity of FLake model to Kd values was studied. It was shown that the model is very sensitive to variations in Kd when the value is less than 0.5 m-1.
Jinyang Du, John S. Kimball, Claude Duguay, Youngwook Kim, and Jennifer D. Watts
The Cryosphere, 11, 47–63, https://doi.org/10.5194/tc-11-47-2017, https://doi.org/10.5194/tc-11-47-2017, 2017
Short summary
Short summary
A new automated method for microwave satellite assessment of lake ice conditions at 5 km resolution was developed for lakes in the Northern Hemisphere. The resulting ice record shows strong agreement with ground observations and alternative ice records. Higher latitude lakes reveal more widespread and larger trends toward shorter ice cover duration than lower latitude lakes. The new approach allows for rapid monitoring of lake ice cover changes, with accuracy suitable for global change studies.
Brett Raczka, Henrique F. Duarte, Charles D. Koven, Daniel Ricciuto, Peter E. Thornton, John C. Lin, and David R. Bowling
Biogeosciences, 13, 5183–5204, https://doi.org/10.5194/bg-13-5183-2016, https://doi.org/10.5194/bg-13-5183-2016, 2016
Short summary
Short summary
We use carbon isotopes of CO2 to improve the performance of a land surface model, a component with earth system climate models. We found that isotope observations can provide important information related to the exchange of carbon and water from vegetation driven by environmental stress from low atmospheric moisture and nitrogen limitation. It follows that isotopes have a unique potential to improve model performance and provide insight into land surface model development.
Min Jung Kwon, Martin Heimann, Olaf Kolle, Kristina A. Luus, Edward A. G. Schuur, Nikita Zimov, Sergey A. Zimov, and Mathias Göckede
Biogeosciences, 13, 4219–4235, https://doi.org/10.5194/bg-13-4219-2016, https://doi.org/10.5194/bg-13-4219-2016, 2016
Short summary
Short summary
A decade-long drainage on an Arctic floodplain has altered dominant plant species and soil temperature regimes. Consequently, CO2 exchange rates between the atmosphere and the terrestrial ecosystem were modified: CO2 uptake rates by the terrestrial ecosystem decreased and CO2 emission rates to the atmosphere increased. Ongoing global warming may thaw ice-rich permafrost and make some regions drier in the Arctic, and this will reduce carbon accumulation in the terrestrial ecosystem.
Cristina M. Surdu, Claude R. Duguay, and Diego Fernández Prieto
The Cryosphere, 10, 941–960, https://doi.org/10.5194/tc-10-941-2016, https://doi.org/10.5194/tc-10-941-2016, 2016
Anna Karion, Colm Sweeney, John B. Miller, Arlyn E. Andrews, Roisin Commane, Steven Dinardo, John M. Henderson, Jacob Lindaas, John C. Lin, Kristina A. Luus, Tim Newberger, Pieter Tans, Steven C. Wofsy, Sonja Wolter, and Charles E. Miller
Atmos. Chem. Phys., 16, 5383–5398, https://doi.org/10.5194/acp-16-5383-2016, https://doi.org/10.5194/acp-16-5383-2016, 2016
Short summary
Short summary
Northern high-latitude carbon sources and sinks, including those resulting from degrading permafrost, are thought to be sensitive to the rapidly warming climate. Here we use carbon dioxide and methane measurements from a tower near Fairbanks AK to investigate regional Alaskan fluxes of CO2 and CH4 for 2012–2014.
P. Muhammad, C. Duguay, and K.-K. Kang
The Cryosphere, 10, 569–584, https://doi.org/10.5194/tc-10-569-2016, https://doi.org/10.5194/tc-10-569-2016, 2016
Short summary
Short summary
This study involves the analysis of MODIS Level 3500 m snow products, complemented with 250 m Level 1B data, to monitor ice cover during the break-up period on the Mackenzie River, Canada. Results from the analysis of data for 13 ice seasons (2001–2013) show that ice-off begins between days of year (DOYs) 115 and 125 and ends between DOYs 145 and 155, resulting in average melt durations of about 30–40 days; we conclude that MODIS can monitor ice break-up.
K. A. Luus and J. C. Lin
Geosci. Model Dev., 8, 2655–2674, https://doi.org/10.5194/gmd-8-2655-2015, https://doi.org/10.5194/gmd-8-2655-2015, 2015
Short summary
Short summary
PolarVPRM uses a diagnostic, remote-sensing-based approach optimized for polar regions to estimate net ecosystem CO2 exchange (NEE) between the high-latitude land surface and the atmosphere. PolarVPRM NEE shows close agreement with NEE observed from eddy covariance sites, relative to other models. Examination of per-pixel trends in PolarVPRM NEE and its drivers (North America north of 55 N, 2001-2012) indicate arctic greening and boreal browning in response to changing environmental conditions.
C. Viatte, K. Strong, J. Hannigan, E. Nussbaumer, L. K. Emmons, S. Conway, C. Paton-Walsh, J. Hartley, J. Benmergui, and J. Lin
Atmos. Chem. Phys., 15, 2227–2246, https://doi.org/10.5194/acp-15-2227-2015, https://doi.org/10.5194/acp-15-2227-2015, 2015
Short summary
Short summary
Seven tropospheric species (CO, HCN, C2H6, C2H2, CH3OH, HCOOH, and H2CO) released by biomass burning events transported to the high Arctic were monitored with two sets of FTIR measurements, located at Eureka (Nunavut, Canada) and Thule (Greenland), from 2008 to 2012. We compared these data sets with the MOZART-4 chemical transport model to help improve its simulations in the Arctic. Emission factors of these biomass burning products were derived and compared to the literature.
