Research article
11 Mar 2016
Research article
| 11 Mar 2016
Predicting biomass of hyperdiverse and structurally complex central Amazonian forests – a virtual approach using extensive field data
Daniel Magnabosco Marra et al.
Related authors
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-251, https://doi.org/10.5194/bg-2022-251, 2023
Preprint under review for BG
Short summary
Short summary
Our study confirms the reliability of drone images for monitoring canopy dynamics of dense tropical forests. We combined two years of monthly drone-acquired RGB (red-green-blue) imagery with field surveys in a Central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Although not related to variations in gap area, the studied modes of tree mortality and branch fall were associated with biomass losses.
Robinson I. Negrón-Juárez, Jennifer A. Holm, Boris Faybishenko, Daniel Magnabosco-Marra, Rosie A. Fisher, Jacquelyn K. Shuman, Alessandro C. de Araujo, William J. Riley, and Jeffrey Q. Chambers
Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, https://doi.org/10.5194/bg-17-6185-2020, 2020
Short summary
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
Leandro T. dos Santos, Daniel Magnabosco Marra, Susan Trumbore, Plínio B. de Camargo, Robinson I. Negrón-Juárez, Adriano J. N. Lima, Gabriel H. P. M. Ribeiro, Joaquim dos Santos, and Niro Higuchi
Biogeosciences, 13, 1299–1308, https://doi.org/10.5194/bg-13-1299-2016, https://doi.org/10.5194/bg-13-1299-2016, 2016
Short summary
Short summary
In the Amazon forest, wind disturbances can create canopy gaps of many hundreds of hectares. We show that inputs of plant litter associated with large windthrows cause a short-term increase in soil carbon stock. The degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest regrowth and increase vegetation resilience.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-251, https://doi.org/10.5194/bg-2022-251, 2023
Preprint under review for BG
Short summary
Short summary
Our study confirms the reliability of drone images for monitoring canopy dynamics of dense tropical forests. We combined two years of monthly drone-acquired RGB (red-green-blue) imagery with field surveys in a Central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Although not related to variations in gap area, the studied modes of tree mortality and branch fall were associated with biomass losses.
Jeffrey Prescott Beem-Miller, Craig Rasmussen, Alison May Hoyt, Marion Schrumpf, Georg Guggenberger, and Susan Trumbore
EGUsphere, https://doi.org/10.5194/egusphere-2022-1083, https://doi.org/10.5194/egusphere-2022-1083, 2022
Short summary
Short summary
We compared the age of persistent soil organic matter as well as active emissions of carbon dioxide from soils across a gradient of climate and geology. We found that clay minerals are more important than mean annual temperature for both persistent and actively cycling soil carbon, and that they may attenuate the sensitivity of soil organic matter decomposition to temperature. Accounting for geology and soil development could therefore improve estimates of soil carbon stocks and changes.
Shane W. Stoner, Marion Schrumpf, Alison M. Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
EGUsphere, https://doi.org/10.5194/egusphere-2022-624, https://doi.org/10.5194/egusphere-2022-624, 2022
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps to estimate how soil C may react to changing climate.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Marion Schrumpf, Klaus Kaiser, Allegra Mayer, Günter Hempel, and Susan Trumbore
Biogeosciences, 18, 1241–1257, https://doi.org/10.5194/bg-18-1241-2021, https://doi.org/10.5194/bg-18-1241-2021, 2021
Short summary
Short summary
A large amount of organic carbon (OC) in soil is protected against decay by bonding to minerals. We studied the release of mineral-bonded OC by NaF–NaOH extraction and H2O2 oxidation. Unexpectedly, extraction and oxidation removed mineral-bonded OC at roughly constant portions and of similar age distributions, irrespective of mineral composition, land use, and soil depth. The results suggest uniform modes of interactions between OC and minerals across soils in quasi-steady state with inputs.
Robinson I. Negrón-Juárez, Jennifer A. Holm, Boris Faybishenko, Daniel Magnabosco-Marra, Rosie A. Fisher, Jacquelyn K. Shuman, Alessandro C. de Araujo, William J. Riley, and Jeffrey Q. Chambers
Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, https://doi.org/10.5194/bg-17-6185-2020, 2020
Short summary
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
Ann-Sophie Lehnert, Thomas Behrendt, Alexander Ruecker, Georg Pohnert, and Susan E. Trumbore
Atmos. Meas. Tech., 13, 3507–3520, https://doi.org/10.5194/amt-13-3507-2020, https://doi.org/10.5194/amt-13-3507-2020, 2020
Short summary
Short summary
Volatile organic compounds (VOCs) like scents can appear and disappear quickly. For example, when a bug starts on a tree, the tree releases VOCs that warn the trees around him. Thus, one needs instruments measuring their concentration in real time and identify which VOC is measured. In our study, we compared two instruments doing that, PTR-MS and SIFT-MS. Both work similarly, but we found that the PTR-MS can measure lower concentrations, but the SIFT-MS can identify VOCs better.
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
Short summary
The International Soil Radiocarbon Database (ISRaD) is an an open-source archive of soil data focused on datasets including radiocarbon measurements. ISRaD includes data from bulk or
whole soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil surface.
Shaun R. Levick, Anna E. Richards, Garry D. Cook, Jon Schatz, Marcus Guderle, Richard J. Williams, Parash Subedi, Susan E. Trumbore, and Alan N. Andersen
Biogeosciences, 16, 1493–1503, https://doi.org/10.5194/bg-16-1493-2019, https://doi.org/10.5194/bg-16-1493-2019, 2019
Short summary
Short summary
We used airborne lidar to map the three-dimensional structure and model the biomass of plant canopies across a long-term fire experiment in the Northern Territory of Australia. Our results show that late season fires occurring every 2 years reduce the amount of carbon stored above-ground by 50 % relative to unburnt control plots. We also show how increased fire intensity removes the shrub layer from savannas and discuss the implications for biodiversity conservation.
Thomas Behrendt, Elisa C. P. Catão, Rüdiger Bunk, Zhigang Yi, Elena Schweer, Steffen Kolb, Jürgen Kesselmeier, and Susan Trumbore
SOIL, 5, 121–135, https://doi.org/10.5194/soil-5-121-2019, https://doi.org/10.5194/soil-5-121-2019, 2019
Short summary
Short summary
We measured net fluxes of OCS from nine soils with different land use in a dynamic chamber system and analyzed for one soil RNA relative abundance and gene transcripts. Our data suggest that indeed carbonic anhydrase (CA) plays an important role for OCS exchange, but the role of other enzymes might have been underestimated. Our study is the first assessment of the environmental significance of different microbial groups producing and consuming OCS by various enzymes other than CA.
Boaz Hilman, Jan Muhr, Susan E. Trumbore, Norbert Kunert, Mariah S. Carbone, Päivi Yuval, S. Joseph Wright, Gerardo Moreno, Oscar Pérez-Priego, Mirco Migliavacca, Arnaud Carrara, José M. Grünzweig, Yagil Osem, Tal Weiner, and Alon Angert
Biogeosciences, 16, 177–191, https://doi.org/10.5194/bg-16-177-2019, https://doi.org/10.5194/bg-16-177-2019, 2019
Short summary
Short summary
Combined measurement of CO2 / O2 fluxes in tree stems suggested that on average 41 % of the respired CO2 was not emitted locally to the atmosphere. This finding strengthens the recognition that CO2 efflux from tree stems is not an accurate measure of respiration. The CO2 / O2 fluxes did not vary as expected if CO2 dissolution in the xylem sap was the main driver for the CO2 retention. We suggest the examination of refixation of respired CO2 as a possible mechanism for CO2 retention.
Corina Buendía, Axel Kleidon, Stefano Manzoni, Björn Reu, and Amilcare Porporato
Biogeosciences, 15, 279–295, https://doi.org/10.5194/bg-15-279-2018, https://doi.org/10.5194/bg-15-279-2018, 2018
Short summary
Short summary
Amazonia is highly biodiverse and of global importance for regulating the climate system. Because soils are highly weathered, phosphorus (P) is suggested to limit ecosystem productivity. Here, we evaluate the importance of P redistribution by animals using a simple mathematical model synthesizing the major processes of the Amazon P cycle. Our findings suggest that food web complexity plays an important role for sustaining the productivity of terra firme forests.
