Articles | Volume 13, issue 1
https://doi.org/10.5194/bg-13-115-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-13-115-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Influence of timing of sea ice retreat on phytoplankton size during marginal ice zone bloom period on the Chukchi and Bering shelves
A. Fujiwara
CORRESPONDING AUTHOR
Institute of Arctic Climate and Environment Research,
Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima,
Yokosuka, Kanagawa, Japan
T. Hirawake
Faculty/Graduate School of Fisheries Sciences, Hokkaido
University, 3-1-1 Minatocho, Hakodate, Hokkaido 041-8611,
Japan
K. Suzuki
Faculty of Environmental Earth Science, Hokkaido
University/JST-CREST, N10 W5, Kita-ku, Sapporo, Hokkaido 060-0810,
Japan
L. Eisner
NOAA-Fisheries, Alaska Fisheries Science Center, National Marine Fisheries Service, 7600 Sand Point Way, Seattle WA, USA
I. Imai
Faculty/Graduate School of Fisheries Sciences, Hokkaido
University, 3-1-1 Minatocho, Hakodate, Hokkaido 041-8611,
Japan
S. Nishino
Institute of Arctic Climate and Environment Research,
Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima,
Yokosuka, Kanagawa, Japan
T. Kikuchi
Institute of Arctic Climate and Environment Research,
Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima,
Yokosuka, Kanagawa, Japan
S.-I. Saitoh
Faculty/Graduate School of Fisheries Sciences, Hokkaido
University, 3-1-1 Minatocho, Hakodate, Hokkaido 041-8611,
Japan
Related authors
Hiroko Sasaki, Kohei Matsuno, Amane Fujiwara, Misaki Onuka, Atsushi Yamaguchi, Hiromichi Ueno, Yutaka Watanuki, and Takashi Kikuchi
Biogeosciences, 13, 4555–4567, https://doi.org/10.5194/bg-13-4555-2016, https://doi.org/10.5194/bg-13-4555-2016, 2016
Short summary
Short summary
We constructed the habitat models explaining the spatial patterns of the large and small Arctic copepods and the Pacific copepods of the northern Bering Sea and Chukchi Sea. The adequate models show the importance of water masses and sea ice retreat timing. This finding also indicates that earlier sea ice retreat has positive effects on the abundance of all copepod groups in the northern Bering and Chukchi seas, suggesting a change from a pelagic–benthic-type ecosystem to a pelagic–pelagic type.
Shigeto Nishino, Takashi Kikuchi, Amane Fujiwara, Toru Hirawake, and Michio Aoyama
Biogeosciences, 13, 2563–2578, https://doi.org/10.5194/bg-13-2563-2016, https://doi.org/10.5194/bg-13-2563-2016, 2016
Short summary
Short summary
We analysed mooring and ship-based data obtained from a biological hotspot in the southern Chukchi Sea. Mooring data were collected for the first time in this site and were captured during spring and autumn blooms with high chlorophyll a concentrations. The data suggest that a dome-like structure of the bottom water and nutrient regeneration at the bottom play important roles in maintaining the autumn bloom of the biological hotspot.
Huailin Deng, Koji Suzuki, Ichiro Yasuda, Hiroshi Ogawa, and Jun Nishioka
EGUsphere, https://doi.org/10.5194/egusphere-2024-3064, https://doi.org/10.5194/egusphere-2024-3064, 2024
Short summary
Short summary
Iron (Fe) and nitrate are vital for primary production in the North Pacific. Sedimentary Fe is carried by North Pacific Intermediate Water to the north Pacific, but the nutrient return path and its effect on phytoplankton are unclear. By combining Fe and macronutrient fluxes with phytoplankton composition, this study firstly revealed that Fe supply from subsurface greatly controls diatom abundance and identified the nutrient return path in the subarctic gyre and Kuroshio-Oyashio Transition Area.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Toru Kobari, Taiga Honma, Daisuke Hasegawa, Naoki Yoshie, Eisuke Tsutsumi, Takeshi Matsuno, Takeyoshi Nagai, Takeru Kanayama, Fukutaro Karu, Koji Suzuki, Takahiro Tanaka, Xinyu Guo, Gen Kume, Ayako Nishina, and Hirohiko Nakamura
Biogeosciences, 17, 2441–2452, https://doi.org/10.5194/bg-17-2441-2020, https://doi.org/10.5194/bg-17-2441-2020, 2020
Short summary
Short summary
We report on biological productivity under turbulent nitrate flux amplified with the Kuroshio. Oceanographic observations exhibit that the Kuroshio topographically enhances significant turbulent mixing and nitrate influx to the euphotic zone. Onboard experiments show phytoplankton and microzooplankton growths enhanced with the nitrate flux and a significant microzooplankton grazing on phytoplankton. These rapid and systematic trophodynamics enhance biological productivity in the Kuroshio.
Stanford B. Hooker, Atsushi Matsuoka, Raphael M. Kudela, Youhei Yamashita, Koji Suzuki, and Henry F. Houskeeper
Biogeosciences, 17, 475–497, https://doi.org/10.5194/bg-17-475-2020, https://doi.org/10.5194/bg-17-475-2020, 2020
Short summary
Short summary
A Kd(λ) and aCDOM(440) data set spanned oceanic, coastal, and inland waters. The algorithmic approach, based on Kd end-member pairs, can be used globally. End-members with the largest spectral span had an accuracy of 1.2–2.4 % (RMSE). Validation was influenced by subjective
nonconservativewater masses. The influence of subcategories was confirmed with an objective cluster analysis.
Hiroshi Sumata, Frank Kauker, Michael Karcher, Benjamin Rabe, Mary-Louise Timmermans, Axel Behrendt, Rüdiger Gerdes, Ursula Schauer, Koji Shimada, Kyoung-Ho Cho, and Takashi Kikuchi
Ocean Sci., 14, 161–185, https://doi.org/10.5194/os-14-161-2018, https://doi.org/10.5194/os-14-161-2018, 2018
Short summary
Short summary
We estimated spatial and temporal decorrelation scales of temperature and salinity in the Amerasian Basin in the Arctic Ocean. The estimated scales can be applied to representation error assessment in the ocean data assimilation system for the Arctic Ocean.
Naohiro Kosugi, Daisuke Sasano, Masao Ishii, Shigeto Nishino, Hiroshi Uchida, and Hisayuki Yoshikawa-Inoue
Biogeosciences, 14, 5727–5739, https://doi.org/10.5194/bg-14-5727-2017, https://doi.org/10.5194/bg-14-5727-2017, 2017
Short summary
Short summary
Recent variation in air–sea CO2 flux in the Arctic Ocean is focused. In order to understand the relation between sea ice retreat and CO2 chemistry, we conducted hydrographic observations in the Arctic Ocean in 2013. There were relatively high pCO2 surface layer and low pCO2 subsurface layer in the Canada Basin. The former was due to near-equilibration with the atmosphere and the latter primary production. Both were unlikely mixed by disturbance as large sea-ice melt formed strong stratification.
Takafumi Hirata and Koji Suzuki
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-164, https://doi.org/10.5194/bg-2017-164, 2017
Preprint withdrawn
Short summary
Short summary
This work delivers a regional estimates of primary production due to diatoms, haptophytes and cyanobacteria around the Kuroshio current. Using a novel methodology, photosynthetic efficiency and abundance of marine phytoplankton are now viewed from a satellite in space. Our see that variability in primary production by diatoms is mainly regulated by their abundance rather than their efficiency, whereas the variability by cyanobacteria is more regulated by their efficiency than their abundance.
Michiyo Yamamoto-Kawai, Takahisa Mifune, Takashi Kikuchi, and Shigeto Nishino
Biogeosciences, 13, 6155–6169, https://doi.org/10.5194/bg-13-6155-2016, https://doi.org/10.5194/bg-13-6155-2016, 2016
Short summary
Short summary
Seasonal variation of Ω in bottom water in Hope Valley, a biological hotspot in the southern Chukchi Sea, was reconstructed from 2-year-round mooring data of temperature, salinity and oxygen, with empirical equations derived from ship-based observations.