D. Wen, L. Zhang, J. C. Lin, R. Vet, and M. D. Moran
Geosci. Model Dev., 7, 1037–1050, https://doi.org/10.5194/gmd-7-1037-2014, https://doi.org/10.5194/gmd-7-1037-2014, 2014
C. M. Surdu, C. R. Duguay, L. C. Brown, and D. Fernández Prieto
The Cryosphere, 8, 167–180, https://doi.org/10.5194/tc-8-167-2014, https://doi.org/10.5194/tc-8-167-2014, 2014
D. Wen, J. C. Lin, L. Zhang, R. Vet, and M. D. Moran
Geosci. Model Dev., 6, 327–344, https://doi.org/10.5194/gmd-6-327-2013, https://doi.org/10.5194/gmd-6-327-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Climate Change
Ocean alkalinity enhancement approaches and the predictability of runaway precipitation processes: results of an experimental study to determine critical alkalinity ranges for safe and sustainable application scenarios
Variations of polyphenols and carbohydrates of Emiliania huxleyi grown under simulated ocean acidification conditions
Global and regional hydrological impacts of global forest expansion
The biological and preformed carbon pumps in perpetually slower and warmer oceans
The Southern Ocean as the climate's freight train – driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5
Mapping the future afforestation distribution of China constrained by a national afforestation plan and climate change
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Coherency and time lag analyses between MODIS vegetation indices and climate across forests and grasslands in the European temperate zone
Direct foliar phosphorus uptake from wildfire ash
New ozone-nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat
Projected changes in forest fire season, number of fires and burnt area in Fennoscandia by 2100
Effect of the 2022 summer drought across forest types in Europe
The effect of forest cover changes on the regional climate conditions in Europe during the period 1986–2015
Carbon cycle feedbacks in an idealized simulation and a scenario simulation of negative emissions in CMIP6 Earth system models
Responses of field-grown maize to different soil types, water regimes, and contrasting vapor pressure deficit
Spatiotemporal heterogeneity in the increase in ocean acidity extremes in the northeastern Pacific
Anthropogenic climate change drives non-stationary phytoplankton internal variability
The response of wildfire regimes to Last Glacial Maximum carbon dioxide and climate
Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming
Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement
Experiments of the efficacy of tree ring blue intensity as a climate proxy in central and western China
Burned area and carbon emissions across northwestern boreal North America from 2001–2019
Effect of terrestrial nutrient limitation on the estimation of the remaining carbon budget
Quantifying land carbon cycle feedbacks under negative CO2 emissions
The potential of an increased deciduous forest fraction to mitigate the effects of heat extremes in Europe
Ideas and perspectives: Alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils
A comparison of the climate and carbon cycle effects of carbon removal by afforestation and an equivalent reduction in fossil fuel emissions
Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage
Ideas and perspectives: Land–ocean connectivity through groundwater
Bioclimatic change as a function of global warming from CMIP6 climate projections
Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations
Drivers of intermodel uncertainty in land carbon sink projections
Reviews and syntheses: A framework to observe, understand and project ecosystem response to environmental change in the East Antarctic Southern Ocean
Acidification impacts and acclimation potential of Caribbean benthic foraminifera assemblages in naturally discharging low-pH water
Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI)
Evaluation of soil carbon simulation in CMIP6 Earth system models
Diazotrophy as a key driver of the response of marine net primary productivity to climate change
Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations
Acidification, deoxygenation, and nutrient and biomass declines in a warming Mediterranean Sea
Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution
Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models
Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil
The European forest carbon budget under future climate conditions and current management practices
The influence of mesoscale climate drivers on hypoxia in a fjord-like deep coastal inlet and its potential implications regarding climate change: examining a decade of water quality data
Contrasting responses of phytoplankton productivity between coastal and offshore surface waters in the Taiwan Strait and the South China Sea to short-term seawater acidification
Modeling interactions between tides, storm surges, and river discharges in the Kapuas River delta
The application of dendrometers to alpine dwarf shrubs – a case study to investigate stem growth responses to environmental conditions
Climate, land cover and topography: essential ingredients in predicting wetland permanence
Not all biodiversity rich spots are climate refugia
Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024, https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Short summary
Recent studies described the precipitation of carbonates as a result of alkalinity enhancement in seawater, which could adversely affect the carbon sequestration potential of ocean alkalinity enhancement (OAE) approaches. By conducting experiments in natural seawater, this study observed uniform patterns during the triggered runaway carbonate precipitation, which allow the prediction of safe and efficient local application levels of OAE scenarios.
Milagros Rico, Paula Santiago-Díaz, Guillermo Samperio-Ramos, Melchor González-Dávila, and Juana Magdalena Santana-Casiano
Biogeosciences, 21, 4381–4394, https://doi.org/10.5194/bg-21-4381-2024, https://doi.org/10.5194/bg-21-4381-2024, 2024
Short summary
Short summary
Changes in pH generate stress conditions, either because high pH drastically decreases the availability of trace metals such as Fe(II), a restrictive element for primary productivity, or because reactive oxygen species are increased with low pH. The metabolic functions and composition of microalgae can be affected. These modifications in metabolites are potential factors leading to readjustments in phytoplankton community structure and diversity and possible alteration in marine ecosystems.
James A. King, James Weber, Peter Lawrence, Stephanie Roe, Abigail L. S. Swann, and Maria Val Martin
Biogeosciences, 21, 3883–3902, https://doi.org/10.5194/bg-21-3883-2024, https://doi.org/10.5194/bg-21-3883-2024, 2024
Short summary
Short summary
Tackling climate change by adding, restoring, or enhancing forests is gaining global support. However, it is important to investigate the broader implications of this. We used a computer model of the Earth to investigate a future where tree cover expanded as much as possible. We found that some tropical areas were cooler because of trees pumping water into the atmosphere, but this also led to soil and rivers drying. This is important because it might be harder to maintain forests as a result.
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024, https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
Short summary
How do perpetually slower and warmer oceans sequester carbon? Compared to the preindustrial state, we find that biological productivity declines despite warming-stimulated growth because of a lower nutrient supply from depth. This throttles the biological carbon pump, which still sequesters more carbon because it takes longer to return to the surface. The deep ocean is isolated from the surface, allowing more carbon from the atmosphere to pass through the ocean without contributing to biology.
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences, 21, 3053–3073, https://doi.org/10.5194/bg-21-3053-2024, https://doi.org/10.5194/bg-21-3053-2024, 2024
Short summary
Short summary
This paper explores the climate processes that drive increasing global average temperatures in zero-emission commitment (ZEC) simulations despite decreasing atmospheric CO2. ACCESS-ESM1.5 shows the Southern Ocean to continue to warm locally in all ZEC simulations. In ZEC simulations that start after the emission of more than 1000 Pg of carbon, the influence of the Southern Ocean increases the global temperature.
Shuaifeng Song, Xuezhen Zhang, and Xiaodong Yan
Biogeosciences, 21, 2839–2858, https://doi.org/10.5194/bg-21-2839-2024, https://doi.org/10.5194/bg-21-2839-2024, 2024
Short summary
Short summary
We mapped the distribution of future potential afforestation regions based on future high-resolution climate data and climate–vegetation models. After considering the national afforestation policy and climate change, we found that the future potential afforestation region was mainly located around and to the east of the Hu Line. This study provides a dataset for exploring the effects of future afforestation.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Kinga Kulesza and Agata Hościło
Biogeosciences, 21, 2509–2527, https://doi.org/10.5194/bg-21-2509-2024, https://doi.org/10.5194/bg-21-2509-2024, 2024
Short summary
Short summary
We present coherence and time lags in spectral response of three vegetation types in the European temperate zone to the influencing meteorological factors and teleconnection indices for the period 2002–2022. Vegetation condition in broadleaved forest, coniferous forest and pastures was measured with MODIS NDVI and EVI, and the coherence between NDVI and EVI and meteorological elements was described using the methods of wavelet coherence and Pearson’s linear correlation with time lag.
Anton Lokshin, Daniel Palchan, and Avner Gross
Biogeosciences, 21, 2355–2365, https://doi.org/10.5194/bg-21-2355-2024, https://doi.org/10.5194/bg-21-2355-2024, 2024
Short summary
Short summary
Ash particles from wildfires are rich in phosphorus (P), a crucial nutrient that constitutes a limiting factor in 43 % of the world's land ecosystems. We hypothesize that wildfire ash could directly contribute to plant nutrition. We find that fire ash application boosts the growth of plants, but the only way plants can uptake P from fire ash is through the foliar uptake pathway and not through the roots. The fertilization impact of fire ash was also maintained under elevated levels of CO2.
Jo Cook, Clare Brewster, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, Håkan Pleijel, and Lisa Emberson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1311, https://doi.org/10.5194/egusphere-2024-1311, 2024
Short summary
Short summary
At ground-level, the air pollutant ozone (O3) damages wheat yield and quality. We modified the DO3SE-Crop model to simulate O3 effects on wheat quality and identified onset of leaf death as the key process affecting wheat quality upon O3 exposure. This aligns with expectations as the onset of leaf death aids nutrient transfer from leaves to grains. Breeders should prioritize wheat varieties resistant to protein loss from delayed leaf death, to maintain yield and quality under O3.
