Articles | Volume 13, issue 11
Biogeosciences, 13, 3283–3303, 2016
https://doi.org/10.5194/bg-13-3283-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: Biogeochemical and biological response to a diazotroph bloom...
Research article 03 Jun 2016
Research article | 03 Jun 2016
Evolution of dissolved and particulate chromophoric materials during the VAHINE mesocosm experiment in the New Caledonian coral lagoon (south-west Pacific)
Marc Tedetti et al.
Related authors
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-38, https://doi.org/10.5194/bg-2021-38, 2021
Preprint under review for BG
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions.
Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Cécile Dupouy, Robert Frouin, Marc Tedetti, Morgane Maillard, Martine Rodier, Fabien Lombard, Lionel Guidi, Marc Picheral, Jacques Neveux, Solange Duhamel, Bruno Charrière, and Richard Sempéré
Biogeosciences, 15, 5249–5269, https://doi.org/10.5194/bg-15-5249-2018, https://doi.org/10.5194/bg-15-5249-2018, 2018
Short summary
Short summary
The marine diazotrophic Cyanobacterium Trichodesmium from the Underwater Vision Profiler 5 is concentrated in the first 50 m in the western tropical Pacific Ocean (18–22° S, 160° E–160° W). Its contribution to Tchl a and zeaxanthin is 60 % in the Melanesian archipelago and 30 % in the Fijian archipelago. Its impact on UV–VIS radiance is a peculiar signal in the green and yellow and possibly associated with backscattering or phycoerythrin fluorescence from Trichodesmium.
Pascal Conan, Mireille Pujo-Pay, Marina Agab, Laura Calva-Benítez, Sandrine Chifflet, Pascal Douillet, Claire Dussud, Renaud Fichez, Christian Grenz, Francisco Gutierrez Mendieta, Montserrat Origel-Moreno, Arturo Rodríguez-Blanco, Caroline Sauret, Tatiana Severin, Marc Tedetti, Rocío Torres Alvarado, and Jean-François Ghiglione
Biogeosciences, 14, 959–975, https://doi.org/10.5194/bg-14-959-2017, https://doi.org/10.5194/bg-14-959-2017, 2017
Short summary
Short summary
Coastal lagoons are extremely rich, diverse, and dynamic but very fragile ecosystems subject to anthropogenic pressures. A joint France–Mexico biogeochemical study was conducted in the Términos Lagoon under severe drought related to an El Niño Modoki episode. In short, the water column of the Términos Lagoon functioned as a nitrogen sink, but variation in mineral stoichiometry across the lagoon mainly accounted for the heterogeneity in microbial distribution and activity.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-38, https://doi.org/10.5194/bg-2021-38, 2021
Preprint under review for BG
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions.
Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
France Van Wambeke, Vincent Taillandier, Karine Deboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-411, https://doi.org/10.5194/bg-2020-411, 2020
Preprint under review for BG
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition, and biogeochemical stocks and fluxes in the sunlight waters of the open Mediterranean Sea revealed complex physical and biological processes. Dry N deposition contributed moderately to the N biological demand in the mixed layer (11 % for primary producers, 27 % for heterotrophic bacteria). The transitory effect observed after a wet dust deposition impacted the microbial food web down to the DCM.
Stéphanie H. M. Jacquet, Christian Tamburini, Marc Garel, Aurélie Dufour, France Van-Vambeke, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-271, https://doi.org/10.5194/bg-2020-271, 2020
Revised manuscript has not been submitted
Frédéric Gazeau, Céline Ridame, France Van Wambeke, Samir Alliouane, Christian Stolpe, Jean-Olivier Irisson, Sophie Marro, Jean-Michel Grisoni, Guillaume De Liège, Sandra Nunige, Kahina Djaoudi, Elvira Pulido-Villena, Julie Dinasquet, Ingrid Obernosterer, Philippe Catala, and Cécile Guieu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-202, https://doi.org/10.5194/bg-2020-202, 2020
Revised manuscript under review for BG
France Van Wambeke, Elvira Pulido, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-253, https://doi.org/10.5194/bg-2020-253, 2020
Revised manuscript accepted for BG
Short summary
Short summary
The Michaelis-Menten kinetics of low and high affinity systems were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although ectoenzymatic hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences of activities among the 3 tested enzymes, in regard to the choice of added concentrations of fluorogenic substrates.