Hiroko Sasaki, Kohei Matsuno, Amane Fujiwara, Misaki Onuka, Atsushi Yamaguchi, Hiromichi Ueno, Yutaka Watanuki, and Takashi Kikuchi
Biogeosciences, 13, 4555–4567, https://doi.org/10.5194/bg-13-4555-2016, https://doi.org/10.5194/bg-13-4555-2016, 2016
Short summary
Short summary
We constructed the habitat models explaining the spatial patterns of the large and small Arctic copepods and the Pacific copepods of the northern Bering Sea and Chukchi Sea. The adequate models show the importance of water masses and sea ice retreat timing. This finding also indicates that earlier sea ice retreat has positive effects on the abundance of all copepod groups in the northern Bering and Chukchi seas, suggesting a change from a pelagic–benthic-type ecosystem to a pelagic–pelagic type.
Shigeto Nishino, Takashi Kikuchi, Amane Fujiwara, Toru Hirawake, and Michio Aoyama
Biogeosciences, 13, 2563–2578, https://doi.org/10.5194/bg-13-2563-2016, https://doi.org/10.5194/bg-13-2563-2016, 2016
Short summary
Short summary
We analysed mooring and ship-based data obtained from a biological hotspot in the southern Chukchi Sea. Mooring data were collected for the first time in this site and were captured during spring and autumn blooms with high chlorophyll a concentrations. The data suggest that a dome-like structure of the bottom water and nutrient regeneration at the bottom play important roles in maintaining the autumn bloom of the biological hotspot.
Naoya Yokoi, Kohei Matsuno, Mutsuo Ichinomiya, Atsushi Yamaguchi, Shigeto Nishino, Jonaotaro Onodera, Jun Inoue, and Takashi Kikuchi
Biogeosciences, 13, 913–923, https://doi.org/10.5194/bg-13-913-2016, https://doi.org/10.5194/bg-13-913-2016, 2016
Short summary
Short summary
We studied short-term changes in the microplankton community in the Chukchi Sea with regards to responses to the strong wind event (SWE) during autumn (September 2013). It is assumed that atmospheric turbulences, such as SWE, may supply sufficient nutrients to the surface layer that subsequently enhance the small bloom under the weak stratification. After the bloom, the dominant diatom community then shifts from centric-dominated to one where centric/pennate are more equal in abundance.
A. Ooki, S. Kawasaki, K. Kuma, S. Nishino, and T. Kikuchi
Biogeosciences, 13, 133–145, https://doi.org/10.5194/bg-13-133-2016, https://doi.org/10.5194/bg-13-133-2016, 2016
Short summary
Short summary
We conducted a shipboard observation over the Chukchi Sea and the Canada Basin
in the western Arctic Ocean to obtain vertical distributions of four volatile organic iodine compounds (VOIs) in seawater. High concentrations of four VOIs were found in the bottom layer water over the Chukchi Sea shelf, in which layer the concentration maximum of ammonium occurred simultaneously. We considered that the VOI production is associated with degradation of organic matter in the bottom sediment.
K. Matsuno, A. Yamaguchi, S. Nishino, J. Inoue, and T. Kikuchi
Biogeosciences, 12, 4005–4015, https://doi.org/10.5194/bg-12-4005-2015, https://doi.org/10.5194/bg-12-4005-2015, 2015
Short summary
Short summary
We performed high-frequency samplings of zooplankton community and gut pigment of copepods in the Chukchi Sea. Zooplankton showed no changes with a strong wind event and dominant copepods prepared for diapause. Yet, feeding activity of the copepods increased as a result of temporal phytoplankton bloom, enhanced by the wind event. Because of the long generation length of copepods, a smaller effect was detected for their abundance, population, lipid accumulation and gonad maturation.
H. Endo, K. Sugie, T. Yoshimura, and K. Suzuki
Biogeosciences, 12, 2247–2259, https://doi.org/10.5194/bg-12-2247-2015, https://doi.org/10.5194/bg-12-2247-2015, 2015
K. Suzuki, A. Hattori-Saito, Y. Sekiguchi, J. Nishioka, M. Shigemitsu, T. Isada, H. Liu, and R. M. L. McKay
Biogeosciences, 11, 2503–2517, https://doi.org/10.5194/bg-11-2503-2014, https://doi.org/10.5194/bg-11-2503-2014, 2014
A. Fujiwara, T. Hirawake, K. Suzuki, I. Imai, and S.-I. Saitoh
Biogeosciences, 11, 1705–1716, https://doi.org/10.5194/bg-11-1705-2014, https://doi.org/10.5194/bg-11-1705-2014, 2014
Y. Yamashita, Y. Nosaka, K. Suzuki, H. Ogawa, K. Takahashi, and H. Saito
Biogeosciences, 10, 7207–7217, https://doi.org/10.5194/bg-10-7207-2013, https://doi.org/10.5194/bg-10-7207-2013, 2013
K. Sugie, H. Endo, K. Suzuki, J. Nishioka, H. Kiyosawa, and T. Yoshimura
Biogeosciences, 10, 6309–6321, https://doi.org/10.5194/bg-10-6309-2013, https://doi.org/10.5194/bg-10-6309-2013, 2013
I. P. Semiletov, N. E. Shakhova, I. I. Pipko, S. P. Pugach, A. N. Charkin, O. V. Dudarev, D. A. Kosmach, and S. Nishino
Biogeosciences, 10, 5977–5996, https://doi.org/10.5194/bg-10-5977-2013, https://doi.org/10.5194/bg-10-5977-2013, 2013
N. Yasuki, K. Suzuki, and A. Tsuda
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-6605-2013, https://doi.org/10.5194/bgd-10-6605-2013, 2013
Revised manuscript has not been submitted
J. Peloquin, C. Swan, N. Gruber, M. Vogt, H. Claustre, J. Ras, J. Uitz, R. Barlow, M. Behrenfeld, R. Bidigare, H. Dierssen, G. Ditullio, E. Fernandez, C. Gallienne, S. Gibb, R. Goericke, L. Harding, E. Head, P. Holligan, S. Hooker, D. Karl, M. Landry, R. Letelier, C. A. Llewellyn, M. Lomas, M. Lucas, A. Mannino, J.-C. Marty, B. G. Mitchell, F. Muller-Karger, N. Nelson, C. O'Brien, B. Prezelin, D. Repeta, W. O. Jr. Smith, D. Smythe-Wright, R. Stumpf, A. Subramaniam, K. Suzuki, C. Trees, M. Vernet, N. Wasmund, and S. Wright
Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, https://doi.org/10.5194/essd-5-109-2013, 2013
Related subject area
Biogeochemistry: Open Ocean
Sedimentary organic matter signature hints at the phytoplankton-driven biological carbon pump in the central Arabian Sea
Hydrological cycle amplification imposes spatial patterns on the climate change response of ocean pH and carbonate chemistry
Assessing the tropical Atlantic biogeochemical processes in the Norwegian Earth System Model
Evolution of oxygen and stratification and their relationship in the North Pacific Ocean in CMIP6 Earth system models
Evaluation of CMIP6 model performance in simulating historical biogeochemistry across the southern South China Sea
Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models
Anthropogenic carbon storage and its decadal changes in the Atlantic between 1990–2020
Ocean alkalinity enhancement impacts: regrowth of marine microalgae in alkaline mineral concentrations simulating the initial concentrations after ship-based dispersions
Climatic controls on metabolic constraints in the ocean
Effects of grain size and seawater salinity on magnesium hydroxide dissolution and secondary calcium carbonate precipitation kinetics: implications for ocean alkalinity enhancement
Short-term response of Emiliania huxleyi growth and morphology to abrupt salinity stress
Assessing the impact of CO2-equilibrated ocean alkalinity enhancement on microbial metabolic rates in an oligotrophic system
Ocean Acidification trends and Carbonate System dynamics in the North Atlantic Subpolar Gyre during 2009–2019
Phosphomonoesterase and phosphodiesterase activities in the eastern Mediterranean in two contrasting seasonal situations
Net primary production annual maxima in the North Atlantic projected to shift in the 21st century
Testing the influence of light on nitrite cycling in the eastern tropical North Pacific
Loss of nitrogen via anaerobic ammonium oxidation (anammox) in the California Current system during the late Quaternary
Technical note: Assessment of float pH data quality control methods – a case study in the subpolar northwest Atlantic Ocean
Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations
Underestimation of multi-decadal global O2 loss due to an optimal interpolation method
Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats
Characteristics of surface physical and biogeochemical parameters within mesoscale eddies in the Southern Ocean
Seasonal dynamics and annual budget of dissolved inorganic carbon in the northwestern Mediterranean deep-convection region
The fingerprint of climate variability on the surface ocean cycling of iron and its isotopes