Outi Kinnunen, Leif Backamn, Juha Aalto, Tuula Aalto, and Tiina Markkanen
EGUsphere, https://doi.org/10.5194/egusphere-2024-741, https://doi.org/10.5194/egusphere-2024-741, 2024
Short summary
Short summary
Climate change is expected to increase forest fire risk. Ecosystem process model simulations are used to project changes in fire occurrence in Fennoscandia under six climate projections. These findings suggest a more extended fire season, more fires and increased burnt area towards the end of the century.
Mana Gharun, Ankit Shekhar, Jingfeng Xiao, Xing Li, and Nina Buchmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-423, https://doi.org/10.5194/egusphere-2024-423, 2024
Short summary
Short summary
In 2022, Europe's forests faced unprecedented dry conditions. Our study aimed to understand how different forest types respond to extreme drought. Using meteorological data and satellite imagery, we compared 2022 with two previous extreme years, 2003 and 2018. Despite less severe drought in 2022, forests showed a 30 % greater decline in photosynthesis compared to 2018 and 60 % more than 2003. This suggests a concerning trend of declining forest resilience to more frequent droughts.
Marcus Breil, Vanessa K. M. Schneider, and Joaquim G. Pinto
Biogeosciences, 21, 811–824, https://doi.org/10.5194/bg-21-811-2024, https://doi.org/10.5194/bg-21-811-2024, 2024
Short summary
Short summary
The general impact of afforestation on the regional climate conditions in Europe during the period 1986–2015 is investigated. For this purpose, a regional climate model simulation is performed, in which afforestation during this period is considered, and results are compared to a simulation in which this is not the case. Results show that afforestation had discernible impacts on the climate change signal in Europe, which may have mitigated the local warming trend, especially in summer in Europe.
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024, https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Short summary
Carbon cycle feedback metrics are employed to assess phases of positive and negative CO2 emissions. When emissions become negative, we find that the model disagreement in feedback metrics increases more strongly than expected from the assumption that the uncertainties accumulate linearly with time. The geographical patterns of such metrics over land highlight that differences in response between tropical/subtropical and temperate/boreal ecosystems are a major source of model disagreement.
Thuy Huu Nguyen, Thomas Gaiser, Jan Vanderborght, Andrea Schnepf, Felix Bauer, Anja Klotzsche, Lena Lärm, Hubert Hüging, and Frank Ewert
EGUsphere, https://doi.org/10.5194/egusphere-2023-2967, https://doi.org/10.5194/egusphere-2023-2967, 2024
Short summary
Short summary
Leaf water potential was at certain thresholds which depends on soil types, water treatment, and weather conditions. In rainfed plot, the lower water availability in the stony soil resulted in less roots with a higher root tissue conductance than the silty soil. In silty soil, higher stress in the rainfed soil led to more roots with a lower root tissue conductance than in the irrigated plot. Crop responses to water stress can be opposite depending on soil water conditions that are compared.
Flora Desmet, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 20, 5151–5175, https://doi.org/10.5194/bg-20-5151-2023, https://doi.org/10.5194/bg-20-5151-2023, 2023
Short summary
Short summary
Ocean acidity extremes in the upper 250 m depth of the northeastern Pacific rapidly increase with atmospheric CO2 rise, which is worrisome for marine organisms that rapidly experience pH levels outside their local environmental conditions. Presented research shows the spatiotemporal heterogeneity in this increase between regions and depths. In particular, the subsurface increase is substantially slowed down by the presence of mesoscale eddies, often not resolved in Earth system models.
Geneviève W. Elsworth, Nicole S. Lovenduski, Kristen M. Krumhardt, Thomas M. Marchitto, and Sarah Schlunegger
Biogeosciences, 20, 4477–4490, https://doi.org/10.5194/bg-20-4477-2023, https://doi.org/10.5194/bg-20-4477-2023, 2023
Short summary
Short summary
Anthropogenic climate change will influence marine phytoplankton over the coming century. Here, we quantify the influence of anthropogenic climate change on marine phytoplankton internal variability using an Earth system model ensemble and identify a decline in global phytoplankton biomass variance with warming. Our results suggest that climate mitigation efforts that account for marine phytoplankton changes should also consider changes in phytoplankton variance driven by anthropogenic warming.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 3981–3995, https://doi.org/10.5194/bg-20-3981-2023, https://doi.org/10.5194/bg-20-3981-2023, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size, and intensity under Last Glacial Maximum (LGM) conditions using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, and Peter M. Cox
Biogeosciences, 20, 3767–3790, https://doi.org/10.5194/bg-20-3767-2023, https://doi.org/10.5194/bg-20-3767-2023, 2023
Short summary
Short summary
This study evaluates soil carbon projections during the 21st century in CMIP6 Earth system models. In general, we find a reduced spread of changes in global soil carbon in CMIP6 compared to the previous CMIP5 generation. The reduced CMIP6 spread arises from an emergent relationship between soil carbon changes due to change in plant productivity and soil carbon changes due to changes in turnover time. We show that this relationship is consistent with false priming under transient climate change.
Claudia Hinrichs, Peter Köhler, Christoph Völker, and Judith Hauck
Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023, https://doi.org/10.5194/bg-20-3717-2023, 2023
Short summary
Short summary
This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate alkalinity at the surface and overestimate it in the deeper ocean. It highlights the need for better understanding and quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023, https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
Makcim L. De Sisto and Andrew H. MacDougall
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-96, https://doi.org/10.5194/bg-2023-96, 2023
Revised manuscript accepted for BG
Short summary
Short summary
There is uncertainty about the amount of CO2 that can still be emitted to reach specific temperature targets. One source of uncertainty is the representation of the carbon cycle. We assessed the impact of terrestrial nitrogen and phosphorus limitation. We found a reduction in the amount of CO2 that can still be emitted to reach temperature targets in the nutrient limited simulations. We found that nutrient limitation is an important factor to consider when estimating remaining carbon budgets.
V. Rachel Chimuka, Claude-Michel Nzotungicimpaye, and Kirsten Zickfeld
Biogeosciences, 20, 2283–2299, https://doi.org/10.5194/bg-20-2283-2023, https://doi.org/10.5194/bg-20-2283-2023, 2023
Short summary
Short summary
We propose a new method to quantify carbon cycle feedbacks under negative CO2 emissions. Our method isolates the lagged carbon cycle response to preceding positive emissions from the response to negative emissions. Our findings suggest that feedback parameters calculated with the novel approach are larger than those calculated with the conventional approach whereby carbon cycle inertia is not corrected for, with implications for the effectiveness of carbon dioxide removal in reducing CO2 levels.
Marcus Breil, Annabell Weber, and Joaquim G. Pinto
Biogeosciences, 20, 2237–2250, https://doi.org/10.5194/bg-20-2237-2023, https://doi.org/10.5194/bg-20-2237-2023, 2023
Short summary
Short summary
A promising strategy for mitigating burdens of heat extremes in Europe is to replace dark coniferous forests with brighter deciduous forests. The consequence of this would be reduced absorption of solar radiation, which should reduce the intensities of heat periods. In this study, we show that deciduous forests have a certain cooling effect on heat period intensities in Europe. However, the magnitude of the temperature reduction is quite small.
Gesche Blume-Werry, Jonatan Klaminder, Eveline J. Krab, and Sylvain Monteux
Biogeosciences, 20, 1979–1990, https://doi.org/10.5194/bg-20-1979-2023, https://doi.org/10.5194/bg-20-1979-2023, 2023
Short summary
Short summary
Northern soils store a lot of carbon. Most research has focused on how this carbon storage is regulated by cold temperatures. However, it is soil organisms, from minute bacteria to large earthworms, that decompose the organic material. Novel soil organisms from further south could increase decomposition rates more than climate change does and lead to carbon losses. We therefore advocate for including soil organisms when predicting the fate of soil functions in warming northern ecosystems.