Emilio Marañón, France Van Wambeke, Julia Uitz, Emmanuel S. Boss, María Pérez-Lorenzo, Julie Dinasquet, Nils Haëntjens, Céline Dimier, and Vincent Taillandier
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-261, https://doi.org/10.5194/bg-2020-261, 2020
Revised manuscript accepted for BG
Short summary
Short summary
The concentration of chlorophyll is commonly used as an indicator of the abundance of photosynthetic plankton (phytoplankton) in lakes and oceans. Our study investigates why a deep chlorophyll maximum, located near the bottom of the upper, illuminated layer, develops in the Mediterranean Sea. We find that the acclimation of cells to low light is the main mechanism involved, and that this deep maximum represents also a maximum in the biomass and carbon fixation activity of phytoplankton.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Jonathan T. Trueblood, Matteo Rinaldi, Leah R. Williams, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van-Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilka Timmonen, and Cécile Guieu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-406, https://doi.org/10.5194/acp-2020-406, 2020
Preprint under review for ACP
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSA) continuously generated along a five-weeks cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans, from commonly measured seawater variables.
Sinikka T. Lennartz, Marc von Hobe, Dennis Booge, Henry C. Bittig, Tim Fischer, Rafael Gonçalves-Araujo, Kerstin B. Ksionzek, Boris P. Koch, Astrid Bracher, Rüdiger Röttgers, Birgit Quack, and Christa A. Marandino
Ocean Sci., 15, 1071–1090, https://doi.org/10.5194/os-15-1071-2019, https://doi.org/10.5194/os-15-1071-2019, 2019
Short summary
Short summary
The ocean emits the gases carbonyl sulfide (OCS) and carbon disulfide (CS2), which affect our climate. The goal of this study was to quantify the rates at which both gases are produced in the eastern tropical South Pacific (ETSP), one of the most productive oceanic regions worldwide. Both gases are produced by reactions triggered by sunlight, but we found that the amount produced depends on different factors. Our results improve numerical models to predict oceanic concentrations of both gases.
Christos Panagiotopoulos, Mireille Pujo-Pay, Mar Benavides, France Van Wambeke, and Richard Sempéré
Biogeosciences, 16, 105–116, https://doi.org/10.5194/bg-16-105-2019, https://doi.org/10.5194/bg-16-105-2019, 2019
Cécile Dupouy, Robert Frouin, Marc Tedetti, Morgane Maillard, Martine Rodier, Fabien Lombard, Lionel Guidi, Marc Picheral, Jacques Neveux, Solange Duhamel, Bruno Charrière, and Richard Sempéré
Biogeosciences, 15, 5249–5269, https://doi.org/10.5194/bg-15-5249-2018, https://doi.org/10.5194/bg-15-5249-2018, 2018
Short summary
Short summary
The marine diazotrophic Cyanobacterium Trichodesmium from the Underwater Vision Profiler 5 is concentrated in the first 50 m in the western tropical Pacific Ocean (18–22° S, 160° E–160° W). Its contribution to Tchl a and zeaxanthin is 60 % in the Melanesian archipelago and 30 % in the Fijian archipelago. Its impact on UV–VIS radiance is a peculiar signal in the green and yellow and possibly associated with backscattering or phycoerythrin fluorescence from Trichodesmium.