Reconstructing the ocean's mesopelagic zone carbon budget: sensitivity and estimation of parameters associated with prokaryotic remineralization
Seasonal cycles of biogeochemical fluxes in the Scotia Sea, Southern Ocean: a stable isotope approach
Absence of photophysiological response to iron addition in autumn phytoplankton in the Antarctic sea-ice zone
Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump
Importance of multiple sources of iron for the upper-ocean biogeochemistry over the northern Indian Ocean
Exploring the role of different data types and timescales in the quality of marine biogeochemical model calibration
All about nitrite: exploring nitrite sources and sinks in the eastern tropical North Pacific oxygen minimum zone
Fossil coccolith morphological attributes as a new proxy for deep ocean carbonate chemistry
Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations
Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design
The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle
Model estimates of metazoans' contributions to the biological carbon pump
Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: implications for the addition of iron to the deep ocean
Nitrite cycling in the primary nitrite maxima of the eastern tropical North Pacific
Hotspots and drivers of compound marine heatwaves and low net primary production extremes
Ecosystem impacts of marine heat waves in the northeast Pacific
Tracing the role of Arctic shelf processes in Si and N cycling and export through the Fram Strait: insights from combined silicon and nitrate isotopes
Controls on the relative abundances and rates of nitrifying microorganisms in the ocean
The response of diazotrophs to nutrient amendment in the South China Sea and western North Pacific
Influence of GEOTRACES data distribution and misfit function choice on objective parameter retrieval in a marine zinc cycle model
Physiological flexibility of phytoplankton impacts modelled chlorophyll and primary production across the North Pacific Ocean
Observation-constrained estimates of the global ocean carbon sink from Earth system models
Early winter barium excess in the southern Indian Ocean as an annual remineralisation proxy (GEOTRACES GIPr07 cruise)
Controlling factors on the global distribution of a representative marine non-cyanobacterial diazotroph phylotype (Gamma A)
Summer trends and drivers of sea surface fCO2 and pH changes observed in the southern Indian Ocean over the last two decades (1998–2019)
Global nutrient cycling by commercially targeted marine fish
Medhavi Pandey, Haimanti Biswas, Daniel Birgel, Nicole Burdanowitz, and Birgit Gaye
Biogeosciences, 21, 4681–4698, https://doi.org/10.5194/bg-21-4681-2024, https://doi.org/10.5194/bg-21-4681-2024, 2024
Short summary
Short summary
We analysed sea surface temperature (SST) proxy and plankton biomarkers in sediments that accumulate sinking material signatures from surface waters in the central Arabian Sea (21°–11° N, 64° E), a tropical basin impacted by monsoons. We saw a north–south SST gradient, and the biological proxies showed more organic matter from larger algae in the north. Smaller algae and zooplankton were more numerous in the south. These trends were related to ocean–atmospheric processes and oxygen availability.
Allison Hogikyan and Laure Resplandy
Biogeosciences, 21, 4621–4636, https://doi.org/10.5194/bg-21-4621-2024, https://doi.org/10.5194/bg-21-4621-2024, 2024
Short summary
Short summary
Rising atmospheric CO2 influences ocean carbon chemistry, leading to ocean acidification. Global warming introduces spatial patterns in the intensity of ocean acidification. We show that the most prominent spatial patterns are controlled by warming-driven changes in rainfall and evaporation, not by the direct effect of warming on carbon chemistry and pH. These evaporation and rainfall patterns oppose acidification in saltier parts of the ocean and enhance acidification in fresher regions.
Shunya Koseki, Lander R. Crespo, Jerry Tjiputra, Filippa Fransner, Noel S. Keenlyside, and David Rivas
Biogeosciences, 21, 4149–4168, https://doi.org/10.5194/bg-21-4149-2024, https://doi.org/10.5194/bg-21-4149-2024, 2024
Short summary
Short summary
We investigated how the physical biases of an Earth system model influence the marine biogeochemical processes in the tropical Atlantic. With four different configurations of the model, we have shown that the versions with better SST reproduction tend to better represent the primary production and air–sea CO2 flux in terms of climatology, seasonal cycle, and response to climate variability.
Lyuba Novi, Annalisa Bracco, Takamitsu Ito, and Yohei Takano
Biogeosciences, 21, 3985–4005, https://doi.org/10.5194/bg-21-3985-2024, https://doi.org/10.5194/bg-21-3985-2024, 2024
Short summary
Short summary
We explored the relationship between oxygen and stratification in the North Pacific Ocean using a combination of data mining and machine learning. We used isopycnic potential vorticity (IPV) as an indicator to quantify ocean ventilation and analyzed its predictability, a strong O2–IPV connection, and predictability for IPV in the tropical Pacific. This opens new routes for monitoring ocean O2 through few observational sites co-located with more abundant IPV measurements in the tropical Pacific.
Winfred Marshal, Jing Xiang Chung, Nur Hidayah Roseli, Roswati Md Amin, and Mohd Fadzil Bin Mohd Akhir
Biogeosciences, 21, 4007–4035, https://doi.org/10.5194/bg-21-4007-2024, https://doi.org/10.5194/bg-21-4007-2024, 2024
Short summary
Short summary
This study stands out for thoroughly examining CMIP6 ESMs' ability to simulate biogeochemical variables in the southern South China Sea, an economically important region. It assesses variables like chlorophyll, phytoplankton, nitrate, and oxygen on annual and seasonal scales. While global assessments exist, this study addresses a gap by objectively ranking 13 CMIP6 ocean biogeochemistry models' performance at a regional level, focusing on replicating specific observed biogeochemical variables.
Jens Terhaar
Biogeosciences, 21, 3903–3926, https://doi.org/10.5194/bg-21-3903-2024, https://doi.org/10.5194/bg-21-3903-2024, 2024
Short summary
Short summary
Despite the ocean’s importance in the carbon cycle and hence the climate, observing the ocean carbon sink remains challenging. Here, I use an ensemble of 12 models to understand drivers of decadal trends of the past, present, and future ocean carbon sink. I show that 80 % of the decadal trends in the multi-model mean ocean carbon sink can be explained by changes in decadal trends in atmospheric CO2. The remaining 20 % are due to internal climate variability and ocean heat uptake.
Reiner Steinfeldt, Monika Rhein, and Dagmar Kieke
Biogeosciences, 21, 3839–3867, https://doi.org/10.5194/bg-21-3839-2024, https://doi.org/10.5194/bg-21-3839-2024, 2024
Short summary
Short summary
We calculate the amount of anthropogenic carbon (Cant) in the Atlantic for the years 1990, 2000, 2010 and 2020. Cant is the carbon that is taken up by the ocean as a result of humanmade CO2 emissions. To determine the amount of Cant, we apply a technique that is based on the observations of other humanmade gases (e.g., chlorofluorocarbons). Regionally, changes in ocean ventilation have an impact on the storage of Cant. Overall, the increase in Cant is driven by the rising CO2 in the atmosphere.
Stephanie Delacroix, Tor Jensen Nystuen, August E. Dessen Tobiesen, Andrew L. King, and Erik Höglund
Biogeosciences, 21, 3677–3690, https://doi.org/10.5194/bg-21-3677-2024, https://doi.org/10.5194/bg-21-3677-2024, 2024
Short summary
Short summary
The addition of alkaline minerals into the ocean might reduce excessive anthropogenic CO2 emissions. Magnesium hydroxide can be added in large amounts because of its low seawater solubility without reaching harmful pH levels. The toxicity effect results of magnesium hydroxide, by simulating the expected concentrations from a ship's dispersion scenario, demonstrated low impacts on both sensitive and local assemblages of marine microalgae when compared to calcium hydroxide.