Koramanghat Unnikrishnan Jayakrishnan and Govindasamy Bala
Biogeosciences, 20, 1863–1877, https://doi.org/10.5194/bg-20-1863-2023, https://doi.org/10.5194/bg-20-1863-2023, 2023
Short summary
Short summary
Afforestation and reducing fossil fuel emissions are two important mitigation strategies to reduce the amount of global warming. Our work shows that reducing fossil fuel emissions is relatively more effective than afforestation for the same amount of carbon removed from the atmosphere. However, understanding of the processes that govern the biophysical effects of afforestation should be improved before considering our results for climate policy.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Morgan Sparey, Peter Cox, and Mark S. Williamson
Biogeosciences, 20, 451–488, https://doi.org/10.5194/bg-20-451-2023, https://doi.org/10.5194/bg-20-451-2023, 2023
Short summary
Short summary
Accurate climate models are vital for mitigating climate change; however, projections often disagree. Using Köppen–Geiger bioclimate classifications we show that CMIP6 climate models agree well on the fraction of global land surface that will change classification per degree of global warming. We find that 13 % of land will change climate per degree of warming from 1 to 3 K; thus, stabilising warming at 1.5 rather than 2 K would save over 7.5 million square kilometres from bioclimatic change.
Huanhuan Wang, Chao Yue, and Sebastiaan Luyssaert
Biogeosciences, 20, 75–92, https://doi.org/10.5194/bg-20-75-2023, https://doi.org/10.5194/bg-20-75-2023, 2023
Short summary
Short summary
This study provided a synthesis of three influential methods to quantify afforestation impact on surface temperature. Results showed that actual effect following afforestation was highly dependent on afforestation fraction. When full afforestation is assumed, the actual effect approaches the potential effect. We provided evidence the afforestation faction is a key factor in reconciling different methods and emphasized that it should be considered for surface cooling impacts in policy evaluation.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Daniel François, Adina Paytan, Olga Maria Oliveira de Araújo, Ricardo Tadeu Lopes, and Cátia Fernandes Barbosa
Biogeosciences, 19, 5269–5285, https://doi.org/10.5194/bg-19-5269-2022, https://doi.org/10.5194/bg-19-5269-2022, 2022
Short summary
Short summary
Our analysis revealed that under the two most conservative acidification projections foraminifera assemblages did not display considerable changes. However, a significant decrease in species richness was observed when pH decreases to 7.7 pH units, indicating adverse effects under high-acidification scenarios. A micro-CT analysis revealed that calcified tests of Archaias angulatus were of lower density in low pH, suggesting no acclimation capacity for this species.
Leander Moesinger, Ruxandra-Maria Zotta, Robin van der Schalie, Tracy Scanlon, Richard de Jeu, and Wouter Dorigo
Biogeosciences, 19, 5107–5123, https://doi.org/10.5194/bg-19-5107-2022, https://doi.org/10.5194/bg-19-5107-2022, 2022
Short summary
Short summary
The standardized vegetation optical depth index (SVODI) can be used to monitor the vegetation condition, such as whether the vegetation is unusually dry or wet. SVODI has global coverage, spans the past 3 decades and is derived from multiple spaceborne passive microwave sensors of that period. SVODI is based on a new probabilistic merging method that allows the merging of normally distributed data even if the data are not gap-free.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 19, 4671–4704, https://doi.org/10.5194/bg-19-4671-2022, https://doi.org/10.5194/bg-19-4671-2022, 2022
Short summary
Short summary
Soil carbon is the Earth’s largest terrestrial carbon store, and the response to climate change represents one of the key uncertainties in obtaining accurate global carbon budgets required to successfully militate against climate change. The ability of climate models to simulate present-day soil carbon is therefore vital. This study assesses soil carbon simulation in the latest ensemble of models which allows key areas for future model development to be identified.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Negar Vakilifard, Richard G. Williams, Philip B. Holden, Katherine Turner, Neil R. Edwards, and David J. Beerling
Biogeosciences, 19, 4249–4265, https://doi.org/10.5194/bg-19-4249-2022, https://doi.org/10.5194/bg-19-4249-2022, 2022
Short summary
Short summary
To remain within the Paris climate agreement, there is an increasing need to develop and implement carbon capture and sequestration techniques. The global climate benefits of implementing negative emission technologies over the next century are assessed using an Earth system model covering a wide range of plausible climate states. In some model realisations, there is continued warming after emissions cease. This continued warming is avoided if negative emissions are incorporated.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Taraka Davies-Barnard, Sönke Zaehle, and Pierre Friedlingstein
Biogeosciences, 19, 3491–3503, https://doi.org/10.5194/bg-19-3491-2022, https://doi.org/10.5194/bg-19-3491-2022, 2022
Short summary
Short summary
Biological nitrogen fixation is the largest natural input of new nitrogen onto land. Earth system models mainly represent global total terrestrial biological nitrogen fixation within observational uncertainties but overestimate tropical fixation. The model range of increase in biological nitrogen fixation in the SSP3-7.0 scenario is 3 % to 87 %. While biological nitrogen fixation is a key source of new nitrogen, its predictive power for net primary productivity in models is limited.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Roberto Pilli, Ramdane Alkama, Alessandro Cescatti, Werner A. Kurz, and Giacomo Grassi
Biogeosciences, 19, 3263–3284, https://doi.org/10.5194/bg-19-3263-2022, https://doi.org/10.5194/bg-19-3263-2022, 2022
Short summary
Short summary
To become carbon neutral by 2050, the European Union (EU27) forest C sink should increase to −450 Mt CO2 yr-1. Our study highlights that under current management practices (i.e. excluding any policy scenario) the forest C sink of the EU27 member states and the UK may decrease to about −250 Mt CO2eq yr-1 in 2050. The expected impacts of future climate change, however, add a considerable uncertainty, potentially nearly doubling or halving the sink associated with forest management.
Johnathan Daniel Maxey, Neil David Hartstein, Aazani Mujahid, and Moritz Müller
Biogeosciences, 19, 3131–3150, https://doi.org/10.5194/bg-19-3131-2022, https://doi.org/10.5194/bg-19-3131-2022, 2022
Short summary
Short summary
Deep coastal inlets are important sites for regulating land-based organic pollution before it enters coastal oceans. This study focused on how large climate forces, rainfall, and river flow impact organic loading and oxygen conditions in a coastal inlet in Tasmania. Increases in rainfall were linked to higher organic loading and lower oxygen in basin waters. Finally we observed a significant correlation between the Southern Annular Mode and oxygen concentrations in the system's basin waters.
Guang Gao, Tifeng Wang, Jiazhen Sun, Xin Zhao, Lifang Wang, Xianghui Guo, and Kunshan Gao
Biogeosciences, 19, 2795–2804, https://doi.org/10.5194/bg-19-2795-2022, https://doi.org/10.5194/bg-19-2795-2022, 2022
Short summary
Short summary
After conducting large-scale deck-incubation experiments, we found that seawater acidification (SA) increased primary production (PP) in coastal waters but reduced it in pelagic zones, which is mainly regulated by local pH, light intensity, salinity, and community structure. In future oceans, SA combined with decreased upward transports of nutrients may synergistically reduce PP in pelagic zones.