Guillaume Rousset, Florian De Boissieu, Christophe E. Menkes, Jérôme Lefèvre, Robert Frouin, Martine Rodier, Vincent Ridoux, Sophie Laran, Sophie Bonnet, and Cécile Dupouy
Biogeosciences, 15, 5203–5219, https://doi.org/10.5194/bg-15-5203-2018, https://doi.org/10.5194/bg-15-5203-2018, 2018
Cyril Dutheil, Olivier Aumont, Thomas Gorguès, Anne Lorrain, Sophie Bonnet, Martine Rodier, Cécile Dupouy, Takuhei Shiozaki, and Christophe Menkes
Biogeosciences, 15, 4333–4352, https://doi.org/10.5194/bg-15-4333-2018, https://doi.org/10.5194/bg-15-4333-2018, 2018
Short summary
Short summary
N2 fixation is recognized as one of the major sources of nitrogen in the ocean. Thus, N2 fixation sustains a significant part of the primary production (PP) by supplying the most common limiting nutrient for phytoplankton growth. From numerical simulations, the local maximums of Trichodesmium biomass in the Pacific are found around islands, explained by the iron fluxes from island sediments. We assessed that 15 % of the PP may be due to Trichodesmium in the low-nutrient, low-chlorophyll areas.
Nicholas Bock, France Van Wambeke, Moïra Dion, and Solange Duhamel
Biogeosciences, 15, 3909–3925, https://doi.org/10.5194/bg-15-3909-2018, https://doi.org/10.5194/bg-15-3909-2018, 2018
Short summary
Short summary
We report the distribution of major nano- and pico-plankton groups in the western tropical South Pacific. We found microbial community structure to be typical of highly stratified regions of the open ocean, with significant contributions to total biomass by picophytoeukaryotes, and N2 fixation playing a central role in regulating ecosystem processes. Our results also suggest a reduction in the importance of predation in regulating bacteria populations under nutrient-limited conditions.
France Van Wambeke, Audrey Gimenez, Solange Duhamel, Cécile Dupouy, Dominique Lefevre, Mireille Pujo-Pay, and Thierry Moutin
Biogeosciences, 15, 2669–2689, https://doi.org/10.5194/bg-15-2669-2018, https://doi.org/10.5194/bg-15-2669-2018, 2018
Short summary
Short summary
The western tropical South Pacific Ocean has recently been shown to be a hotspot for biological nitrogen fixation. In this study, we examined the horizontal and vertical distribution of heterotrophic prokaryotic production alongside photosynthetic rates, nitrogen fixation rates and phosphate turnover times across the western tropical South Pacific Ocean, in order to relate these fluxes to bottom–up controls (related to nitrogen, phosphate and labile C availability).
Raphaëlle Sauzède, Elodie Martinez, Orens Pasqueron de Fommervault, Antoine Poteau, Alexandre Mignot, Christophe Maes, Hervé Claustre, Julia Uitz, Keitapu Maamaatuaiahutapu, Martine Rodier, Catherine Schmechtig, and Victoire Laurent
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-541, https://doi.org/10.5194/bg-2017-541, 2018
Revised manuscript not accepted
Pascal Conan, Mireille Pujo-Pay, Marina Agab, Laura Calva-Benítez, Sandrine Chifflet, Pascal Douillet, Claire Dussud, Renaud Fichez, Christian Grenz, Francisco Gutierrez Mendieta, Montserrat Origel-Moreno, Arturo Rodríguez-Blanco, Caroline Sauret, Tatiana Severin, Marc Tedetti, Rocío Torres Alvarado, and Jean-François Ghiglione
Biogeosciences, 14, 959–975, https://doi.org/10.5194/bg-14-959-2017, https://doi.org/10.5194/bg-14-959-2017, 2017
Short summary
Short summary
Coastal lagoons are extremely rich, diverse, and dynamic but very fragile ecosystems subject to anthropogenic pressures. A joint France–Mexico biogeochemical study was conducted in the Términos Lagoon under severe drought related to an El Niño Modoki episode. In short, the water column of the Términos Lagoon functioned as a nitrogen sink, but variation in mineral stoichiometry across the lagoon mainly accounted for the heterogeneity in microbial distribution and activity.