Precious Mongwe, Matthew Long, Takamitsu Ito, Curtis Deutsch, and Yeray Santana-Falcón
Biogeosciences, 21, 3477–3490, https://doi.org/10.5194/bg-21-3477-2024, https://doi.org/10.5194/bg-21-3477-2024, 2024
Short summary
Short summary
We use a collection of measurements that capture the physiological sensitivity of organisms to temperature and oxygen and a CESM1 large ensemble to investigate how natural climate variations and climate warming will impact the ability of marine heterotrophic marine organisms to support habitats in the future. We find that warming and dissolved oxygen loss over the next several decades will reduce the volume of ocean habitats and will increase organisms' vulnerability to extremes.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Rosie M. Sheward, Christina Gebühr, Jörg Bollmann, and Jens O. Herrle
Biogeosciences, 21, 3121–3141, https://doi.org/10.5194/bg-21-3121-2024, https://doi.org/10.5194/bg-21-3121-2024, 2024
Short summary
Short summary
How quickly do marine microorganisms respond to salinity stress? Our experiments with the calcifying marine plankton Emiliania huxleyi show that growth and cell morphology responded to salinity stress within as little as 24–48 hours, demonstrating that morphology and calcification are sensitive to salinity over a range of timescales. Our results have implications for understanding the short-term role of E. huxleyi in biogeochemical cycles and in size-based paleoproxies for salinity.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, Joaquín Ortiz, Stephen D. Archer, Andrea Ludwig, and Ulf Riebesell
Biogeosciences, 21, 2859–2876, https://doi.org/10.5194/bg-21-2859-2024, https://doi.org/10.5194/bg-21-2859-2024, 2024
Short summary
Short summary
Our planet is facing a climate crisis. Scientists are working on innovative solutions that will aid in capturing the hard to abate emissions before it is too late. Exciting research reveals that ocean alkalinity enhancement, a key climate change mitigation strategy, does not harm phytoplankton, the cornerstone of marine ecosystems. Through meticulous study, we may have uncovered a positive relationship: up to a specific limit, enhancing ocean alkalinity boosts photosynthesis by certain species.
David Curbelo-Hernández, Fiz F. Pérez, Melchor González-Dávila, Sergey V. Gladyshev, Aridane G. González, David González-Santana, Antón Velo, Alexey Sokov, and J. Magdalena Santana-Casiano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1388, https://doi.org/10.5194/egusphere-2024-1388, 2024
Short summary
Short summary
The study evaluated CO2-carbonate system dynamics in the North Atlantic Subpolar Gyre from 2009 to 2019. Significant ocean acidification, largely due to rising anthropogenic CO2 levels, was found. Cooling, freshening, and enhanced convective processes intensified this trend, affecting calcite and aragonite saturation. The findings contribute to a deeper understanding of Ocean Acidification and improve our knowledge about its impact on marine ecosystems.
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Nicole M. Travis, Colette L. Kelly, and Karen L. Casciotti
Biogeosciences, 21, 1985–2004, https://doi.org/10.5194/bg-21-1985-2024, https://doi.org/10.5194/bg-21-1985-2024, 2024
Short summary
Short summary
We conducted experimental manipulations of light level on microbial communities from the primary nitrite maximum. Overall, while individual microbial processes have different directions and magnitudes in their response to increasing light, the net community response is a decline in nitrite production with increasing light. We conclude that while increased light may decrease net nitrite production, high-light conditions alone do not exclude nitrification from occurring in the surface ocean.
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen Christine Hopmans, Jaap Smede Sinninghe Damsté, and Darci Rush
Biogeosciences, 21, 1517–1532, https://doi.org/10.5194/bg-21-1517-2024, https://doi.org/10.5194/bg-21-1517-2024, 2024
Short summary
Short summary
The California Current system (CCS) hosts the eastern subtropical North Pacific oxygen minimum zone (ESTNP OMZ). This study shows anaerobic ammonium oxidizing (anammox) bacteria cause a loss of bioavailable nitrogen (N) in the ESTNP OMZ throughout the late Quaternary. Anammox occurred during both glacial and interglacial periods and was driven by the supply of organic matter and changes in ocean currents. These findings may have important consequences for biogeochemical models of the CCS.
Cathy Wimart-Rousseau, Tobias Steinhoff, Birgit Klein, Henry Bittig, and Arne Körtzinger
Biogeosciences, 21, 1191–1211, https://doi.org/10.5194/bg-21-1191-2024, https://doi.org/10.5194/bg-21-1191-2024, 2024
Short summary
Short summary
The marine CO2 system can be measured independently and continuously by BGC-Argo floats since numerous pH sensors have been developed to suit these autonomous measurements platforms. By applying the Argo correction routines to float pH data acquired in the subpolar North Atlantic Ocean, we report the uncertainty and lack of objective criteria associated with the choice of the reference method as well the reference depth for the pH correction.
Sabine Mecking and Kyla Drushka
Biogeosciences, 21, 1117–1133, https://doi.org/10.5194/bg-21-1117-2024, https://doi.org/10.5194/bg-21-1117-2024, 2024
Short summary
Short summary
This study investigates whether northeastern North Pacific oxygen changes may be caused by surface density changes in the northwest as water moves along density horizons from the surface into the subsurface ocean. A correlation is found with a lag that about matches the travel time of water from the northwest to the northeast. Salinity is the main driver causing decadal changes in surface density, whereas salinity and temperature contribute about equally to long-term declining density trends.
Takamitsu Ito, Hernan E. Garcia, Zhankun Wang, Shoshiro Minobe, Matthew C. Long, Just Cebrian, James Reagan, Tim Boyer, Christopher Paver, Courtney Bouchard, Yohei Takano, Seth Bushinsky, Ahron Cervania, and Curtis A. Deutsch
Biogeosciences, 21, 747–759, https://doi.org/10.5194/bg-21-747-2024, https://doi.org/10.5194/bg-21-747-2024, 2024
Short summary
Short summary
This study aims to estimate how much oceanic oxygen has been lost and its uncertainties. One major source of uncertainty comes from the statistical gap-filling methods. Outputs from Earth system models are used to generate synthetic observations where oxygen data are extracted from the model output at the location and time of historical oceanographic cruises. Reconstructed oxygen trend is approximately two-thirds of the true trend.
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences, 21, 13–47, https://doi.org/10.5194/bg-21-13-2024, https://doi.org/10.5194/bg-21-13-2024, 2024
Short summary
Short summary
This paper provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the Biogeochemical-Argo array.
Qian Liu, Yingjie Liu, and Xiaofeng Li
Biogeosciences, 20, 4857–4874, https://doi.org/10.5194/bg-20-4857-2023, https://doi.org/10.5194/bg-20-4857-2023, 2023
Short summary
Short summary
In the Southern Ocean, abundant eddies behave opposite to our expectations. That is, anticyclonic (cyclonic) eddies are cold (warm). By investigating the variations of physical and biochemical parameters in eddies, we find that abnormal eddies have unique and significant effects on modulating the parameters. This study fills a gap in understanding the effects of abnormal eddies on physical and biochemical parameters in the Southern Ocean.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Daniela König and Alessandro Tagliabue
Biogeosciences, 20, 4197–4212, https://doi.org/10.5194/bg-20-4197-2023, https://doi.org/10.5194/bg-20-4197-2023, 2023
Short summary
Short summary
Using model simulations, we show that natural and anthropogenic changes in the global climate leave a distinct fingerprint in the isotopic signatures of iron in the surface ocean. We find that these climate effects on iron isotopes are often caused by the redistribution of iron from different external sources to the ocean, due to changes in ocean currents, and by changes in algal growth, which take up iron. Thus, isotopes may help detect climate-induced changes in iron supply and algal uptake.