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Biogeosciences, 19, 2741–2757, https://doi.org/10.5194/bg-19-2741-2022, https://doi.org/10.5194/bg-19-2741-2022, 2022
Short summary
Short summary
This study is the first assessment to evaluate the interactions between river discharges, tides, and storm surges and how they can drive compound flooding in the Kapuas River delta. We successfully created a realistic hydrodynamic model whose domain covers the land–sea continuum using a wetting–drying algorithm in a data-scarce environment. We then proposed a new method to delineate compound flooding hazard zones along the river channels based on the maximum water level profiles.
Svenja Dobbert, Roland Pape, and Jörg Löffler
Biogeosciences, 19, 1933–1958, https://doi.org/10.5194/bg-19-1933-2022, https://doi.org/10.5194/bg-19-1933-2022, 2022
Short summary
Short summary
Understanding how vegetation might respond to climate change is especially important in arctic–alpine ecosystems, where major shifts in shrub growth have been observed. We studied how such changes come to pass and how future changes might look by measuring hourly variations in the stem diameter of dwarf shrubs from one common species. From these data, we are able to discern information about growth mechanisms and can thus show the complexity of shrub growth and micro-environment relations.
Jody Daniel, Rebecca C. Rooney, and Derek T. Robinson
Biogeosciences, 19, 1547–1570, https://doi.org/10.5194/bg-19-1547-2022, https://doi.org/10.5194/bg-19-1547-2022, 2022
Short summary
Short summary
The threat posed by climate change to prairie pothole wetlands is well documented, but gaps remain in our ability to make meaningful predictions about how prairie pothole wetlands will respond. We integrate aspects of topography, land cover/land use and climate to model the permanence class of tens of thousands of wetlands at the western edge of the Prairie Pothole Region.
Ádám T. Kocsis, Qianshuo Zhao, Mark J. Costello, and Wolfgang Kiessling
Biogeosciences, 18, 6567–6578, https://doi.org/10.5194/bg-18-6567-2021, https://doi.org/10.5194/bg-18-6567-2021, 2021
Short summary
Short summary
Biodiversity is under threat from the effects of global warming, and assessing the effects of climate change on areas of high species richness is of prime importance to conservation. Terrestrial and freshwater rich spots have been and will be less affected by climate change than other areas. However, marine rich spots of biodiversity are expected to experience more pronounced warming.
Rob Wilson, Kathy Allen, Patrick Baker, Gretel Boswijk, Brendan Buckley, Edward Cook, Rosanne D'Arrigo, Dan Druckenbrod, Anthony Fowler, Margaux Grandjean, Paul Krusic, and Jonathan Palmer
Biogeosciences, 18, 6393–6421, https://doi.org/10.5194/bg-18-6393-2021, https://doi.org/10.5194/bg-18-6393-2021, 2021
Short summary
Short summary
We explore blue intensity (BI) – a low-cost method for measuring ring density – to enhance palaeoclimatology in Australasia. Calibration experiments, using several conifer species from Tasmania and New Zealand, model 50–80 % of the summer temperature variance. The implications of these results have profound consequences for high-resolution paleoclimatology in Australasia, as the speed and cheapness of BI generation could lead to a step change in our understanding of past climate in the region.
Cited articles
Adams, J., Bond, N., and Overland, J.: Regional variability of the Arctic heat budget in fall and winter, J. Climate, 13, 3500–3510, https://doi.org/10.1175/1520-0442(2000)013<3500:RVOTAH>2.0.CO;2, 2000.
Arft, A., Walker, M., Gurevitch, J., Alatalo, J., Bret-Harte, M., Dale, M., Diemer, M., Gugerli, F., Henry, G., Jones, M., Hollister, R., Jónsdóttir, I., Laine, K., Lévesque, E., Marion, G., Molau, U., M\o lgaard, P., Nordenhäll, U., Raszhivin, V., Robinson, C., Starr, G., Stenström, A., Stenström, M., Totland, \O., Turner, P., Walker, L., Webber, P., Welker, J., and Wookey, P.: Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment, Ecol. Monogr., 69, 4, 491–511, https://doi.org/10.2307/2657227, 1999.
Armstrong, R. and Brodzik, M.: Recent Northern Hemisphere snow extent: a comparison of data derived from visible and microwave satellite sensors, Geophys. Res. Lett., 28, 19, 3673–3676, https://doi.org/10.1029/2000GL012556, 2001.
Ashcroft, P. and Wentz, F.: AMSR-E/Aqua L2A Global Swath Spatially-Resampled Brightness Temperatures (Tb) V001, digital media, National Snow and Ice Data Center, Boulder, CO, 2003.
Ayres, E., Nkem, J., Wall, D., Adams, B., Barrett, J., Simmons, B., Virginia, R., and Fountain, A.: Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert, Polar Biol., 33, 897–907, https://doi.org/10.1007/s00300-010-0766-3, 2010.
Bonan, G.: Ecological Climatology: Concepts and Applications, Cambridge Univ. Press, 2002.
Breiman, L. and Friedman, J.: Estimating optimal transformations for multiple regression and correlation, J. Am. Stat. Assoc., 80, 391, 580–598, https://doi.org/10.2307/2288477, 1985.
Burt, T. and Butcher, D.: Topographic controls of soil moisture distributions, Eur. J. Soil Sci., 36, 3, 469–486, https://doi.org/10.1111/j.1365-2389.1985.tb00351.x, 1985.
Callaghan, T., Johansson, M., Brown, R., Groisman, P., Labba, N., Radionov, V., Barry, R., Bulygina, O., Essery, R., Frolov, D., Golubev, V., Grenfell, T., Petrushina, M., Razuvaev, V., Robinson, D., Romanov, P., Shindell, D., Shmakin, A., Sokratov, S., Warren, S., and Yang, D.: The changing face of A}rctic snow cover: {a synthesis of observed and projected changes, AMBIO, 40, 1, 17–31, https://doi.org/10.1007/s13280-011-0212-y, 2011.
Church, J.: Snow surveying: its principles and possibilities, Geogr. Rev., 23, 4, 529–563, https://doi.org/10.2307/209242, 1933.
D'Agostino, R. and Stephens, M.: Goodness-of-fit Techniques, Vol. 68, CRC, 1986.
Derksen, C., Toose, P., Rees, A., Wang, L., English, M., Walker, A., and Sturm, M.: Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data, Remote Sens. Environ., 114, 1699–1709, https://doi.org/10.1016/j.rse.2010.02.019, 2010.
Duguay, C., Green, J., Derksen, C., English, M., Rees, A., Sturm, M., and Walker, A.: Preliminary assessment of the impact of lakes on passive microwave snow retrieval algorithms in the Arctic, in: 62nd Eastern Snow Conference Proceedings, 2005.
Essery, R. and Pomeroy, J.: Vegetation and topographic control of wind-blown snow distributions in distributed and aggregated simulations for an arctic tundra basin, J. Hydrometeorol., 5, 735–744, https://doi.org/10.1175/1525-7541(2004)005<0735:VATCOW>2.0.CO;2, 2004.
Evans, B., Walker, D., Benson, C., Nordstrand, E., and Petersen, G.: Spatial interrelationships between terrain, snow distribution and vegetation patterns at an arctic foothills site in Alaska, Ecography, 12, 3, 270–278, https://doi.org/10.1111/j.1600-0587.1989.tb00846.x, 1989.
Fitzgibbon, J. and Dunne, T.: Characteristics of subarctic snowcover/Les caractéristiques de la couverture de neige presque arctique, Hydrolog. Sci. J., 24, 4, 465–476, https://doi.org/10.1080/02626667909491886, 1979.