Bernd Kohlhepp, Robert Lehmann, Paul Seeber, Kirsten Küsel, Susan E. Trumbore, and Kai U. Totsche
Hydrol. Earth Syst. Sci., 21, 6091–6116, https://doi.org/10.5194/hess-21-6091-2017, https://doi.org/10.5194/hess-21-6091-2017, 2017
Martin E. Nowak, Valérie F. Schwab, Cassandre S. Lazar, Thomas Behrendt, Bernd Kohlhepp, Kai Uwe Totsche, Kirsten Küsel, and Susan E. Trumbore
Hydrol. Earth Syst. Sci., 21, 4283–4300, https://doi.org/10.5194/hess-21-4283-2017, https://doi.org/10.5194/hess-21-4283-2017, 2017
Short summary
Short summary
In the present study we combined measurements of dissolved inorganic carbon (DIC) isotopes with a set of different geochemical and microbiological methods in order to get a comprehensive view of biogeochemical cycling and groundwater flow in two limestone aquifer assemblages. This allowed us to understand interactions and feedbacks between microbial communities, their carbon sources, and water chemistry.
Valérie F. Schwab, Martina Herrmann, Vanessa-Nina Roth, Gerd Gleixner, Robert Lehmann, Georg Pohnert, Susan Trumbore, Kirsten Küsel, and Kai U. Totsche
Biogeosciences, 14, 2697–2714, https://doi.org/10.5194/bg-14-2697-2017, https://doi.org/10.5194/bg-14-2697-2017, 2017
Short summary
Short summary
We used phospholipid fatty acids (PLFAs) to link specific microbial markers to the spatio-temporal changes of groundwater physico-chemistry. PLFA-based functional groups were directly supported by DNA/RNA results. O2 resulted in increased eukaryotic biomass and abundance of nitrite-oxidizing bacteria but impeded anammox, sulphate-reducing and iron-reducing bacteria. Our study demonstrates the power of PLFA-based approaches to study the nature and activity of microorganisms in pristine aquifers.
Lesego Khomo, Susan Trumbore, Carleton R. Bern, and Oliver A. Chadwick
SOIL, 3, 17–30, https://doi.org/10.5194/soil-3-17-2017, https://doi.org/10.5194/soil-3-17-2017, 2017
Short summary
Short summary
We evaluated mineral control of organic carbon dynamics by relating the content and age of carbon stored in soils of varied mineralogical composition found in the landscapes of Kruger National Park, South Africa. Carbon associated with smectite clay minerals, which have stronger surface–organic matter interactions, averaged about a thousand years old, while most soil carbon was only decades to centuries old and was associated with iron and aluminum oxide minerals.
Kolby J. Jardine, Angela B. Jardine, Vinicius F. Souza, Vilany Carneiro, Joao V. Ceron, Bruno O. Gimenez, Cilene P. Soares, Flavia M. Durgante, Niro Higuchi, Antonio O. Manzi, José F. C. Gonçalves, Sabrina Garcia, Scot T. Martin, Raquel F. Zorzanelli, Luani R. Piva, and Jeff Q. Chambers
Atmos. Chem. Phys., 16, 6441–6452, https://doi.org/10.5194/acp-16-6441-2016, https://doi.org/10.5194/acp-16-6441-2016, 2016
Short summary
Short summary
In this study, high light-dependent isoprene emissions were observed from mature V. guianensis leaves in the central Amazon. As predicted by energetic models, isoprene emission increased nonlinearly with net photosynthesis. High leaf temperatures resulted in the classic uncoupling of net photosynthesis from isoprene emissions. Finally, leaf phenology differentially controlled methanol and isoprene emissions.
Leandro T. dos Santos, Daniel Magnabosco Marra, Susan Trumbore, Plínio B. de Camargo, Robinson I. Negrón-Juárez, Adriano J. N. Lima, Gabriel H. P. M. Ribeiro, Joaquim dos Santos, and Niro Higuchi
Biogeosciences, 13, 1299–1308, https://doi.org/10.5194/bg-13-1299-2016, https://doi.org/10.5194/bg-13-1299-2016, 2016
Short summary
Short summary
In the Amazon forest, wind disturbances can create canopy gaps of many hundreds of hectares. We show that inputs of plant litter associated with large windthrows cause a short-term increase in soil carbon stock. The degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest regrowth and increase vegetation resilience.
M. E. Nowak, F. Beulig, J. von Fischer, J. Muhr, K. Küsel, and S. E. Trumbore
Biogeosciences, 12, 7169–7183, https://doi.org/10.5194/bg-12-7169-2015, https://doi.org/10.5194/bg-12-7169-2015, 2015
Short summary
Short summary
Microorganisms have been recognized as an important source of soil organic matter (SOM). Autotrophic microorganisms utilize CO2 instead of organic carbon. Microbial CO2 fixation is accompanied with high 13C isotope discrimination. Because autotrophs are abundant in soils, they might be a significant factor influencing 13C signatures of SOM. Thus, it is important to asses the importance of autotrophs for C isotope signatures in soils, in order to use isotopes as a tracer for soil C dynamics.
O. Bouriaud, M. Teodosiu, A. V. Kirdyanov, and C. Wirth
Biogeosciences, 12, 6205–6217, https://doi.org/10.5194/bg-12-6205-2015, https://doi.org/10.5194/bg-12-6205-2015, 2015
Short summary
Short summary
Annual variations in wood density partially compensated ring-width variations in Picea abies. If neglected, annual biomass increment was underestimated by up to 15%. The relative prediction interval of plot-level annual biomass increment ranged from 20 to 40%. The uncertainty related to the allometric models parameters was only about 10%. The errors related to variations in wood density were much larger, the biggest component being the variability between trees.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
C. D. Koven, J. Q. Chambers, K. Georgiou, R. Knox, R. Negron-Juarez, W. J. Riley, V. K. Arora, V. Brovkin, P. Friedlingstein, and C. D. Jones
Biogeosciences, 12, 5211–5228, https://doi.org/10.5194/bg-12-5211-2015, https://doi.org/10.5194/bg-12-5211-2015, 2015
Short summary
Short summary
Terrestrial carbon feedbacks are a large uncertainty in climate change. We separate modeled feedback responses into those governed by changed carbon inputs (productivity) and changed outputs (turnover). The disaggregated responses show that both are important in controlling inter-model uncertainty. Interactions between productivity and turnover are also important, and research must focus on these interactions for more accurate projections of carbon cycle feedbacks.
J. A. Holm, J. Q. Chambers, W. D. Collins, and N. Higuchi
Biogeosciences, 11, 5773–5794, https://doi.org/10.5194/bg-11-5773-2014, https://doi.org/10.5194/bg-11-5773-2014, 2014
J. A. Holm, K. Jardine, A. B. Guenther, J. Q. Chambers, and E. Tribuzy
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-23995-2014, https://doi.org/10.5194/acpd-14-23995-2014, 2014
Revised manuscript not accepted
C. A. Sierra, M. Müller, and S. E. Trumbore
Geosci. Model Dev., 7, 1919–1931, https://doi.org/10.5194/gmd-7-1919-2014, https://doi.org/10.5194/gmd-7-1919-2014, 2014
B. Ahrens, M. Reichstein, W. Borken, J. Muhr, S. E. Trumbore, and T. Wutzler
Biogeosciences, 11, 2147–2168, https://doi.org/10.5194/bg-11-2147-2014, https://doi.org/10.5194/bg-11-2147-2014, 2014
M. S. Torn, M. Kleber, E. S. Zavaleta, B. Zhu, C. B. Field, and S. E. Trumbore
Biogeosciences, 10, 8067–8081, https://doi.org/10.5194/bg-10-8067-2013, https://doi.org/10.5194/bg-10-8067-2013, 2013
E. Solly, I. Schöning, S. Boch, J. Müller, S. A. Socher, S. E. Trumbore, and M. Schrumpf
Biogeosciences, 10, 4833–4843, https://doi.org/10.5194/bg-10-4833-2013, https://doi.org/10.5194/bg-10-4833-2013, 2013
C. A. Sierra, E. M. Jiménez, B. Reu, M. C. Peñuela, A. Thuille, and C. A. Quesada
Biogeosciences, 10, 3455–3464, https://doi.org/10.5194/bg-10-3455-2013, https://doi.org/10.5194/bg-10-3455-2013, 2013
A. Angert, J. Muhr, R. Negron Juarez, W. Alegria Muñoz, G. Kraemer, J. Ramirez Santillan, E. Barkan, S. Mazeh, J. Q. Chambers, and S. E. Trumbore
Biogeosciences, 9, 4979–4991, https://doi.org/10.5194/bg-9-4979-2012, https://doi.org/10.5194/bg-9-4979-2012, 2012
Related subject area
Biodiversity and Ecosystem Function: Terrestrial
Observed water and light limitation across global ecosystems
Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory
A question of scale: modeling biomass, gain and mortality distributions of a tropical forest
Seed traits and phylogeny explain plants' geographic distribution
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Excess radiation exacerbates drought stress impacts on canopy conductance along aridity gradients
Dispersal of bacteria and stimulation of permafrost decomposition by Collembola
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Updated estimation of forest biomass carbon pools in China, 1977–2018
Spruce bark beetle (Ips typographus) infestation cause up to 700 times higher bark BVOC emission rates from Norway spruce (Picea abies)
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion
Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing
Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems
Water uptake patterns of pea and barley responded to drought but not to cropping systems
Geodiversity and biodiversity on a volcanic island: the role of scattered phonolites for plant diversity and performance
The role of cover crops for cropland soil carbon, nitrogen leaching, and agricultural yields – a global simulation study with LPJmL (V. 5.0-tillage-cc)