Chloé Baumas, Robin Fuchs, Marc Garel, Jean-Christophe Poggiale, Laurent Memery, Frédéric A. C. Le Moigne, and Christian Tamburini
Biogeosciences, 20, 4165–4182, https://doi.org/10.5194/bg-20-4165-2023, https://doi.org/10.5194/bg-20-4165-2023, 2023
Short summary
Short summary
Through the sink of particles in the ocean, carbon (C) is exported and sequestered when reaching 1000 m. Attempts to quantify C exported vs. C consumed by heterotrophs have increased. Yet most of the conducted estimations have led to C demands several times higher than C export. The choice of parameters greatly impacts the results. As theses parameters are overlooked, non-accurate values are often used. In this study we show that C budgets can be well balanced when using appropriate values.
Anna Belcher, Sian F. Henley, Katharine Hendry, Marianne Wootton, Lisa Friberg, Ursula Dallman, Tong Wang, Christopher Coath, and Clara Manno
Biogeosciences, 20, 3573–3591, https://doi.org/10.5194/bg-20-3573-2023, https://doi.org/10.5194/bg-20-3573-2023, 2023
Short summary
Short summary
The oceans play a crucial role in the uptake of atmospheric carbon dioxide, particularly the Southern Ocean. The biological pumping of carbon from the surface to the deep ocean is key to this. Using sediment trap samples from the Scotia Sea, we examine biogeochemical fluxes of carbon, nitrogen, and biogenic silica and their stable isotope compositions. We find phytoplankton community structure and physically mediated processes are important controls on particulate fluxes to the deep ocean.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023, https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
Short summary
Modeling the ocean's carbon and oxygen cycles accurately is challenging. Parameter optimization improves the fit to observed tracers but can introduce artifacts in the biological pump. Organic-matter production and subsurface remineralization rates adjust to compensate for circulation biases, changing the pathways and timescales with which nutrients return to the surface. Circulation biases can thus strongly alter the system’s response to ecological change, even when parameters are optimized.
Priyanka Banerjee
Biogeosciences, 20, 2613–2643, https://doi.org/10.5194/bg-20-2613-2023, https://doi.org/10.5194/bg-20-2613-2023, 2023
Short summary
Short summary
This study shows that atmospheric deposition is the most important source of iron to the upper northern Indian Ocean for phytoplankton growth. This is followed by iron from continental-shelf sediment. Phytoplankton increase following iron addition is possible only with high background levels of nitrate. Vertical mixing is the most important physical process supplying iron to the upper ocean in this region throughout the year. The importance of ocean currents in supplying iron varies seasonally.
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
John C. Tracey, Andrew R. Babbin, Elizabeth Wallace, Xin Sun, Katherine L. DuRussel, Claudia Frey, Donald E. Martocello III, Tyler Tamasi, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 20, 2499–2523, https://doi.org/10.5194/bg-20-2499-2023, https://doi.org/10.5194/bg-20-2499-2023, 2023
Short summary
Short summary
Nitrogen (N) is essential for life; thus, its availability plays a key role in determining marine productivity. Using incubations of seawater spiked with a rare form of N measurable on a mass spectrometer, we quantified microbial pathways that determine marine N availability. The results show that pathways that recycle N have higher rates than those that result in its loss from biomass and present new evidence for anaerobic nitrite oxidation, a process long thought to be strictly aerobic.
Amanda Gerotto, Hongrui Zhang, Renata Hanae Nagai, Heather M. Stoll, Rubens César Lopes Figueira, Chuanlian Liu, and Iván Hernández-Almeida
Biogeosciences, 20, 1725–1739, https://doi.org/10.5194/bg-20-1725-2023, https://doi.org/10.5194/bg-20-1725-2023, 2023
Short summary
Short summary
Based on the analysis of the response of coccolithophores’ morphological attributes in a laboratory dissolution experiment and surface sediment samples from the South China Sea, we proposed that the thickness shape (ks) factor of fossil coccoliths together with the normalized ks variation, which is the ratio of the standard deviation of ks (σ) over the mean ks (σ/ks), is a robust and novel proxy to reconstruct past changes in deep ocean carbon chemistry.
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Jérôme Pinti, Tim DeVries, Tommy Norin, Camila Serra-Pompei, Roland Proud, David A. Siegel, Thomas Kiørboe, Colleen M. Petrik, Ken H. Andersen, Andrew S. Brierley, and André W. Visser
Biogeosciences, 20, 997–1009, https://doi.org/10.5194/bg-20-997-2023, https://doi.org/10.5194/bg-20-997-2023, 2023
Short summary
Short summary
Large numbers of marine organisms such as zooplankton and fish perform daily vertical migration between the surface (at night) and the depths (in the daytime). This fascinating migration is important for the carbon cycle, as these organisms actively bring carbon to depths where it is stored away from the atmosphere for a long time. Here, we quantify the contributions of different animals to this carbon drawdown and storage and show that fish are important to the biological carbon pump.
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, and Karen L. Casciotti
Biogeosciences, 20, 325–347, https://doi.org/10.5194/bg-20-325-2023, https://doi.org/10.5194/bg-20-325-2023, 2023
Short summary
Short summary
The primary nitrite maximum is a ubiquitous upper ocean feature where nitrite accumulates, but we still do not understand its formation and the co-occurring microbial processes involved. Using correlative methods and rates measurements, we found strong spatial patterns between environmental conditions and depths of the nitrite maxima, but not the maximum concentrations. Nitrification was the dominant source of nitrite, with occasional high nitrite production from phytoplankton near the coast.
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Short summary
Compound events threaten marine ecosystems. Here, we investigate the potentially harmful combination of marine heatwaves with low phytoplankton productivity. Using satellite-based observations, we show that these compound events are frequent in the low latitudes. We then investigate the drivers of these compound events using Earth system models. The models share similar drivers in the low latitudes but disagree in the high latitudes due to divergent factors limiting phytoplankton production.
Abigale M. Wyatt, Laure Resplandy, and Adrian Marchetti
Biogeosciences, 19, 5689–5705, https://doi.org/10.5194/bg-19-5689-2022, https://doi.org/10.5194/bg-19-5689-2022, 2022
Short summary
Short summary
Marine heat waves (MHWs) are a frequent event in the northeast Pacific, with a large impact on the region's ecosystems. Large phytoplankton in the North Pacific Transition Zone are greatly affected by decreased nutrients, with less of an impact in the Alaskan Gyre. For small phytoplankton, MHWs increase the spring small phytoplankton population in both regions thanks to reduced light limitation. In both zones, this results in a significant decrease in the ratio of large to small phytoplankton.
Margot C. F. Debyser, Laetitia Pichevin, Robyn E. Tuerena, Paul A. Dodd, Antonia Doncila, and Raja S. Ganeshram
Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, https://doi.org/10.5194/bg-19-5499-2022, 2022
Short summary
Short summary
We focus on the exchange of key nutrients for algae production between the Arctic and Atlantic oceans through the Fram Strait. We show that the export of dissolved silicon here is controlled by the availability of nitrate which is influenced by denitrification on Arctic shelves. We suggest that any future changes in the river inputs of silica and changes in denitrification due to climate change will impact the amount of silicon exported, with impacts on Atlantic algal productivity and ecology.
Emily J. Zakem, Barbara Bayer, Wei Qin, Alyson E. Santoro, Yao Zhang, and Naomi M. Levine
Biogeosciences, 19, 5401–5418, https://doi.org/10.5194/bg-19-5401-2022, https://doi.org/10.5194/bg-19-5401-2022, 2022
Short summary
Short summary
We use a microbial ecosystem model to quantitatively explain the mechanisms controlling observed relative abundances and nitrification rates of ammonia- and nitrite-oxidizing microorganisms in the ocean. We also estimate how much global carbon fixation can be associated with chemoautotrophic nitrification. Our results improve our understanding of the controls on nitrification, laying the groundwork for more accurate predictions in global climate models.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Claudia Eisenring, Sophy E. Oliver, Samar Khatiwala, and Gregory F. de Souza
Biogeosciences, 19, 5079–5106, https://doi.org/10.5194/bg-19-5079-2022, https://doi.org/10.5194/bg-19-5079-2022, 2022
Short summary
Short summary
Given the sparsity of observational constraints on micronutrients such as zinc (Zn), we assess the sensitivities of a framework for objective parameter optimisation in an oceanic Zn cycling model. Our ensemble of optimisations towards synthetic data with varying kinds of uncertainty shows that deficiencies related to model complexity and the choice of the misfit function generally have a greater impact on the retrieval of model Zn uptake behaviour than does the limitation of data coverage.