Frank, I. and Lanteri, S.: ACE: a non-linear regression model, Chemometr. Intell. Lab., 3, 4, 301–313, https://doi.org/10.1016/0169-7439(88)80029-7, 1988.
French, H. and Binley, A.: Snowmelt infiltration: monitoring temporal and spatial variability using time-lapse electrical resistivity, J. Hydrol., 297, 1–4, 174–186, https://doi.org/10.1016/j.jhydrol.2004.04.005, 2004.
Gatswirth, J., Gel, Y., and Miao, W.: The impact of Levene's test of equality of variances on statistical theory and practice, Stat. Sci., 24, 3, 343–360, https://doi.org/10.1214/09-STS301, 2009.
Gel, Y.: Comparative analysis of the local observation-based (LOB) method and the nonparametric regression-based method for gridded bias correction in mesoscale weather forecasting, Weather Forecast., 22, 6, 1243–1256, https://doi.org/10.1175/2007WAF2006046.1, 2007.
Gelfan, A., Pomeroy, J., and Kuchment, L.: Modeling forest cover influences on snow accumulation, sublimation, and melt, J. Hydrometeorol., 5, 5, 785–803, https://doi.org/10.1175/1525-7541(2004)005<0785:MFCIOS>2.0.CO;2, 2004.
Golding, D. and Swanson, R.: Snow distribution patterns in clearings and adjacent forest, Water Resour. Res., 22, 13, 1931–1940, https://doi.org/10.1029/WR022i013p01931, 1986.
Green, J., Kongoli, C., Prakash, A., Sturm, M., Duguay, C., and Li, S.: Quantifying the relationships between lake fraction, snow water equivalent and snow depth, and microwave brightness temperatures in an arctic tundra landscape, Remote Sens. Environ., 127, 329–340, https://doi.org/10.1016/j.rse.2012.09.008, 2012.
Grippa, M., Kergoat, L., Toan, T. L., Mognard, N., Delbart, N., L'Hermitte, J., and Vicente-Serrano, S.: The impact of snow depth and snowmelt on the vegetation variability over central Siberia, Geophys. Res. Lett., 32, 21, L21412, https://doi.org/10.1029/2005GL024286, 2005.
Hall, D., Kelly, R., Riggs, G., Chang, A., and Foster, J.: Assessment of the relative accuracy of hemispheric-scale snow-cover maps, Ann. Glaciol., 34, 1, 24–30, https://doi.org/10.3189/172756402781817770, 2002.
Hancock, S., Baxter, R. Evans, J. and Huntley, B.: Evaluating global snow water equivalent products for testing land surface models, Remote Sens. Environ., 128, 107–117, https://doi.org/10.1016/j.rse.2012.10.004, 2013.
Hardy, J., Groffman, P., Fitzhugh, R., Henry, K., Welman, A., Demers, J., Fahey, T., Driscoll, C., Tierney, G., and Nolan, S.: Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest, Biogeochemistry, 56, 2, 151–174, https://doi.org/10.1023/A:1013036803050, 2001.
Hare, F.: The Arctic, Q. J. Roy. Meteor. Soc., 94, 402, 439–459, https://doi.org/10.1002/qj.49709440202, 1968.
Jackson, T. and O'Neill, P.: Attenuation of soil microwave emission by corn and soybeans at 1.4 and 5 GHz, IEEE T. Geosci. Remote, 28, 978–980, https://doi.org/10.1109/36.58989, 1990.
Janowicz, R., Gray, D., and Pomeroy, J.: Spatial variability of fall soil moisture and spring snow water equivalent within a mountainous sub-arctic watershed, in: Proceedings of the Eastern Snow Conference, Vol. 60, 127–139, 2003.
Jensen, J. R.: Remote Sensing of the Environment: An Earth Resource Perspective, 2nd edn., Pearson Prentice Hall, 2007.
Johnsson, H. and Lundin, L.-C.: Surface runoff and soil water percolation as affected by snow and soil frost, J. Hydrol., 122, 1–4, 141–159, https://doi.org/10.1016/0022-1694(91)90177-J, 1991.
Jones, L. and Kimball, J.: A global daily record of land surface parameter retrievals from AMSR-E Version 1.1, 2010a.
Jones, L. and Kimball, J.: Daily Global Land Surface Parameters Derived from AMSR-E, available at: http://nsidc.org/data/docs/daac/nsidc0451_amsre_derived_land_params/pdfs/nsidc04 51_amsre_land_parameters.pdf, 2010b.
Jones, L. A. and Kimball, J. S.: Daily Global Land Surface Parameters Derived from AMSR-E, digital media, 2010c.
Jones, L., Ferguson, C., Kimball, J., Zhang, K., Chan, S., McDonald, K., Njoku, E., and Wood, E.: Satellite microwave remote sensing of daily land surface air temperature minima and maxima from AMSR-E, IEEE J. Sel. Top. Appl., 3, 111–123, https://doi.org/10.1109/JSTARS.2010.2041530, 2010d.
Jones, M., Kimball, J., McDonald, K., and Jones, L.: Utilizing satellite passive microwave remote sensing for monitoring global land surface phenology, Remote Sens. Environ., 115, 4, 1102–1114, https://doi.org/10.1016/j.rse.2010.12.015, 2011.
Jones, L. and Kimball, J.: Daily Global Land Surface Parameters Derived from AMSR-E, digital media, National Snow and Ice Data Center, Boulder, Colorado, USA, 2012.
Jung, M., Henkel, K., Herold, M., and Churkina, G.: Exploiting synergies of global land cover products for carbon cycle modeling, Remote Sens. Environ., 101, 4, 534–553, https://doi.org/10.1016/j.rse.2006.01.020, 2006.
Kane, D., Hinzman, L., Benson, C., and Liston, G.: Snow hydrology of a headwater arctic basin 1. Physical measurements and process studies, Water Resour. Res., 27, 6, 1099–1109, https://doi.org/10.1029/91WR00262, 1991.
Kawanishi, T., Sezai, T., Ito, Y., Imaoka, K., Takeshima, T., Ishido, Y., Shibata, A., Miura, M., Inahata, H., and Spencer, R.: The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies, IEEE T. Geosci. Remote, 41, 184–194, https://doi.org/10.1109/TGRS.2002.808331, 2003.
Kelly, R.: The AMSR-E snow depth algorithm: description and initial results, J. Remote Sens. Soc. Jpn., 29, 1, 307–317, 2009.
Chang, A., Foster, J., Hall, D.:Nimbus-7 SMMR derived global snow cover parameters, Ann. Glaciol., 9, 39–44, 1987.
Kim, Y., Kimball, J., McDonald, K., and Glassy, J.:Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing, IEEE T. Geosci. Remote, 49, 3, 949–960, https://doi.org/10.1109/TGRS.2010.2070515, 2011.
Knowles, K., Savoie, M., Armstrong, R., and Brodzik, M.: AMSR-E/Aqua daily EASE grid brightness temperatures, available at: http://nsidc.org/data/nsidc-0301.html, NSIDC, 2010.
Levene, H.: Robust testes for equality of variances, in: Contributions to Probability and Statistics, Stanford University Press, 1960.
Liston, G. and Sturm, M.: Winter precipitation patterns in arctic Alaska determined from a blowing-snow model and snow-depth observations, J. Hydrometeorol., 3, 6, 646–659, https://doi.org/10.1175/1525-7541(2002)003<0646:WPPIAA>2.0.CO;2, 2002.
Loranty, M., Goetz, S., and Beck, P.: Tundra vegetation effects on pan-Arctic albedo. Enviro. Res. Lett., 6, 024014, https://doi.org/10.1088/1748-9326/6/2/024014, 2011.