The biogeographic pattern of microbial communities inhabiting terrestrial mud volcanoes across the Eurasian continent
Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems
Net soil carbon balance in afforested peatlands and separating autotrophic and heterotrophic soil CO2 effluxes
Bioaerosols and atmospheric ice nuclei in a Mediterranean dryland: community changes related to rainfall
Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: results from 5 years of monthly drone data for a 50 ha plot
Nitrogen restricts future sub-arctic treeline advance in an individual-based dynamic vegetation model
Spatial patterns of aboveground phytogenic Si stocks in a grass-dominated catchment – results from UAS-based high-resolution remote sensing
Patterns in recent and Holocene pollen accumulation rates across Europe – the Pollen Monitoring Programme Database as a tool for vegetation reconstruction
Capturing functional strategies and compositional dynamics in vegetation demographic models
Drought effects on leaf fall, leaf flushing and stem growth in the Amazon forest: reconciling remote sensing data and field observations
Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests
The motion of trees in the wind: a data synthesis
The importance of antecedent vegetation and drought conditions as global drivers of burnt area
Evaluating the potential for Haloarchaea to serve as ice nucleating particles
A survey of proximal methods for monitoring leaf phenology in temperate deciduous forests
Recent above-ground biomass changes in central Chukotka (Russian Far East) using field sampling and Landsat satellite data
Climate change and elevated CO2 favor forest over savanna under different future scenarios in South Asia
Functional convergence of biosphere–atmosphere interactions in response to meteorological conditions
Multi-scale assessment of a grassland productivity model
Improving the monitoring of deciduous broadleaf phenology using the Geostationary Operational Environmental Satellite (GOES) 16 and 17
Factors controlling the productivity of tropical Andean forests: climate and soil are more important than tree diversity
Drought years in peatland rewetting: rapid vegetation succession can maintain the net CO2 sink function
Shift of seed mass and fruit type spectra along longitudinal gradient: high water availability and growth allometry
Retrieval and validation of forest background reflectivity from daily Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) data across European forests
Unraveling the physical and physiological basis for the solar- induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop
Machine learning estimates of eddy covariance carbon flux in a scrub in the Mexican highland
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-210, https://doi.org/10.5194/bg-2022-210, 2022
Revised manuscript accepted for BG
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reducing the uncertainty of the global COS budget.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Kai Chen, Kevin S. Burgess, Fangliang He, Xiang-Yun Yang, Lian-Ming Gao, and De-Zhu Li
Biogeosciences, 19, 4801–4810, https://doi.org/10.5194/bg-19-4801-2022, https://doi.org/10.5194/bg-19-4801-2022, 2022
Short summary
Short summary
Why does plants' distributional range size vary enormously? This study provides evidence that seed mass, intraspecific seed mass variation, seed dispersal mode and phylogeny contribute to explaining species distribution variation on a geographic scale. Our study clearly shows the importance of including seed life-history traits in modeling and predicting the impact of climate change on species distribution of seed plants.
Ying Ying Chen, Huan Yang, Gen Sheng Bao, Xiao Pan Pang, and Zheng Gang Guo
Biogeosciences, 19, 4521–4532, https://doi.org/10.5194/bg-19-4521-2022, https://doi.org/10.5194/bg-19-4521-2022, 2022
Short summary
Short summary
Investigating the effect of the presence of plateau pikas on ecosystem services of alpine meadows is helpful to understand the role of the presence of small mammalian herbivores in grasslands. The results of this study showed that the presence of plateau pikas led to higher biodiversity conservation, soil nitrogen and phosphorus maintenance, and carbon sequestration of alpine meadows, whereas it led to lower forage available to livestock and water conservation of alpine meadows.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Sylvain Monteux, Janine Mariën, and Eveline J. Krab
Biogeosciences, 19, 4089–4105, https://doi.org/10.5194/bg-19-4089-2022, https://doi.org/10.5194/bg-19-4089-2022, 2022
Short summary
Short summary
Quantifying the feedback from the decomposition of thawing permafrost soils is crucial to establish adequate climate warming mitigation scenarios. Past efforts have focused on abiotic and to some extent microbial drivers of decomposition but not biotic drivers such as soil fauna. We added soil fauna (Collembola Folsomia candida) to permafrost, which introduced bacterial taxa without affecting bacterial communities as a whole but increased CO2 production (+12 %), presumably due to priming.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-125, https://doi.org/10.5194/bg-2022-125, 2022
Revised manuscript accepted for BG
Short summary
Short summary
Increased spruce bark beetle outbreaks was seen recently in Sweden. When Norway spruce trees are attacked, they increase their production of volatile compounds, attempting to kill the beetles. We provide new insights to how the Norway spruce act when infested, and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022, https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Guoyu Lan, Bangqian Chen, Chuan Yang, Rui Sun, Zhixiang Wu, and Xicai Zhang
Biogeosciences, 19, 1995–2005, https://doi.org/10.5194/bg-19-1995-2022, https://doi.org/10.5194/bg-19-1995-2022, 2022
Short summary
Short summary
Little is known about the impact of rubber plantations on diversity of the Great Mekong Subregion. In this study, we uncovered latitudinal gradients of plant diversity of rubber plantations. Exotic species with high dominance result in loss of plant diversity of rubber plantations. Not all exotic species would reduce plant diversity of rubber plantations. Much more effort should be made to balance agricultural production with conservation goals in this region.
Ulrike Hiltner, Andreas Huth, and Rico Fischer
Biogeosciences, 19, 1891–1911, https://doi.org/10.5194/bg-19-1891-2022, https://doi.org/10.5194/bg-19-1891-2022, 2022
Short summary
Short summary
Quantifying biomass loss rates due to stem mortality is important for estimating the role of tropical forests in the global carbon cycle. We analyse the consequences of long-term elevated stem mortality for tropical forest dynamics and biomass loss. Based on simulations, we developed a statistical model to estimate biomass loss rates of forests in different successional states from forest attributes. Assuming a doubling of tree mortality, biomass loss increased from 3.2 % yr-1 to 4.5 % yr-1.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Qing Sun, Valentin H. Klaus, Raphaël Wittwer, Yujie Liu, Marcel G. A. van der Heijden, Anna K. Gilgen, and Nina Buchmann
Biogeosciences, 19, 1853–1869, https://doi.org/10.5194/bg-19-1853-2022, https://doi.org/10.5194/bg-19-1853-2022, 2022
Short summary
Short summary
Drought is one of the biggest challenges for future food production globally. During a simulated drought, pea and barley mainly relied on water from shallow soil depths, independent of different cropping systems.
David Kienle, Anna Walentowitz, Leyla Sungur, Alessandro Chiarucci, Severin D. H. Irl, Anke Jentsch, Ole R. Vetaas, Richard Field, and Carl Beierkuhnlein
Biogeosciences, 19, 1691–1703, https://doi.org/10.5194/bg-19-1691-2022, https://doi.org/10.5194/bg-19-1691-2022, 2022
Short summary
Short summary
Volcanic islands consist mainly of basaltic rocks. Additionally, there are often occurrences of small phonolite rocks differing in color and surface. On La Palma (Canary Islands), phonolites appear to be more suitable for plants than the omnipresent basalts. Therefore, we expected phonolites to be species-rich with larger plant individuals compared to the surrounding basaltic areas. Indeed, as expected, we found more species on phonolites and larger plant individuals in general.
Vera Porwollik, Susanne Rolinski, Jens Heinke, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Biogeosciences, 19, 957–977, https://doi.org/10.5194/bg-19-957-2022, https://doi.org/10.5194/bg-19-957-2022, 2022
Short summary
Short summary
The study assesses impacts of grass cover crop cultivation on cropland during main-crop off-season periods applying the global vegetation model LPJmL (V.5.0-tillage-cc). Compared to simulated bare-soil fallowing practices, cover crops led to increased soil carbon content and reduced nitrogen leaching rates on the majority of global cropland. Yield responses of main crops following cover crops vary with location, duration of altered management, crop type, water regime, and tillage practice.