Yoshikazu Sasai, Sherwood Lan Smith, Eko Siswanto, Hideharu Sasaki, and Masami Nonaka
Biogeosciences, 19, 4865–4882, https://doi.org/10.5194/bg-19-4865-2022, https://doi.org/10.5194/bg-19-4865-2022, 2022
Short summary
Short summary
We have investigated the adaptive response of phytoplankton growth to changing light, nutrients, and temperature over the North Pacific using two physical-biological models. We compare modeled chlorophyll and primary production from an inflexible control model (InFlexPFT), which assumes fixed carbon (C):nitrogen (N):chlorophyll (Chl) ratios, to a recently developed flexible phytoplankton functional type model (FlexPFT), which incorporates photoacclimation and variable C:N:Chl ratios.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Short summary
Non-cyanobacterial diazotrophs (NCDs) may be an important player in fixing N2 in the ocean. By conducting meta-analyses, we found that a representative marine NCD phylotype, Gamma A, tends to inhabit ocean environments with high productivity, low iron concentration and high light intensity. It also appears to be more abundant inside cyclonic eddies. Our study suggests a niche differentiation of NCDs from cyanobacterial diazotrophs as the latter prefers low-productivity and high-iron oceans.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Claude Mignon, and Léa Benito
Biogeosciences, 19, 2599–2625, https://doi.org/10.5194/bg-19-2599-2022, https://doi.org/10.5194/bg-19-2599-2022, 2022
Short summary
Short summary
Decadal trends of fugacity of CO2 (fCO2), total alkalinity (AT), total carbon (CT) and pH in surface waters are investigated in different domains of the southern Indian Ocean (45°S–57°S) from ongoing and station observations regularly conducted in summer over the period 1998–2019. The fCO2 increase and pH decrease are mainly driven by anthropogenic CO2 estimated just below the summer mixed layer, as well as by a warming south of the polar front or in the fertilized waters near Kerguelen Island.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Cited articles
Alexander, V. and Niebauer, H.: Oceanography of the eastern Bering Sea
ice-edge zone in spring, Limnol. Oceanogr., 26, 1111–1125, 1981.
Alvain, S., Moulin, C., Dandonneau, Y. and Bréon, F.: Remote sensing of
phytoplankton groups in case 1 waters from global SeaWiFS imagery, Deep-Sea
Res. Pt. I, 52, 1989–2004, https://doi.org/10.1016/j.dsr.2005.06.015, 2005.
Ardyna, M., Babin, M., Gosselin, M., Devred, E., Bélanger, S., Matsuoka,
A. and Tremblay, J.-É.: Parameterization of vertical chlorophyll a in
the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional,
seasonal, and annual primary production estimates, Biogeosciences, 10,
4383–4404, https://doi.org/10.5194/bg-10-4383-2013, 2013.
Arrigo, K. R. and Van Dijken, G. L.: Secular trends in Arctic Ocean net
primary production, J. Geophys. Res., 116(C), C09011,
https://doi.org/10.1029/2011JC007151, 2011.
Arrigo, K. R., Matrai, P. A. and Van Dijken, G. L.: Primary productivity in
the Arctic Ocean: Impacts of complex optical properties and subsurface
chlorophyll maxima on large-scale estimates, J. Geophys. Res., 116(C11),
https://doi.org/10.1029/2011JC007273, 2011.
Arrigo, K. R., Van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic ice
cover on marine primary production, Geophys. Res. Lett., 35, L19603,
https://doi.org/10.1029/2008GL035028, 2008.
Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., Van Dijken, G.
L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bahr, F., Bates,
N. R., Benitez-Nelson, C., Bowler, B., Brownlee, E., Ehn, J. K., Frey, K. E.,
Garley, R., Laney, S. R., Lubelczyk, L., Mathis, J., Matsuoka, A., Mitchell,
B. G., Moore, G. W. K., Ortega-Retuerta, E., Pal, S., Polashenski, C. M.,
Reynolds, R. A., Schieber, B., Sosik, H. M., Stephens, M., and Swift, J. H.:
Massive Phytoplankton Blooms Under Arctic Sea Ice, Science, 336, 1408–1408,
https://doi.org/10.1126/science.1215065, 2012.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from
satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20,
https://doi.org/10.4319/lo.1997.42.1.0001, 1997.
Brewin, R. J. W., Sathyendranath, S., Hirata, T., Lavender, S. J., Barciela,
R. M., and Hardman-Mountford, N. J.: A three-component model of phytoplankton
size class for the Atlantic Ocean, Ecol. Model., 221, 1472–1483,
https://doi.org/10.1016/j.ecolmodel.2010.02.014, 2010.
Brock, T. D.: Calculating Solar Radiation for Ecological Studies, Ecol.
Model., 14, 1–19, https://doi.org/10.1016/0304-3800(81)90011-9, 1981.
Brown, Z. W. and Arrigo, K. R.: Sea ice impacts on spring bloom dynamics and
net primary production in the Eastern Bering Sea, J. Geophys. Res.-Oceans,
118, 43–62, https://doi.org/10.1029/2012JC008034, 2013.
Brown, Z. W., Van Dijken, G. L., and Arrigo, K. R.: A reassessment of primary
production and environmental change in the Bering Sea, J. Geophys.
Res.-Oceans, 116, C08014, https://doi.org/10.1029/2010JC006766, 2011.
Brown, Z. W., Lowry, K. E., Palmer, M. A., Van Dijken, G. L., Mills, M. M.,
Pickart, R. S. and Arrigo, K. R.: Characterizing the subsurface chlorophyll a
maximum in the Chukchi Sea and Canada Basin, Deep-Sea Res. Pt. II, 118,
https://doi.org/10.1016/j.dsr2.2015.02.010, 2015.
Codispoti, L. A., Flagg, C., Kelly, V., and Swift, J. H.: Hydrographic
conditions during the 2002 SBI process experiments, Deep-Sea Res. Pt. II, 52,
3199–3226, https://doi.org/10.1016/j.dsr2.2005.10.007, 2005.
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated
decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, L01703,
https://doi.org/10.1029/2007GL031972, 2008.
Cota, G., Wang, J., and Comiso, J.: Transformation of global satellite
chlorophyll retrievals with a regionally tuned algorithm, Remote Sens.
Environ., 90, 373–377, https://doi.org/10.1016/j.rse.2004.01.005, 2004.
Coyle, K. O., Pinchuk, A. I., Eisner, L. B., and Napp, J. M.: Zooplankton
species composition, abundance and biomass on the eastern Bering Sea shelf
during summer: The potential role of water-column stability and nutrients in
structuring the zooplankton community, Deep-Sea Res. Pt. II, 55, 1775–1791,
https://doi.org/10.1016/j.dsr2.2008.04.029, 2008.
Eisner, L. B., Gann, J. C., Ladd, C., Cieciel, K., and Mordy, C. W.: Late
summer early fall phytoplankton biomass (chlorophyll a ) in the eastern
Bering Sea: spatial and temporal variations and factors affecting chlorophyll
a concentrations, Deep-Sea Res. Pt. II, in-press.
Eppley, R. W.: Temperature and phytoplankton growth in the sea, Fish Bull,
70, 1063–1085, 1972.
Feder, H. M., Jewett, S. C., and Blanchard, A.: Southeastern Chukchi Sea
(Alaska) epibenthos, Polar Biol., 28, 402–421,
https://doi.org/10.1007/s00300-004-0683-4, 2005.
Fujiwara, A., Hirawake, T., Suzuki, K., and Saitoh, S.-I.: Remote sensing of
size structure of phytoplankton communities using optical properties of the
Chukchi and Bering Sea shelf region, Biogeosciences, 8, 3567–3580,
https://doi.org/10.5194/bg-8-3567-2011, 2011.
Fujiwara, A., Hirawake, T., Suzuki, K., Imai, I., and Saitoh, S.-I.: Timing
of sea ice retreat can alter phytoplankton community structure in the western
Arctic Ocean, Biogeosciences, 11, 1705–1716, https://doi.org/10.5194/bg-11-1705-2014,
2014.