Lundberg, A. and Halldin, S.: Snow interception evaporation. Review of measurement techniques, processes, and models, Theor. Appl. Climatol., 70, 1-4, 117–133, https://doi.org/10.1007/s007040170010, 2001.
Luojus, K., Pulliainen, J., and Derksen, C.: Snow Water Equivalent (SWE) Product Guide, Global Snow Monitoring for Climate Research, 0.9.1/01, 2009.
Luojus, K., Pulliainen, J., Takala, M., Lemmetyinen, J., Derksen, C., and Wang, L.: Snow Water Equivalent (SWE) Product Guide, Global Snow Monitoring for Climate Research, 1.0/01, 2010.
Luus, K., Kelly, R., Lin, J., Humphreys, E., Lafleur, P., and Oechel, W.: Modeling the influence of snow cover on low Arctic net ecosystem exchange, Environ. Res. Lett., 8, 035045, https://doi.org/10.1088/1748-9326/8/3/035045, 2013a.
Luus, K., Lin, J., Kelly, R., and Duguay, C.: Subnivean Arctic and sub-Arctic net ecosystem exchange (NEE) Towards representing snow season processes in models of NEE using cryospheric remote sensing, Prog. in Phys. Geogr., 37, 4, 484–515, https://doi.org/10.1177/0309133313491130, 2013b.
MacDonald, M., Pomeroy, J., and Pietroniro, A.: Parameterizing redistribution and sublimation of blowing snow for hydrological models: tests in a mountainous subarctic catchment, Hydrol. Process., 23, 18, 2570–2583, https://doi.org/10.1002/hyp.7356, 2009.
Ménard, C., Essery, R., Pomeroy, J., Marsh, P., and Clark, D.: A shrub bending model to calculate the albedo of shrub-tundra, Hydrol. Process., https://doi.org/10.1002/hyp.9582, 2012.
Metcalfe, R. and Buttle, J.: A statistical model of spatially distributed snowmelt rates in a boreal forest basin, Hydrol. Process., 12, 1011, 1701–1722, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1701::AID-HYP690>3.3.CO;2-4, 1998.
Morgner, E., Elberling, B., Strebel, D., Cooper, E.: The importance of winter in annual ecosystem respiration in the High Arctic: Effects of snow depth in two vegetation types, Polar Res., 29, 1, 58–74, https://doi.org/10.1111/j.1751-8369.2010.00151.x, 2010.
Naito, A. and Cairns, D.: Relationships between arctic shrub dynamics and topographically-derived hydrologic characteristics, Environ. Res. Lett., 6, 4, 045506, https://doi.org/10.1088/1748-9326/6/4/045506, 2011.
Njoku, E. and Chan, S.: Vegetation and surface roughness effects on AMSR-E land observations, Remote Sens. Environ., 100, 2, 190–199, https://doi.org/10.1016/j.rse.2005.10.017,2005.
Njoku, E. and Kong, J.: Theory for passive microwave remote sensing of near-surface soil moisture, J. Geophys. Res., 82, 20, 3108–3118, https://doi.org/10.1029/JB082i020p03108, 1977.
Nowinski, N., Taneva, L., Trumbore, S., and Welker, J.: Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment, Oecologia, 163, 3, 785–792, https://doi.org/10.1007/s00442-009-1556-x, 2010.
Olsson, P., Sturm, M., Racine, C., Romanovsky, V., and Liston, G.: Five stages of the Alaskan Arctic cold season with ecosystem implications, Arct. Antarct. Alp. Res., 35, 1, 74–81, https://doi.org/10.1657/1523-0430(2003)035[0074:FSOTAA]2.0.CO;2, 2003.
Ostendorf, B. and Reynolds, J.: Relationships between a terrain-based hydrologic model and patch-scale vegetation patterns in an arctic tundra landscape, Land. Ecol., 8, 4, 229–237, https://doi.org/10.1007/BF00125130, 1993.
Overland, J., Adams, J., and Bond, N.: Regional variation of winter temperatures in the Arctic, J. Climate, 10, 5, 821–837, https://doi.org/10.1175/1520-0442(1997)010<0821:RVOWTI>2.0.CO;2, 1997.
Pomeroy, J., March, P., Jones, H., and Davies, T.: chap. Spatial distribution of snow chemical load at the tundra-taiga transition, in: Biogeochemistry of Seasonally Snow-Covered Catchments, IAHS, 191–206, 1995.
Pomeroy, J. and Dion, K.: Winter radiation extinction and reflection in a boreal pine canopy: Measurements and modelling, Hydrol. Process., 10, 1591–1608, https://doi.org/ 10.1002/(SICI)1099-1085(199612)10:12<1591::AID-HYP503>3.0.CO;2-8, 1996.
Pomeroy, J., Granger, R., Pietroniro, A., Elliott, J., Toth, B., and Hedstrom, N.: Hydrological Pathways in the Prince Albert Model Forest, Tech. rep., National Hydrology Research Institute Environment Canada, Saskatoon, Saskatchewan, 1997.
Pomeroy, J., Gray, D., Shook, K., Toth, B., Essery, R., Pietroniro, A., and Hedstrom, N.: An evaluation of snow accumulation and ablation processes for land surface modelling, Hydrol. Process., 12, 15, 2339–2367, https://doi.org/10.1002/(SICI)1099-1085(199812)12:15<2339::AID-HYP800>3.3.CO;2-C, 1999.
Pomeroy, J., Gray, D., Hedstrom, N., and Janowicz, J.: Prediction of seasonal snow accumulation in cold climate forests, Hydrol. Process., 16, 18, 3543–3558, https://doi.org/10.1002/hyp.1228, 2002.
Pomeroy, J., Bewley, D., Essery, R., Hedstrom, N., Link, T., Granger, R., Sicart, J., Ellis, C., and Janowicz, J.: Shrub tundra snowmelt, Hydrol. Process., 20, 4, 923–941, https://doi.org/10.1002/hyp.6124, 2006.
Prince, S. and Goward, S.: Global primary production: a remote sensing approach, J. Biogeogr., 22, 815–835, https://doi.org/10.2307/2845983, 1995.
Pulliainen, J.: Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations, Remote Sens. Environ., 101, 2, 257–269, https://doi.org/10.1016/j.rse.2006.01.002, 2006.
Pulliainen, J., Grandell, J., and Hallikainen, M.: HUT snow emission model and its applicability to snow water equivalent retrieval, IEEE T. Geosci. Remote, 37, 1378–1390, https://doi.org/10.1109/36.763302, 1999.
Rees, A., Derksen, C., English, M., Walker, A., and Duguay, C.: Uncertainty in snow mass retrievals from satellite passive microwave data in lake-rich high-latitude environments, Hydrol. Process., 20, 1019–1022, https://doi.org/10.1002/hyp.6076, 2006.
Rigor, I., Colony, R., and Martin, S.: Variations in surface air temperature in the Arctic, J. Climate, 13, 896–914, https://doi.org/10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2, 2000.
Ritchie, J. and Hare, F.: Late-quaternary vegetation and climate near the arctic treeline of northwestern North America, Quaternary Res., 1, 331–342, https://doi.org/10.1016/0033-5894(71)90069-X, 1971.
Rouse, W.: Soil microclimate of tundra and forest, Water Resour. Res., 20, 1, 67–73, https://doi.org/10.1029/WR020i001p00067, 1984.
Serreze, M. and Barry, R.: The Arctic Climate System, Cambridge Univ. Press, 2005.