Tzu-Hsuan Tu, Li-Ling Chen, Yi-Ping Chiu, Li-Hung Lin, Li-Wei Wu, Francesco Italiano, J. Bruce H. Shyu, Seyed Naser Raisossadat, and Pei-Ling Wang
Biogeosciences, 19, 831–843, https://doi.org/10.5194/bg-19-831-2022, https://doi.org/10.5194/bg-19-831-2022, 2022
Short summary
Short summary
This investigation of microbial biogeography in terrestrial mud volcanoes (MVs) covers study sites over a geographic distance of up to 10 000 km across the Eurasian continent. It compares microbial community compositions' coupling with geochemical data across a 3D space. We demonstrate that stochastic processes operating at continental scales and environmental filtering at local scales drive the formation of patchy habitats and the pattern of diversification for microbes in terrestrial MVs.
Sami W. Rifai, Martin G. De Kauwe, Anna M. Ukkola, Lucas A. Cernusak, Patrick Meir, Belinda E. Medlyn, and Andy J. Pitman
Biogeosciences, 19, 491–515, https://doi.org/10.5194/bg-19-491-2022, https://doi.org/10.5194/bg-19-491-2022, 2022
Short summary
Short summary
Australia's woody ecosystems have experienced widespread greening despite a warming climate and repeated record-breaking droughts and heat waves. Increasing atmospheric CO2 increases plant water use efficiency, yet quantifying the CO2 effect is complicated due to co-occurring effects of global change. Here we harmonized a 38-year satellite record to separate the effects of climate change, land use change, and disturbance to quantify the CO2 fertilization effect on the greening phenomenon.
Renée Hermans, Rebecca McKenzie, Roxane Andersen, Yit Arn Teh, Neil Cowie, and Jens-Arne Subke
Biogeosciences, 19, 313–327, https://doi.org/10.5194/bg-19-313-2022, https://doi.org/10.5194/bg-19-313-2022, 2022
Short summary
Short summary
Peatlands are a significant global carbon store, which can be compromised by drainage and afforestation. We measured the peat decomposition under a 30-year-old drained forest plantation: 115 ± 16 g C m−2 yr−1, ca. 40 % of total soil respiration. Considering input of litter from trees, our results indicate that the soils in these 30-year-old drained and afforested peatlands are a net sink for C, since substantially more C enters the soil as organic matter than is decomposed heterotrophically.
Kai Tang, Beatriz Sánchez-Parra, Petya Yordanova, Jörn Wehking, Anna T. Backes, Daniel A. Pickersgill, Stefanie Maier, Jean Sciare, Ulrich Pöschl, Bettina Weber, and Janine Fröhlich-Nowoisky
Biogeosciences, 19, 71–91, https://doi.org/10.5194/bg-19-71-2022, https://doi.org/10.5194/bg-19-71-2022, 2022
Short summary
Short summary
Metagenomic sequencing and freezing experiments of aerosol samples collected on Cyprus revealed rain-related short-term changes of bioaerosol and ice nuclei composition. Filtration experiments showed a rain-related enhancement of biological ice nuclei > 5 µm and < 0.1 µm. The observed effects of rainfall on the composition of atmospheric bioaerosols and ice nuclei may influence the hydrological cycle as well as the health effects of air particulate matter (pathogens, allergens).
Raquel Fernandes Araujo, Samuel Grubinger, Carlos Henrique Souza Celes, Robinson I. Negrón-Juárez, Milton Garcia, Jonathan P. Dandois, and Helene C. Muller-Landau
Biogeosciences, 18, 6517–6531, https://doi.org/10.5194/bg-18-6517-2021, https://doi.org/10.5194/bg-18-6517-2021, 2021
Short summary
Short summary
Our study contributed to improving the understanding of temporal variation and climate correlates of canopy disturbances mainly caused by treefalls and branchfalls. We used a unique dataset of 5 years of approximately monthly drone-acquired RGB (red–green–blue) imagery for 50 ha of mature tropical forest on Barro Colorado Island, Panama. We found that canopy disturbance rates were highly temporally variable, were higher in the wet season, and were related to extreme rainfall events.
Adrian Gustafson, Paul A. Miller, Robert G. Björk, Stefan Olin, and Benjamin Smith
Biogeosciences, 18, 6329–6347, https://doi.org/10.5194/bg-18-6329-2021, https://doi.org/10.5194/bg-18-6329-2021, 2021
Short summary
Short summary
We performed model simulations of vegetation change for a historic period and a range of climate change scenarios at a high spatial resolution. Projected treeline advance continued at the same or increased rates compared to our historic simulation. Temperature isotherms advanced faster than treelines, revealing a lag in potential vegetation shifts that was modulated by nitrogen availability. At the year 2100 projected treelines had advanced by 45–195 elevational metres depending on the scenario.
Marc Wehrhan, Daniel Puppe, Danuta Kaczorek, and Michael Sommer
Biogeosciences, 18, 5163–5183, https://doi.org/10.5194/bg-18-5163-2021, https://doi.org/10.5194/bg-18-5163-2021, 2021
Short summary
Short summary
UAS remote sensing provides a promising tool for new insights into Si biogeochemistry at catchment scale. Our study on an artificial catchment shows surprisingly high silicon stocks in the biomass of two grass species (C. epigejos, 7 g m−2; P. australis, 27 g m−2). The distribution of initial sediment properties (clay, Tiron-extractable Si, nitrogen, plant-available potassium) controlled the spatial distribution of C. epigejos. Soil wetness determined the occurrence of P. australis.
Vojtěch Abraham, Sheila Hicks, Helena Svobodová-Svitavská, Elissaveta Bozilova, Sampson Panajiotidis, Mariana Filipova-Marinova, Christin Eldegard Jensen, Spassimir Tonkov, Irena Agnieszka Pidek, Joanna Święta-Musznicka, Marcelina Zimny, Eliso Kvavadze, Anna Filbrandt-Czaja, Martina Hättestrand, Nurgül Karlıoğlu Kılıç, Jana Kosenko, Maria Nosova, Elena Severova, Olga Volkova, Margrét Hallsdóttir, Laimdota Kalniņa, Agnieszka M. Noryśkiewicz, Bożena Noryśkiewicz, Heather Pardoe, Areti Christodoulou, Tiiu Koff, Sonia L. Fontana, Teija Alenius, Elisabeth Isaksson, Heikki Seppä, Siim Veski, Anna Pędziszewska, Martin Weiser, and Thomas Giesecke
Biogeosciences, 18, 4511–4534, https://doi.org/10.5194/bg-18-4511-2021, https://doi.org/10.5194/bg-18-4511-2021, 2021
Short summary
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
Polly C. Buotte, Charles D. Koven, Chonggang Xu, Jacquelyn K. Shuman, Michael L. Goulden, Samuel Levis, Jessica Katz, Junyan Ding, Wu Ma, Zachary Robbins, and Lara M. Kueppers
Biogeosciences, 18, 4473–4490, https://doi.org/10.5194/bg-18-4473-2021, https://doi.org/10.5194/bg-18-4473-2021, 2021
Short summary
Short summary
We present an approach for ensuring the definitions of plant types in dynamic vegetation models are connected to the underlying ecological processes controlling community composition. Our approach can be applied regionally or globally. Robust resolution of community composition will allow us to use these models to address important questions related to future climate and management effects on plant community composition, structure, carbon storage, and feedbacks within the Earth system.
Thomas Janssen, Ype van der Velde, Florian Hofhansl, Sebastiaan Luyssaert, Kim Naudts, Bart Driessen, Katrin Fleischer, and Han Dolman
Biogeosciences, 18, 4445–4472, https://doi.org/10.5194/bg-18-4445-2021, https://doi.org/10.5194/bg-18-4445-2021, 2021
Short summary
Short summary
Satellite images show that the Amazon forest has greened up during past droughts. Measurements of tree stem growth and leaf litterfall upscaled using machine-learning algorithms show that leaf flushing at the onset of a drought results in canopy rejuvenation and green-up during drought while simultaneously trees excessively shed older leaves and tree stem growth declines. Canopy green-up during drought therefore does not necessarily point to enhanced tree growth and improved forest health.
Boris Sakschewski, Werner von Bloh, Markus Drüke, Anna Amelia Sörensson, Romina Ruscica, Fanny Langerwisch, Maik Billing, Sarah Bereswill, Marina Hirota, Rafael Silva Oliveira, Jens Heinke, and Kirsten Thonicke
Biogeosciences, 18, 4091–4116, https://doi.org/10.5194/bg-18-4091-2021, https://doi.org/10.5194/bg-18-4091-2021, 2021
Short summary
Short summary
This study shows how local adaptations of tree roots across tropical and sub-tropical South America explain patterns of biome distribution, productivity and evapotranspiration on this continent. By allowing for high diversity of tree rooting strategies in a dynamic global vegetation model (DGVM), we are able to mechanistically explain patterns of mean rooting depth and the effects on ecosystem functions. The approach can advance DGVMs and Earth system models.