Grebmeier, J. M.: Shifting Patterns of Life in the Pacific Arctic and
Sub-Arctic Seas, Annu. Rev. Mar. Sci., 4, 63–78,
https://doi.org/10.1146/annurev-marine-120710-100926, 2012.
Grebmeier, J. M. and Dunton, K.: Benthic processes in the northern
Bering/Chukchi seas: Status and global change, in: Impacts of changes in sea
ice and other environmental parameters in the Arctic, edited by: Huntington,
H. P., Report of the Marine Mammal Commission Workshop, Girdwood, Alaska,
61–71, 2000.
Grebmeier, J. M., McRoy, C., and Feder, H.: Pelagic-benthic coupling on the
shelf of the northern Bering and Chukchi seas. 1. Food supply source and
benthic biomass, Mar. Ecol.-Prog. Ser., 48, 57–67, 1988.
Grebmeier, J. M., Cooper, L. W., Feder, H. M., and Sirenko, B. I.: Ecosystem
Dynamics of the Pacific-Influenced Northern Bering and Chukchi Seas, Prog.
Oceanogr., 71, 331–361, https://doi.org/10.1016/j.pocean.2006.10.001, 2006a.
Grebmeier, J. M., Overland, J. E., Moore, S. E., Farley, E. V., Carmack, E.
C., Cooper, L. W., Frey, K. E., Helle, J. H., McLaughlin, F. A., and McNutt,
S. L.: A Major Ecosystem Shift in the Northern Bering Sea, Science, 311,
1461–1464, https://doi.org/10.1126/science.1121365, 2006b.
Grebmeier, J. M., Moore, S., and Overland, J.: Biological response to recent
Pacific Arctic sea ice retreats, Eos Trans., 91, 161–162, 2010.
Hama, T., Miyazaki, T., Ogawa, Y., Iwakuma, T., Takahashi, M., Otsuki, A. and
Ichimura, S.: Measurement of photosynthetic production of a marine
phytoplankton population using a stable 13 C isotope, Marine Biology, 73,
31–36, https://doi.org/10.1007/BF00396282, 1983.
Hill, V., Cota, G., and Stockwell, D.: Spring and summer phytoplankton
communities in the Chukchi and Eastern Beaufort Seas, Deep-Sea Res. Pt. II,
52, 3369–3385, https://doi.org/10.1016/j.dsr2.2005.10.010, 2005.
Hill, V. J., Matrai, P. A., Olson, E., Suttles, S., Steele, M., Codispoti, L.
A., and Zimmerman, R. C.: Synthesis of integrated primary production in the
Arctic Ocean: II. In situ and remotely sensed estimates, Prog. Oceanogr.,
110, 107–125, https://doi.org/10.1016/j.pocean.2012.11.005, 2013.
Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J., Barlow,
R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., and
Yamanaka, Y.: Synoptic relationships between surface Chlorophyll-a and
diagnostic pigments specific to phytoplankton functional types,
Biogeosciences, 8, 311–327, https://doi.org/10.5194/bg-8-311-2011, 2011.
Hirata, T., Saux-Picart, S., Hashioka, T., Aita-Noguchi, M., Sumata, H.,
Shigemitsu, M., Allen, J. I., and Yamanaka, Y.: A comparison between
phytoplankton community structures derived from a global 3D ecosystem model
and satellite observation, J. Mar. Syst., 109–110, 129–137,
https://doi.org/10.1016/j.jmarsys.2012.01.009, 2013.
Hirawake, T., Takao, S., Horimoto, N., Ishimaru, T., Yamaguchi, Y., and
Fukuchi, M.: A phytoplankton absorption-based primary productivity model for
remote sensing in the Southern Ocean, Polar Biol., 34, 291–302,
https://doi.org/10.1007/s00300-010-0949-y, 2011.
Hirawake, T., Shinmyo, K., Fujiwara, A., and Saitoh, S.-I.: Satellite remote
sensing of primary productivity in the Bering and Chukchi Seas using an
absorption-based approach, ICES J. Mar. Sci., 69, 1194–1204,
https://doi.org/10.1093/icesjms/fss111, 2012.
Hunt, G. L., Jr, Stabeno, P., Walters, G., Sinclair, E., Brodeur, R. D.,
Napp, J. M., and Bond, N. A.: Climate change and control of the southeastern
Bering Sea pelagic ecosystem, Deep-Sea Res. Pt. II, 49, 5821–5853,
https://doi.org/10.1016/S0967-0645(02)00321-1, 2002.
Hunt, G. L., Jr, Coyle, K. O., Eisner, L. B., Farley, E. V., Heintz, R. A.,
Mueter, F., Napp, J. M., Overland, J. E., Ressler, P. H., Salo, S., and
Stabeno, P. J.: Climate impacts on eastern Bering Sea foodwebs: a synthesis
of new data and an assessment of the Oscillating Control Hypothesis, ICES J.
Mar. Sci., 68, 1230–1243, https://doi.org/10.1093/icesjms/fsr036, 2011.
Itoh, M.: R/V Mirai Cruise Report MR10-05, 246pp., JAMSTEC,
Yokosuka, Japan, 2010.
Ji, R., Jin, M., and Varpe, Ø.: Sea ice phenology and timing of primary
production pulses ub the Arctic Ocean, Glob. Change Biol., 19, 734–741,
https://doi.org/10.1111/gcb.12074, 2013.
Kahru, M., Brotas, V., Manzano-Sarabia, M., and Mitchell, B. G.: Are
phytoplankton blooms occurring earlier in the Arctic? Glob. Change Biol., 17,
1733–1739, https://doi.org/10.1111/j.1365-2486.2010.02312.x, 2011.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A.,
Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.
C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-Year Reanalysis Project, B. Am. Meteor. Soc., 77, 437–471,
https://doi.org/10.1175/1520-0477(1996)077< 0437:TNYRP> 2.0.CO;2,
1996.
Kostadinov, T. S., Siegel, D. A., and Maritorena, S.: Retrieval of the
particle size distribution from satellite ocean color observations, J.
Geophys. Res., 114, C09015, https://doi.org/10.1029/2009JC005303, 2009.
Lee, Z., Carder, K., and Arnone, R.: Deriving inherent optical properties
from water color: a multiband quasi-analytical algorithm for optically deep
waters, Appl. Opt., 41, 5755–5772, https://doi.org/10.1364/AO.41.005755, 2002.
Lee, Z., Weidemann, A., Kindle, J., Arnone, R., Carder, K., and Davis, C.:
Euphotic zone depth: Its derivation and implication to ocean-color remote
sensing, J. Geophys. Res., 112, C03009, https://doi.org/10.1029/2006JC003802, 2007.
Lee, Z., Lubac, B., Werdell, J., and Arnone, R.: An Update of the
Quasi-Analytical Algorithm (QAA_v5), 1–9, available at:
https://doi.org/http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf, 2009.
Leu, E., Søreide, J. E., Hessen, D. O., Falk Petersen, S. and Berge, J.:
Consequences of changing sea-ice cover for primary and secondary producers in
the European Arctic shelf seas: Timing, quantity, and quality, Progress in
Oceanography, 90, 18–32, https://doi.org/10.1016/j.pocean.2011.02.004, 2011.
Lomas, M. W., Moran, S. B., Casey, J. R., Bell, D. W., Tiahlo, M.,
Whitefield, J., Kelly, R. P., Mathis, J. T. and Cokelet, E. D.: Spatial and
seasonal variability of primary production on the Eastern Bering Sea shelf,
Deep-Sea Res. Pt. II, 65–70, 126–140, https://doi.org/10.1016/j.dsr2.2012.02.010,
2012.
Lowry, K. E., Van Dijken, G. L., and Arrigo, K. R.: Evidence of under-ice
phytoplankton bloom in the Chukchi Sea from 1998–2012, Deep-Sea Res. Pt. II,
105, 105–117, https://doi.org/10.1016/j.dsr2.2014.03.013, 2014.
Markus, T. and Cavalieri, D. J.: An enhancement of the NASA Team sea ice
algorithm, IEEE T. Geosci. Remote, 38, 1387–1398, https://doi.org/10.1109/36.843033,
2000.