Shinoda, M.: Climate memory of snow mass as soil moisture over central Eurasia, J. Geophys. Res., 106, 33393–33403, https://doi.org/10.1029/2001JD000525, 2001.
Sitch, S., McGuire, A. D., Kimball, J., Gedney, N., Gamon, J., Engstrom, R., Wolf, A., Zhuang, Q., Clein, J., and McDonald, K. C.: Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modeling, Ecol. Appl., 17, 1, 213–234, https://doi.org/10.1890/1051-0761(2007)017[0213:ATCBOC]2.0.CO;2, 2007.
Smith, C., Burn, C., Tarnocai, C. and Sproule, B.: Air and soil temperature relations along an ecological transect through the permafrost zones of northwestern Canada, Proceedings, Seventh International Conference on Permafrost, 23–26, 1998.
Solberg, R., Amlien, J., Koren, H., Wangensteen, B., Luojus, K., Pulliainen, J., Takala, M., Lemmetyinen, J., Nagler, T., Rott, H., Muller, F., Derksen, C., Metsamaki, S., and Bottcher, K.: Global snow monitoring for climate research: Design justication file. European Space Agency contract report, ESRIN contract 21703/08/I-EC, Deliverable 1.7, 2010.
Spector, P., Friedman, J., Tibshirani, R. and Lumley, T.: acepack: ace() and avas() for selecting regression transformations, available at http://CRAN.R-project.org/package=acepack, 2013.
Staple, W., Lehane, J., and Wenhardt, A.: Conservation of soil moisture from fall and winter precipitation, Can. J. Soil Sci., 40, 1, 80–88, https://doi.org/10.4141/cjss60-010, 1960.
Stiles, W. and Ulaby, F.: The active and passive microwave response to snow parameters 1. Wetness, J. Geophys. Res., 85, C2, 1037–1044, https://doi.org/10.1029/JC085iC02p01037, 1980.
Sturm, M., Holmgren, J., and Liston, G.: A seasonal snow cover classification system for local to global applications, J. Climate, 8, 5, 1261–1283, https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2, 1995.
Sturm, M., Holmgren, J., McFadden, J., Liston, G., Chapin III, F., and Racine, C.: Snow-shrub interactions in Arctic Tundra: A hypothesis with climatic implications, J. Climate, 14, 3, 336–344, https://doi.org/10.1175/1520-0442(2001)014<0336:SSIIAT>2.0.CO;2, 2001a.
Sturm, M., Pielke Sr, R., and Chapin III, F.: Interactions of shrubs and snow in arctic tundra: measurements and models, in: Soil-Vegetation-Atmosphere Transfer Schemes and Large-Scale Hydrological Models, Proceedings of an International Symposium (Symposium S5) held during the Sixth Scientific Assembly of the International Association of Hydrological Sciences (IAHS) at Maastricht, The Netherlands, from 18 to 27 July 2001, vol. 270, 317, International Assn of Hydrological Sciences, 2001b.
Sturm, M., Douglas, T., Racine, C., and Liston, G.: Changing snow and shrub conditions affect albedo with global implications, J. Geophys. Res., 110, G01004, https://doi.org/10.1029/2005JG000013, 2005.
Sullivan, P., Welker, J., Arens, S., and Sveinbjörnsson, B..: Continuous estimates of CO2 efflux from arctic and boreal soils during the snow-covered season in Alaska, J. Geophys. Res.,113, G04009, https://doi.org/10.1029/2008JG000715, 2008.
Suzuki, K., Kubota, J., Ohata, T., and Vuglinsky, V.: Influence of snow ablation and frozen ground on spring runoff generation in the Mogot Experimental Watershed, southern mountainous taiga of eastern Siberia, Nord. Hydrol., 37, 21–29, https://doi.org/10.2166/nh.2005.027, 2006.
Takala, O., Pulliainen, J., Metsämäki, S., and Koskinen, J.: Detection of snowmelt using spaceborne microwave radiometer data in Eurasia From 1979 to 2007, IEEE T. Geosci. Remote, 47, 9, 2996–3007, https://doi.org/10.1109/TGRS.2009.2018442, 2009.
Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Kärnä, J., Koskinen, J., and Bojkov, B.: Estimating Northern Hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements, Remote Sens. Environ., 115, 21, 3517–3529, https://doi.org/10.1016/j.rse.2011.08.014, 2011.
Tranquillini, W.: The physiology of plants at high altitudes, Ann. Rev. Plant Physio., 15, 1, 345–362, https://doi.org/10.1146/annurev.pp.15.060164.002021, 1964.
Wahren, C., Walker, M., and Bret-Harte, M.: Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment, Glob. Change Biol., 11, 4, 537–552, https://doi.org/10.1111/j.1365-2486.2005.00927.x, 2005.
Walker, D., Billings, W., and De Molenaar, J.: Snow–vegetation interactions in tundra environments, in: Snow Ecology: an Interdisciplinary Examination of Snow-Covered Ecosystems, 266–324, 2001.
Walker, D., Raynolds, M., Daniëls, F., Einarsson, E., Elvebakk, A., Gould, W., Katenin, A., Kholod, S., Markon, C., Melnikov, E., Moskalenko, N., Talbot, S., Yurtsev, B., Bliss, L., Edlund, S., Zoltai, S., Wilhelm, M., Bay, C., Gudjónsson, G., Ananjeva, G., Drozdov, D., Konchenko, L., Korostelev, Y., Ponomareva, O., Matveyeva, N., Safranova, I., Shelkunova, R., Polezhaev, A., Johansen, B., Maier, H., Murray, D., Fleming, M., Trahan, N., Charron, T., Lauritzen, S., and Vairin, B.: The Circumpolar Arctic vegetation map, J. Veg. Sci., 16, 3, 267–282, https://doi.org/10.1658/1100-9233(2005)016[0267:TCAVM]2.0.CO;2, 2005.
Walker, M., Walker, D., Welker, J., Arft, A., Bardsley, T., Brooks, P., Fahnestock, J., Jones, M., Losleben, M., Parsons, A., Seastedt, T., and Turner, P.: Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra, Hydrol. Process., 13, 14–15, 2315–2330, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2315::AID-HYP888>3.0.CO;2-A, 1999.
Wang, D. and Murphy, M.: Estimating optimal transformations for multiple regression using the ACE algorithm,J. Data Sci., 2, 329–346, 2004.
Wardle, P.: Engelmann spruce (Picea engelmannii Engel.) at its upper limits on the Front Range, Colorado, Ecology, 49, 3, 483–495, https://doi.org/10.2307/1934115, 1968.
Williams, M. and Ratsetter, E.: Vegetation characteristics and primary productivity along an Arctic transect: implications for scaling-up, J. Ecol., 87, 5, 885–898, https://doi.org/10.1046/j.1365-2745.1999.00404.x, 1999.
Willis, W., Carlson, C., Alessi, J., and Haas, H.: Depth of freezing and spring run-off as related to fall soil-moisture level, Can. J. Soil Sci., 41, 1, 115–123, https://doi.org/10.4141/cjss61-014, 1961.
Zhang, T., and Armstrong, R.:Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing,Geophys. Res. Lett., 28, 5, 763–766, https://doi.org/10.1029/2000GL011952, 2001.
Zhao, L. and Gray, D.: Estimating snowmelt infiltration into frozen soils, Hydrol. Process., 13, 12–13, 1827–1842, https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1827::AID-HYP896>3.0.CO;2-D, 1999.
Altmetrics
Final-revised paper
Preprint