Toby D. Jackson, Sarab Sethi, Ebba Dellwik, Nikolas Angelou, Amanda Bunce, Tim van Emmerik, Marine Duperat, Jean-Claude Ruel, Axel Wellpott, Skip Van Bloem, Alexis Achim, Brian Kane, Dominick M. Ciruzzi, Steven P. Loheide II, Ken James, Daniel Burcham, John Moore, Dirk Schindler, Sven Kolbe, Kilian Wiegmann, Mark Rudnicki, Victor J. Lieffers, John Selker, Andrew V. Gougherty, Tim Newson, Andrew Koeser, Jason Miesbauer, Roger Samelson, Jim Wagner, Anthony R. Ambrose, Andreas Detter, Steffen Rust, David Coomes, and Barry Gardiner
Biogeosciences, 18, 4059–4072, https://doi.org/10.5194/bg-18-4059-2021, https://doi.org/10.5194/bg-18-4059-2021, 2021
Short summary
Short summary
We have all seen trees swaying in the wind, but did you know that this motion can teach us about ecology? We summarized tree motion data from many different studies and looked for similarities between trees. We found that the motion of trees in conifer forests is quite similar to each other, whereas open-grown trees and broadleaf forests show more variation. It has been suggested that additional damping or amplification of tree motion occurs at high wind speeds, but we found no evidence of this.
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
Jessie M. Creamean, Julio E. Ceniceros, Lilyanna Newman, Allyson D. Pace, Thomas C. J. Hill, Paul J. DeMott, and Matthew E. Rhodes
Biogeosciences, 18, 3751–3762, https://doi.org/10.5194/bg-18-3751-2021, https://doi.org/10.5194/bg-18-3751-2021, 2021
Short summary
Short summary
Microorganisms have the unique ability to form ice in clouds at relatively warm temperatures, especially specific types of plant bacteria. However, to date, members of the domain Archaea have not been evaluated for their cloud-forming capabilities. Here, we show the first results of Haloarchaea that have the ability to form cloud ice at moderate supercooled temperatures that are found in hypersaline environments on Earth.
Kamel Soudani, Nicolas Delpierre, Daniel Berveiller, Gabriel Hmimina, Jean-Yves Pontailler, Lou Seureau, Gaëlle Vincent, and Éric Dufrêne
Biogeosciences, 18, 3391–3408, https://doi.org/10.5194/bg-18-3391-2021, https://doi.org/10.5194/bg-18-3391-2021, 2021
Short summary
Short summary
We present an exhaustive comparative survey of eight proximal methods to estimate forest phenology. We focused on methodological aspects and thoroughly assessed deviations between predicted and observed phenological dates and pointed out their main causes. We show that proximal methods provide robust phenological metrics. They can be used to retrieve long-term phenological series at flux measurement sites and help interpret the interannual variability and trends of mass and energy exchanges.
Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, Luise Schulte, Simone Stünzi, Luidmila A. Pestryakova, Evgeniy S. Zakharov, and Stefan Kruse
Biogeosciences, 18, 3343–3366, https://doi.org/10.5194/bg-18-3343-2021, https://doi.org/10.5194/bg-18-3343-2021, 2021
Short summary
Short summary
In the light of climate changes in subarctic regions, notable general increase in above-ground biomass for the past 15 years (2000 to 2017) was estimated along a tundra–taiga gradient of central Chukotka (Russian Far East). The greatest increase occurred in the northern taiga in the areas of larch closed-canopy forest expansion with Cajander larch as a main contributor. For the estimations, we used field data (taxa-separated plant biomass, 2018) and upscaled it based on Landsat satellite data.
Dushyant Kumar, Mirjam Pfeiffer, Camille Gaillard, Liam Langan, and Simon Scheiter
Biogeosciences, 18, 2957–2979, https://doi.org/10.5194/bg-18-2957-2021, https://doi.org/10.5194/bg-18-2957-2021, 2021
Short summary
Short summary
In this paper, we investigated the impact of climate change and rising CO2 on biomes using a vegetation model in South Asia, an often neglected region in global modeling studies. Understanding these impacts guides ecosystem management and biodiversity conservation. Our results indicate that savanna regions are at high risk of woody encroachment and transitioning into the forest, and the bioclimatic envelopes of biomes need adjustments to account for shifts caused by climate change and CO2.
Christopher Krich, Mirco Migliavacca, Diego G. Miralles, Guido Kraemer, Tarek S. El-Madany, Markus Reichstein, Jakob Runge, and Miguel D. Mahecha
Biogeosciences, 18, 2379–2404, https://doi.org/10.5194/bg-18-2379-2021, https://doi.org/10.5194/bg-18-2379-2021, 2021
Short summary
Short summary
Ecosystems and the atmosphere interact with each other. These interactions determine e.g. the water and carbon fluxes and thus are crucial to understand climate change effects. We analysed the interactions for many ecosystems across the globe, showing that very different ecosystems can have similar interactions with the atmosphere. Meteorological conditions seem to be the strongest interaction-shaping factor. This means that common principles can be identified to describe ecosystem behaviour.
Shawn D. Taylor and Dawn M. Browning
Biogeosciences, 18, 2213–2220, https://doi.org/10.5194/bg-18-2213-2021, https://doi.org/10.5194/bg-18-2213-2021, 2021
Short summary
Short summary
Grasslands in North America provide multiple ecosystem services and drive the production of a lot of grain, beef, and other staples. We evaluated a grassland productivity model using nearly 500 years of grassland camera data and found the areas where the model worked well and locations where it did not. Long-term productivity projections for the suitable locations can be made immediately with the current model, while other areas, such as the southwest, will need further model development.
Kathryn I. Wheeler and Michael C. Dietze
Biogeosciences, 18, 1971–1985, https://doi.org/10.5194/bg-18-1971-2021, https://doi.org/10.5194/bg-18-1971-2021, 2021
Short summary
Short summary
Monitoring leaf phenology (i.e., seasonality) allows for tracking the progression of climate change and seasonal variations in a variety of organismal and ecosystem processes. Recent versions of the Geostationary Operational Environmental Satellites allow for the monitoring of a phenological-sensitive index at a high temporal frequency (5–10 min) throughout most of the western hemisphere. Here we show the high potential of these new data to measure the phenology of deciduous forests.
Jürgen Homeier and Christoph Leuschner
Biogeosciences, 18, 1525–1541, https://doi.org/10.5194/bg-18-1525-2021, https://doi.org/10.5194/bg-18-1525-2021, 2021
Short summary
Short summary
We studied aboveground productivity in humid tropical montane old-growth forests in two highly diverse Andean regions with large geological and topographic heterogeneity and related productivity to tree diversity and climatic, edaphic and stand structural factors. From our results we conclude that the productivity of highly diverse Neotropical montane forests is primarily controlled by thermal and edaphic factors and stand structural properties, while tree diversity is of minor importance.
Florian Beyer, Florian Jansen, Gerald Jurasinski, Marian Koch, Birgit Schröder, and Franziska Koebsch
Biogeosciences, 18, 917–935, https://doi.org/10.5194/bg-18-917-2021, https://doi.org/10.5194/bg-18-917-2021, 2021
Short summary
Short summary
Increasing drought frequency can jeopardize the restoration of the CO2 sink function in degraded peatlands. We explored the effect of the summer drought in 2018 on vegetation development and CO2 exchange in a rewetted fen. Drought triggered a rapid spread of new vegetation whose CO2 assimilation could partially outweigh the drought-related rise in respiratory CO2 loss. Our study shows important regulatory mechanisms of a rewetted fen to maintain its net CO2 sink function even in a very dry year.
Shunli Yu, Guoxun Wang, Ofir Katz, Danfeng Li, Qibing Wang, Ming Yue, and Canran Liu
Biogeosciences, 18, 655–667, https://doi.org/10.5194/bg-18-655-2021, https://doi.org/10.5194/bg-18-655-2021, 2021
Short summary
Short summary
As key traits of plants, the mechanisms of diversity of fruit sizes and seed sizes have not been solved completely until now. Therefore, the research related to them will continue to be done in the future. Our research, combined with future works, will provide a profound basis for solving the origin of fleshy-fruited species and seed size diversity.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Peiqi Yang, Christiaan van der Tol, Petya K. E. Campbell, and Elizabeth M. Middleton
Biogeosciences, 18, 441–465, https://doi.org/10.5194/bg-18-441-2021, https://doi.org/10.5194/bg-18-441-2021, 2021
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) has the potential to facilitate the monitoring of photosynthesis from space. This study presents a systematic analysis of the physical and physiological meaning of the relationship between fluorescence and photosynthesis at both leaf and canopy levels. We unravel the individual effects of incoming light, vegetation structure and leaf physiology and highlight their joint effects on the relationship between canopy fluorescence and photosynthesis.