Matsuoka, A., Huot, Y., Shimada, K., Saitoh, S.-I., and Babin, M.:
Bio-optical characteristics of the western Arctic Ocean: implications for
ocean color algorithms, Can. J. Remote Sens., 33, 503–518,
https://doi.org/10.5589/m07-059, 2007.
Matsuoka, A., Hill, V., Huot, Y., Babin, M., and Bricaud, A.: Seasonal
variability in the light absorption properties of western Arctic waters:
Parameterization of the individual components of absorption for ocean color
applications, J. Geophys. Res., 116, C02007, https://doi.org/10.1029/2009JC005594,
2011.
Mizobata, K. and Shimada, K.: East–west asymmetry in surface mixed layer and
ocean heat content in the Pacific sector of the Arctic Ocean derived from
AMSR-E sea surface temperature, Deep-Sea Res. Pt. II, 77–80, 62–69,
https://doi.org/10.1016/j.dsr2.2012.04.005, 2012.
Moore, S. E., Grebmeier, J. M., and Davies, J. R.: Gray whale distribution
relative to forage habitat in the northern Bering Sea: current conditions and
retrospective summary, Can. J. Zool., 81, 734–742, https://doi.org/10.1139/z03-043,
2003.
Mouw, C. B. and Yoder, J. A.: Optical determination of phytoplankton size
composition from global SeaWiFS imagery, J. Geophys. Res., 115, C12018,
https://doi.org/10.1029/2010JC006337, 2010.
Mueter, F. J., Broms, C., Drinkwater, K. F., Friedland, K. D., Hare, J. A.,
Hunt, G. L., Jr, Melle, W., and Taylor, M.: Ecosystem responses to recent
oceanographic variability in high-latitude Northern Hemisphere ecosystems,
Prog. Oceanogr., 81, 93–110, https://doi.org/10.1016/j.pocean.2009.04.018, 2009.
Naik, P., D'Sa, E. J., Gomes, H. D. R., Goés, J. I., and Mouw, C. B.:
Light absorption properties of southeastern Bering Sea waters: Analysis,
parameterization and implications for remote sensing, Remote Sens. Environ.,
134, 120–134, https://doi.org/10.1016/j.rse.2013.03.004, 2013.
Niebauer, J. H.: Bio-physical oceanographic interactions at the edge of the
Arctic ice pack, J. Mar. Syst., 2, 209–232,
https://doi.org/10.1016/0924-7963(91)90025-P, 1991.
Niebauer, H. J., Alexander, V. and Henrichs, S. M.: A time-series study of
the spring bloom at the Bering Sea ice edge I. Physical processes,
chlorophyll and nutrient chemistry, Cont. Shelf Res., 15, 1859–1877,
https://doi.org/10.1016/0278-4343(94)00097-7, 1995.
Nishino, S.: R/V Mirai Cruise Report MR13-06, 226pp., JAMSTEC,
Yokosuka, Japan, 2010.
Pabi, S., Van Dijken, G. L., and Arrigo, K. R.: Primary production in the
Arctic Ocean, 1998–2006, J. Geophys. Res., 113, C08005,
https://doi.org/10.1029/2007JC004578, 2008.
Parsons, T. R., Maita, A., and Lalli, C. M.: 4.3 – Fluorometric
Determination of Chlorophylls, in A Manual of Chemical & Biological
Methods for Seawater Analysis, 107–109, Pergamon, Amsterdam, 1984.
Perovich, D. K. and Richter-Menge, J. A.: Loss of Sea Ice in the Arctic,
Annu. Rev. Mar. Sci., 1, 417–441,
https://doi.org/10.1146/annurev.marine.010908.163805, 2009.
Perrette, M., Yool, A., Quartly, G. D., and Popova, E. E.: Near-ubiquity of
ice-edge blooms in the Arctic, Biogeosciences, 8, 515–524,
https://doi.org/10.5194/bg-8-515-2011, 2011.
Piepenburg, D.: Recent research on Arctic benthos: common notions need to be
revised, Polar Biol., 28, 733–755, https://doi.org/10.1007/s00300-005-0013-5, 2005.
Sambrotto, R. N., Niebauer, H. J., Goering, J. J., and Iverson, R. L.:
Relationships among vertical mixing, nitrate uptake, and phytoplankton growth
during the spring bloom in the southeast Bering Sea middle shelf, Cont. Shelf
Res., 5, 161–198, https://doi.org/10.1016/0278-4343(86)90014-2, 1986.
Sambrotto, R. N., Mordy, C., Zeeman, S. I., Stabeno, P. J., and Macklin, S.
A.: Physical forcing and nutrient conditions associated with patterns of
Chl a and phytoplankton productivity in the southeastern Bering Sea during
summer, Deep-Sea Res. Pt. II, 55, 1745–1760,
https://doi.org/10.1016/j.dsr2.2008.03.003, 2008.
Sheffield, G., Fay, F. H., Feder, H., and Kelly, B. P.: Laboratory digestion
of prey and interpretation of walrus stomach contents, Mar. Mammal Sci., 17,
310–330, https://doi.org/10.1111/j.1748-7692.2001.tb01273.x, 2001.
Shimada, K.: R/V Mirai Cruise Report MR08-04, 158pp., JAMSTEC,
Yokosuka, Japan, 2008.
Sigler, M. F., Stabeno, P. J., Eisner, L. B., Napp, J. M., and Mueter, F. J.:
Spring and fall phytoplankton blooms in a productive subarctic ecosystem, the
eastern Bering Sea, during 1995–2011, Deep-Sea Res. Pt. II, 109, 71–83,
https://doi.org/10.1016/j.dsr2.2013.12.007, 2014.
Springer, A. M. and McRoy, C. P.: The paradox of pelagic food webs in the
northern Bering Sea—III. Patterns of primary production, Cont. Shelf Res.,
13, 575–599, https://doi.org/10.1016/0278-4343(93)90095-F, 1993.
Springer, A. M., McRoy, C. P., and Flint, M. V.: The Bering Sea Green Belt:
shelf edge processes and ecosystem production, Fish. Oceanogr., 5, 205–223,
https://doi.org/10.1111/j.1365-2419.1996.tb00118.x, 1996.
Søreide, J. E., Leu, E., Berge, J., Graeve, M., and Falk-Petersen, S.:
Timing of blooms, algal food quality and Calanus glacialis reproduction and
growth in a changing Arctic, Glob. Change Biol., 16, 3154–3163,
https://doi.org/10.1111/j.1365-2486.2010.02175.x, 2010.
Takao, S., Hirawake, T., Wright, S. W., and Suzuki, K.: Variations of net
primary productivity and phytoplankton community composition in the Indian
sector of the Southern Ocean as estimated from ocean color remote sensing
data, Biogeosciences, 9, 3875–3890, https://doi.org/10.5194/bg-9-3875-2012, 2012.
Trembley, J.-É. and Gagnon, J.: The effect of irradiance and nutrient
supply on the productivity of Arctic waters: a perspective on climate change,
in: Influence of Climate Change on the Changing Arctic and Sub-Arctic
Conditions, edited by: Nihoul, J. C. J. and Kostianoy, A. G., Springer,
Netherlands, 73–93, 2009.
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical distribution
of phytoplankton communities in open ocean: An assessment based on surface
chlorophyll, J. Geophys. Res., 111, C08005, https://doi.org/10.1029/2005JC003207, 2006.
Welschmeyer, N.: Fluorometric analysis of chlorophyll a in the presence of
chlorophyll b and pheopigments, Limnol. Oceanogr., 39, 1985–1992,
https://doi.org/10.4319/lo.1994.39.8.1985, 1994.
Short summary
This study provides the general relationship between the timing of sea ice retreat and phytoplankton size structure during the marginal ice zone bloom period in the Chukchi and Bering shelves using a satellite remote sensing approach. We also found that not only the length of the ice-free season but also the annual phytoplankton size composition positively correlated with annual net primary production.
This study provides the general relationship between the timing of sea ice retreat and...
Special issue
Altmetrics
Final-revised paper
Preprint