Aurelio Guevara-Escobar, Enrique González-Sosa, Mónica Cervantes-Jiménez, Humberto Suzán-Azpiri, Mónica Elisa Queijeiro-Bolaños, Israel Carrillo-Ángeles, and Víctor Hugo Cambrón-Sandoval
Biogeosciences, 18, 367–392, https://doi.org/10.5194/bg-18-367-2021, https://doi.org/10.5194/bg-18-367-2021, 2021
Short summary
Short summary
All vegetation types can sequester carbon dioxide. We compared ground measurements (eddy covariance) with remotely sensed data (Moderate Resolution Imaging Spectroradiometer, MODIS) and machine learning ensembles of primary production in a semiarid scrub in Mexico. The annual carbon sink for this vegetation type was −283.5 g C m−2 y−1; MODIS underestimated the primary productivity, and the machine learning modeling was better locally.
Cited articles
Alvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del
Valle, I., Lema, A., Moreno, F., Orrego, S., and Rodríguez, L.: Tree
above-ground biomass allometries for carbon stocks estimation in the natural
forests of Colombia, Forest Ecol. Manag., 267, 297–308, 2012.
Amaral, D. D., Vieira, I. C. G., Almeida, S. S., Salomão, R. P., Silva,
A. S. L., and Jardim, M. A. G.: Checklist of remnant forest fragments of the
metropolitan area of Belém and historical value of the fragments, State
of Pará, Brazil, Bol. Mus. Para. Emílio Goeldi, 4, 231–289,
2009.
Asner, G. P.: Geography of forest disturbance, P. Natl. Acad. Sci. USA, 110, 3711–3712, 2013.
Banin, L., Feldpausch, T. R., Phillips, O. L., Baker, T. R., Lloyd, J.,
Affum-Baffoe, K., Arets, E. J. M. M., Berry, N. J., Bradford, M., Brienen,
R. J. W., Davies, S., Drescher, M., Higuchi, N., Hilbert, D. W., Hladik, A.,
Iida, Y., Salim, K. A., Kassim, A. R., King, D. A., Lopez-Gonzalez, G.,
Metcalfe, D., Nilus, R., Peh, K. S. H., Reitsma, J. M., Sonké, B.,
Taedoumg, H., Tan, S., White, L., Wöll, H., and Lewis, S. L.: What
controls tropical forest architecture? Testing environmental, structural and
floristic drivers, Glob. Ecol. Biogeogr., 21, 1179–1190, 2012.
Bolker, B. M.: Ecological Models and Data in R, Princeton University Press,
New Jersey, 2008.
Bolker, B. M., Gardner, B., Maunder, M., Berg, C. W., Brooks, M., Comita,
L., Crone, E., Cubaynes, S., Davies, T., de Valpine, P., Ford, J., Gimenez,
O., Kéry, M., Kim, E. J., Lennert-Cody, C., Magnusson, A., Martell, S.,
Nash, J., Nielsen, A., Regetz, J., Skaug, H., and Zipkin, E.: Strategies for
fitting nonlinear ecological models in R, AD Model Builder, and BUGS,
Methods Ecol. Evol., 4, 501–512, 2013.
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the
climate benefits of forests, Science, 320, 1444–1449,
https://doi.org/10.1126/science.1155121, 2008.
Bowman, D. M. J. S., Brienen, R. J. W., Gloor, E., Phillips, O. L., and
Prior, L. D.: Detecting trends in tree growth: Not so simple, Trends Plant
Sci., 18, 11–17, 2013.
Braga, P. I. S.: Subdivisão fitogeográfica, tipos de
vegetação, conservação e inventário florístico da
floresta amazônica, Acta Amaz., 9, 53–80, 1979.
Brooks, S. P. and Gelman, A.: General Methods for Monitoring Convergence of
Iterative Simulations, J. Comput. Graph. Stat., 7, 434–455, 1998.
Brooks, S. P. and Roberts, G. O.: Convergence assessment techniques for
Markov chain Monte Carlo, Stat. Comput., 8, 319–335, 1998.
Brown, S., Gillespie, A. J. R., and Lugo, A. E.: Biomass estimation methods
for tropical forests with applications to forest inventory data, Forest Sci.,
35, 881–902, 1989.
Carvalho Jr., J. A., Santos, J. M., Santos, J. C., Leitão, M. M., and
Higuchi, N.: A tropical rainforest clearing experiment by biomass burning in
the Manaus region, Atmos. Environ., 29, 2301–2309, 1995.
Chambers, J., Higuchi, N., Teixeira, L., Santos, J. dos, Laurance, S., and
Trumbore, S.: Response of tree biomass and wood litter to disturbance in a
Central Amazon forest, Oecologia, 141, 596–611, 2004.
Chambers, J. Q., dos Santos, J., Ribeiro, R. J., and Higuchi, N.: Tree
damage, allometric relationships, and above-ground net primary production in
central Amazon forest, Forest Ecol. Manag., 152, 73–84, 2001.
Chambers, J. Q., Robertson, A. L., Carneiro, V. M. C., Lima, A. J. N.,
Smith, M. L., Plourde, L. C., and Higuchi, N.: Hyperspectral remote detection
of niche partitioning among canopy trees driven by blowdown gap disturbances
in the Central Amazon, Oecologia, 160, 107–117, 2009.
Chambers, J. Q., Negron-Juarez, R. I., Marra, D. M., Di Vittorio, A., Tews,
J., Roberts, D., Ribeiro, G. H. P. M., Trumbore, S. E., and Higuchi, N.: The
steady-state mosaic of disturbance and succession across an old-growth
Central Amazon forest landscape, P. Natl. Acad. Sci. USA, 110,
3949–3954, 2013.
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D.,
Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson,
B. W., Ogawa, H., Puig, H., Riéra, B., and Yamakura, T.: Tree allometry
and improved estimation of carbon stocks and balance in tropical forests,
Oecologia, 145, 87–99, 2005.
Chave, J., Muller-Landau, H. C., Baker, T. R., Easdale, T. A., Hans Steege,
T. E. R., and Webb, C. O.: Regional and phylogenetic variation of wood
density across 2456 neotropical tree species, Ecol. Appl., 16,
2356–2367, 2006.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne,
A. E.: Towards a worldwide wood economics spectrum, Ecol. Lett., 12,
351–366, 2009.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E.,
Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M.,
Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W.,
Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira,
E. M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C. M.,
Saldarriaga, J. G., and Vieilledent, G.: Improved allometric models to
estimate the aboveground biomass of tropical trees, Glob. Chang. Biol., 20,
3177–3190, 2014.
Chen, Q., Vaglio Laurin, G., and Valentini, R.: Uncertainty of remotely
sensed aboveground biomass over an African tropical forest: Propagating
errors from trees to plots to pixels, Remote Sens. Environ., 160, 134–143,
https://doi.org/10.1016/j.rse.2015.01.009, 2015.
Clark, D. A. and Clark, D. B.: Life history diversity of canopy and emergent
trees in a neotropical rain forest, Ecol. Monogr., 62, 315–344, 1992.
Clark, D. B. and Kellner, J. R.: Tropical forest biomass estimation and the
fallacy of misplaced concreteness, J. Veg. Sci., 23, 1191–1196, 2012.
da Silva, R.: Alometria, estoque e dinânica da biomassa de florestas
primárias e secundárias na região de Manaus (AM), PhD Thesis,
Universidade Federal do Amazonas, Brazil, available at:
https://www.inpa.gov.br/arquivos/Tese_Biomassa_Roseana_Silva.pdf (last access: 5 March 2015), 2007.
da Silva, R. P., dos Santos, J., Tribuzy, E. S., Chambers, J. Q., Nakamura,
S.,
and Higuchi, N.: Diameter increment and growth patterns for individual tree
growing in Central Amazon, Brazil, Forest Ecol. Manag., 166, 295–301, 2002.
da Silva, R. P., Nakamura, S., Azevedo, C. de, Chambers, J., Rocha, R. de M.,
Pinto, C., dos Santos, J., and Higuchi, N.: Use of metallic dendrometers for
individual diameter growth patterns of trees at Cuieiras river basin, Acta
Amaz., 33, 67–84, 2003.
Denslow, J. S.: Patterns of plant species diversity during succession under
different disturbance regimes, Oecologia, 46, 18–21, 1980.
de Oliveira, A. A. and Mori, S. A.: A central Amazonian terra firme forest.
I. High tree species richness on poor soils, Biodivers. Conserv., 8,
1219–1244, 1999.
dos Santos, J.: Análise de modelos de regressão para estimar a
fitomassa da floresta tropical úmida de terra-firme da Amazônia
Brasileira, Ph.D. Thesis, Universidade Federal de Viçosa, Minas-Gerais,
Brazil, 1996.
FAO: Global Florest Resources Assessment, FAO For. Pap., 163, 2010.
Fearnside, P. M.: Wood density for estimating forest biomass in Brazilian
Amazonia, Forest Ecol. Manag., 90, 59–87, 1997.
Feldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S. L.,
Quesada, C. A., Affum-Baffoe, K., Arets, E. J. M. M., Berry, N. J., Bird, M.,
Brondizio, E. S., de Camargo, P., Chave, J., Djagbletey, G., Domingues, T.
F., Drescher, M., Fearnside, P. M., França, M. B., Fyllas, N. M.,
Lopez-Gonzalez, G., Hladik, A., Higuchi, N., Hunter, M. O., Iida, Y., Salim,
K. A., Kassim, A. R., Keller, M., Kemp, J., King, D. A., Lovett, J. C.,
Marimon, B. S., Marimon-Junior, B. H., Lenza, E., Marshall, A. R., Metcalfe,
D. J., Mitchard, E. T. A., Moran, E. F., Nelson, B. W., Nilus, R., Nogueira,
E. M., Palace, M., Patiño, S., Peh, K. S.-H., Raventos, M. T., Reitsma, J.
M., Saiz, G., Schrodt, F., Sonké, B., Taedoumg, H. E., Tan, S., White, L.,
Wöll, H., and Lloyd, J.: Height-diameter allometry of tropical forest
trees, Biogeosciences, 8, 1081–1106, https://doi.org/10.5194/bg-8-1081-2011, 2011.
Goodman, R. C., Phillips, O. L., and Baker, T. R.: The importance of crown
dimensions to improve tropical tree biomass estimates, Ecol. Appl., 24,
680–698, 2014.
Graham, M. H.: Confronting multicollinearity in ecological multiple
regression, Ecology, 84, 2809–2815, 2003.
Gregoire, T. G., Næsset, E., McRoberts, R. E., Ståhl, G., Andersen,
H. E., Gobakken, T., Ene, L., and Nelson, R.: Statistical rigor in
LiDAR-assisted estimation of aboveground forest biomass, Remote Sens.
Environ., 173, 98–108, https://doi.org/10.1016/j.rse.2015.11.012, 2016.
Hallé, F.: Architecture of trees in the rain forest of Morobe District,
New Guinea, Biotropica, 6, 43–50, 1974.
Hallé, F., Oldeman, R. A. A., and Tomlinson, P. B.: Tropical trees and
forests: an architectural analysis, Springer-Verlag, Berlin, German Federal
Republic, 1978.
Henry, H. A. L. and Aarssen, L. W.: The interpretation of stem
diameter-height allometry in trees: Biomechanical constraints, neighbour
effects, or biased regressions?, Ecol. Lett., 2, 89–97, 1999.
Higuchi, N., Santos, J. dos, Ribeiro, R. J., Minette, L., and Biot, Y.:
Biomassa da parte aérea da vegetação da floresta tropical
úmida de terra-firme da Amazônia brasileira, Acta Amaz., 28,
153–166, 1998.
Higuchi, N., Chambers, J. Q., Santos, J. dos, Ribeiro, R. J., Pinto, A. C.
M., Silva, R. P. da, Rocha, R. de M., and Tribuzy, E. S.: Dinâmica e
balanço do carbono da vegetaçao primária da Amazônia Central,
Floresta, 34, 295–304, 2004.
Hunter, M. O., Keller, M., Victoria, D., and Morton, D. C.: Tree height and
tropical forest biomass estimation, Biogeosciences, 10, 8385–8399,
https://doi.org/10.5194/bg-10-8385-2013, 2013.
Huxley, J. and Teissier, G.: Terminology of relative growth, Nature, 137,
780–781, 1936.
IPCC: Guidelines for National Greenhouse Gas Inventories. IGES, Japan, available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (last access: 5 February 2016), 2006.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, Geneva, Switzerland, available at:
http://www.ipcc.ch/report/ar5/syr/ (last access: 5 February 2016), 2014.
Isik, F. and Li, B.: Rapid assessment of wood density of live trees using the
Resistograph for selection in tree improvement programs, Can. J. Forest Res.,
33, 2426–2435, 2003.
Junk, W., Piedade, M., Shongärt, J., Cohn-Haft, M., Adeney, J., and
Wittmann, F.: A classification of major naturally-occurring amazonian lowland
wetlands, Wetlands, 31, 623–640, 2011.
Kammesheidt, L.: Some autecological characteristics of early to late
successional tree species in Venezuela, Acta Oecologica, 21, 37–48, 2000.
King, D. A.: Allometry and life history of tropical trees, J. Trop. Ecol.,
12, 25–44, 1996.
Laurance, W. F., Nascimento, H. E. M., Laurance, S. G., Andrade, A.,
Fearnside, P. M., Ribeiro, J. E. L., and Capretz, R. L.: Rain forest
fragmentation and the proliferation of successional trees, Ecology, 87,
469–482, 2006.
Lima, A. J. N., Teixeira, L. M., Carneiro, V. M. C., dos Santos, J., and
Higuchi, N.: Análise da estrutura e do estoque de fitomassa de uma
floresta secundária da região de Manaus AM, dez anos após corte
raso seguido de fogo, Acta Amaz., 37, 49–54, 2007.
Lima, A. J. N., Suwa, R., Ribeiro, G. H. P. M., Kajimoto, T., Santos, J.
dos, Silva, R. P. da, Souza, C. A. S. de, Barros, P. C. de, Noguchi, H.,
Ishizuka, M., and Higuchi, N.: Allometric models for estimating above- and
below-ground biomass in Amazonian forests at São Gabriel da Cachoeira in
the upper Rio Negro, Brazil, Forest Ecol. Manag., 277, 163–172, 2012.
Lin, C. J., Kao, Y. C., Lin, T. T., Tsai, M. J., Wang, S. Y., Lin, L. D.,
Wang, Y. N., and Chan, M. H.: Application of an ultrasonic tomographic
technique for detecting defects in standing trees, Int. Biodeterior.
Biodegrad., 62, 434–441, 2008.
Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D.: WinBUGS – a
Bayesian modelling framework: concepts, structure, and extensibility,
available at:
http://www.mrc-bsu.cam.ac.uk/software/bugs/ (last access: 10 September 2015), 2000.
Marra, D. M., Chambers, J. Q., Higuchi, N., Trumbore, S. E., Ribeiro, G. H.
P. M., Santos, J. dos, Negrón-Juárez, R., Reu, B., and Wirth, C.:
Large-scale wind disturbances promote tree diversity in a central Amazon
forest, PLoS One, 9, e103711, https://doi.org/10.1371/journal.pone.0103711, 2014.
Marvin, D. C., Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E.,
Sinca, F., and Tupayachi, R.: Amazonian landscapes and the bias in field
studies of forest structure and biomass, P. Natl. Acad. Sci., 111,
E5224–E5232, 2014.
McRoberts, R. E. and Westfall, J. A.: The effects of uncertainty in
individual tree volume model predictions on the uncertainty of large area
volume estimates The method?, Forest Sci., 60, 34–42,
https://doi.org/10.5849/forsci.12-141, 2014.
Muller-Landau, H. C.: Interspecific and inter-site variation in wood specific
gravity of tropical trees, Biotropica, 36, 20–32, 2004.
Negrón-Juárez, R. I., Chambers, J. Q., Guimaraes, G., Zeng, H.,
Raupp, C. F. M., Marra, D. M., Ribeiro, G. H. P. M., Saatchi, S. S., Nelson,
B. W., and Higuchi, N.: Widespread Amazon forest tree mortality from a single
cross-basin squall line event, Geophys. Res. Lett., 37, 1–5, 2010.
Nelson, B., Kapos, V., Adams, J., Oliveira, W., Braun, O., and do Amaral, I.:
Forest disturbance by large blowdowns in the Brazilian Amazon, Ecology, 75,
853–858, 1994.
Nelson, B. W., Mesquita, R. C. G., Pereira, J. L. G., de Souza, S. G. A.,
Batista, G. T., and Couto, L. B.: Allometric regressions for improved
estimate of secondary forest biomass in the central Amazon, Forest Ecol.
Manag., 117, 149–167, 1999.
Ngomanda, A., Obiang, N. L. E., Lebamba, J., Mavouroulou, Q. M., Gomat, H.,
Mankou, G. S., Loumeto, J., Iponga, D. M., Ditsouga, F. K., Koumba, R. Z.,
Bobé, K. H. B., Okouyi, C. M., Nyangadouma, R., Lépengué, N.,
Mbatchi, B., and Picard, N.: Site-specific versus pantropical allometric
equations: Which option to estimate the biomass of a moist central African
forest?, Forest Ecol. Manag., 312, 1–9, 2014.
Nogueira, E. M., Nelson, B. W., and Fearnside, P. M.: Wood density in a dense
forest in central Amazonia, Brazil, Forest Ecol. Manag., 208, 261–286, 2005.
Nogueira, E. M., Fearnside, P. M., Nelson, B. W., and França, M. B.: Wood
density in forests of Brazil's “arc of deforestation”: Implications for
biomass and flux of carbon from land-use change in Amazonia, Forest Ecol.
Manag., 248, 119–135, 2007.
Nogueira Jr., L. R., Engel, V. L., Parrotta, J. A., Melo, A. C. G., and
Ré, D. S.: Allometric equations for estimating tree biomass in restored
mixed-species Atlantic, Biota Neotrop., 14, 1–9, 2014.
Norden, N., Angarita, H. A., Bongers, F., Martínez-Ramos, M., Granzow-de
la Cerda, I., van Breugelf, M., Lebrija-Trejos, E., Meavei, J. A.,
Vandermeer, J., Williamson, G. B., Finegan, B., Mesquita, R., and Chazdon, R.
L.: Successional dynamics in Neotropical forests are as uncertain as they are
predictable, P. Natl. Acad. Sci. USA, 112, 8013–8018, 2015.
Petraitis, P. S., Dunham, A. E., and Niewiarowski, P. H.: Inferring multiple
causality: the limitations of path analysis, Funct. Ecol., 10, 421–431,
1996.
Poorter, L., Bongers, F., Sterck, F. J., and Wöll, H.: Architecture of 53
Rain Forest Tree Species Differing in Adult Stature and Shade Tolerance,
Ecology, 84, 602–608, 2003.
R Core Team: R: A language and environment for statistical computing,
available at: http://www.r-project.org (last access: 10 February 2016), 2014.
Ribeiro, G. H. P. M., Suwa, R., Marra, D. M., Kajimoto, T., Ishizuka, M., and
Higuchi, N.: Allometry for juvenile trees in an Amazonian forest after wind
disturbance, Japan Agricultural Research Quarterly, 48, 213–219, 2014.
Ribeiro, J. E. L. S., Hopkins, M. J. G., Vicentini, A., Sothers, C. A.,
Costa, M. A. da S., Brito, J. M. de, Souza, M. A. D. de, Martins, L. H. P.,
Lohmann, L. G., Assunção, P. A. C. L., Pereira, E. da C., Silva, C.
F. da, Mesquita, M. R., and Procópio, L. C.: Flora da Reserva Ducke: Guia
de Identificação das Plantas Vasculares de uma Floresta de
Terra-firme na Amazônia Central, INPA, Manaus, 1999.
Saatchi, S., Harris, N., S, B., Lefsky, M., Mitchard, E., Salas, W., Zutta,
B., Buermann, W., Lewis, S., Hagen, S., Petrova, S., White, L., and Silman,
M.: Benchmark map of forest carbon stocks in tropical regions across three
continents, P. Natl. Acad. Sci. USA, 108, 9899–9904, 2011.
Saldarriaga, J. G., West, D. C., Tharp, M. L., and Uhl, C.: Long-Term
Chronossequence of Forest Succession in the Upper Rio Negro of Colombia and
Venezuela, J. Ecol., 76, 938–958, 1998.
Santos Jr., U. M., Gonçalves, J. F. de C., and Feldpausch, T. R.: Growth,
leaf nutrient concentration and photosynthetic nutrient use efficiency in
tropical tree species planted in degraded areas in central Amazonia, Forest
Ecol. Manag., 226, 299–309, 2006.
Sawada, Y., Suwa, R., Jindo, K., Endo, T., Oki, K., Sawada, H., Arai, E.,
Shimabukuro, Y. E., Celes, C. H. S., Campos, M. A. A., Higuchi, F. G., Lima,
A. J. N., Higuchi, N., Kajimoto, T., and Ishizuka, M.: A new 500-m resolution
map of canopy height for Amazon forest using paceborne LiDAR and cloud-free
MODIS imagery, Int. J. Appl. Earth Obs. Geoinf., 43, 92–101, 2015.
Schietti, J., Emilio, T., Rennó, C. D., Drucker, D. P., Costa, F. R. C.,
Nogueira, A., Baccaro, F. B., Figueiredo, F., Castilho, C. V, Kinupp, V.,
Guillaumet, J.-L., Garcia, A. R. M., Lima, A. P., and Magnusson, W. E.:
Vertical distance from drainage drives floristic composition changes in an
Amazonian rainforest, Plant Ecol. Divers., 7, 1–13,
https://doi.org/10.1080/17550874.2013.783642, 2013.
Schinker, M. G., Hansen, N., and Spiecker, H.: High-frequency densitometry –
a new method for the rapid evaluation of wood density variations, IAWA J.,
24, 231–239, 2003.
Shugart, H. H. and West, D. C.: Forest Succession Models, Bioscience, 30,
308, 1980.
Sileshi, G. W.: A critical review of forest biomass estimation models,
common mistakes and corrective measures, Forest Ecol. Manag., 329, 237–254,
2014.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A.:
Bayesian measures of model complexity and fit, J. R. Stat. Soc. B, 64,
583–639, 2002.
Sprugel, D. G.: Correcting for bias in log-transformed allometric equations,
Ecology, 64, 209–210, 1983.
Sterck, F. J. and Bongers, F.: Ontogenetic Changes in Size, Allometry, and
Mechanical Design of Tropical Rain Forest Trees, Am. J. Bot., 85, 266–272,
1998.
Stevens, P. F.: Angiosperm Phylogeny Website, version 12, available at:
http://www.mobot.org/MOBOT/research/APweb/ (last access: 10 September 2015), 2012.
Sturtz, S., Ligges, U., and Gelman, A.: R2WinBUGS: A Package for Running
WinBUGS from R, J. Stat. Softw., 12, 1–16, 2005.
Suwa, R., Kajimoto, T., Ishizuka, M., Pinto, A. C. M., Trindade, A. S.,
Silva, R. O., and Higuchi, N.: Comparative study of forest structure between
plateau and valley bottom in a central Amazonian forest, Kanto ShinrinKenkyu,
63, 85–88, 2012.
Swaine, M. D. and Whitmore, T. C.: On the definition of ecological species
groups in tropical rain forests, Vegetatio, 75, 81–86, 1988.
Telles, E. C., Camargo, P. B., Martinelli, L. A., Trumbore, S. E., Costa, E.
S., Santos, J., Higuchi, N., and Oliveira Jr., C.: Influence of soil texture
on carbon dynamics and storage potential in tropical forest soils of
Amazonia, Global Biogeochem. Cy., 17, 1–12, 2003.
Todeschini, R., Consonni, V., Mauri, A., and Pavan, M.: Detecting “bad”
regression models: Multicriteria fitness functions in regression analysis,
Anal. Chim. Acta, 515, 199–208, 2004.
Toledo, J. de, Magnusson, W., Castilho, C., and Nascimento, H.: Tree mode of
death in Central Amazonia: Effects of soil and topography on tree mortality
associated with storm disturbances, Forest Ecol. Manag., 263, 253–261, 2012.
Trumbore, S., Brando, P., and Hartmann, H.: Forest health and global change,
Science, 349, 814–818, https://doi.org/10.1126/science.aac6759, 2015.
Vieira, S., de Camargo, P. B., Selhorst, D., da Silva, R., Hutyra, L.,
Chambers, J. Q., Brown, I. F., Higuchi, N., Santos, J. dos, Wofsy, S. C.,
Trumbore, S. E., and Martinelli, L. A.: Forest structure and carbon dynamics
in Amazonian tropical rain forests, Oecologia, 140, 468–479, 2004.
Wickham, H.: ggplot2: elegant graphics for data analysis, Springer New York,
2009.
Williamson, B. G. and Wiemann, M. C.: Measuring wood specifc
gravity...correctly, Am. J. Bot., 97, 519–524, 2010.
Wirth, C., Schumacher, J., and Schulze, E.: Generic biomass functions for
Norway spruce in Central Europe – a meta-analysis approach toward prediction
and uncertainty estimation, Tree Physiol., 24, 121–139, 2004.
Worbes, M., Staschel, R., Roloff, A., and Junk, W. J.: Tree ring analysis
reveals age structure, dynamics and wood production of a natural forest stand
in Cameroon, Forest Ecol. Manag., 173, 105–123, 2003.
Wutzler, T., Wirth, C., and Schumacher, J.: Generic biomass functions for
common beech (Fagus sylvatica L.) in Central Europe - predictions and
components of uncertainty, Can. J. For. Res., 38, 1661–1675, 2008.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(3761 KB) - Full-text XML
- Corrigendum
-
Supplement
(6619 KB) - BibTeX
- EndNote
Short summary
Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests requires the inclusion of predictors that express inherent variations in species architecture. The model of interest should comprise the floristic composition and size-distribution variability of the target forest, implying that even generic global or pantropical biomass estimation models can lead to strong biases.
Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex...
Altmetrics
Final-revised paper
Preprint