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Pau Cortes, Birgit Quack, Rafel Simo, Dennis Booge, Andrea Pozzer, Tobias Steinhoff, Damian L. Arevalo-Martinez, Corinna Kloss, Astrid Bracher, Rüdiger Röttgers, Elliot Atlas, and Kirstin Krüger
Atmos. Chem. Phys., 17, 385–402, https://doi.org/10.5194/acp-17-385-2017, https://doi.org/10.5194/acp-17-385-2017, 2017
Short summary
Short summary
We present new sea surface and marine boundary layer measurements of carbonyl sulfide, the most abundant sulfur gas in the atmosphere, and calculate an oceanic emission estimate. Our results imply that oceanic emissions are very unlikely to account for the missing source in the atmospheric budget that is currently discussed for OCS.
Karine Leblanc, Véronique Cornet, Mathieu Caffin, Martine Rodier, Anne Desnues, Hugo Berthelot, Kendra Turk-Kubo, and Jules Heliou
Biogeosciences, 13, 5205–5219, https://doi.org/10.5194/bg-13-5205-2016, https://doi.org/10.5194/bg-13-5205-2016, 2016
Hugo Berthelot, Sophie Bonnet, Olivier Grosso, Véronique Cornet, and Aude Barani
Biogeosciences, 13, 4005–4021, https://doi.org/10.5194/bg-13-4005-2016, https://doi.org/10.5194/bg-13-4005-2016, 2016
Ilana Berman-Frank, Dina Spungin, Eyal Rahav, France Van Wambeke, Kendra Turk-Kubo, and Thierry Moutin
Biogeosciences, 13, 3793–3805, https://doi.org/10.5194/bg-13-3793-2016, https://doi.org/10.5194/bg-13-3793-2016, 2016
Short summary
Short summary
In the marine environment, sticky sugar-containing gels, termed transparent exopolymeric particles (TEP), are produced from biological sources and physical and chemical processes. These compounds are essential vectors enhancing downward flow of organic matter and its storage at depth. Spatial and temporal dynamics of TEPs were followed for 23 days during the VAHINE mesocosm experiment that investigated the fate of nitrogen and carbon derived from organisms fixing atmospheric N2 (diazotrophs).
France Van Wambeke, Ulrike Pfreundt, Aude Barani, Hugo Berthelot, Thierry Moutin, Martine Rodier, Wolfgang R. Hess, and Sophie Bonnet
Biogeosciences, 13, 3187–3202, https://doi.org/10.5194/bg-13-3187-2016, https://doi.org/10.5194/bg-13-3187-2016, 2016
Short summary
Short summary
The phytoplankton is at the base of the plankton food web in large parts of oceanic "deserts" such as the South Pacific Ocean, where nitrogen sources limit activity. Mesocosms were fertilized with phosphorus to stimulate diazotrophy (atmospheric N2 fixation). Mostly diazotroph-derived nitrogen fuelled the heterotrophic bacterial community through indirect processes generating dissolved organic matter and detritus, such as mortality, lysis and grazing of both diazotrophs and non-diazotrophs.
Sophie Bonnet, Thierry Moutin, Martine Rodier, Jean-Michel Grisoni, Francis Louis, Eric Folcher, Bertrand Bourgeois, Jean-Michel Boré, and Armelle Renaud
Biogeosciences, 13, 2803–2814, https://doi.org/10.5194/bg-13-2803-2016, https://doi.org/10.5194/bg-13-2803-2016, 2016
Short summary
Short summary
e main goal of the VAHINE project was to study the fate of N2 fixation in the ocean. Three large-volume (~ 50 m3) mesocosms were deployed in a tropical oligotrophic ecosystem (the New Caledonia lagoon, south-eastern Pacific). This introductory paper describes the scientific objectives of the project in detail as well as the implementation plan: the mesocosm description and deployment, the selection of the study site, and the logistical and sampling strategy.
Ulrike Pfreundt, France Van Wambeke, Mathieu Caffin, Sophie Bonnet, and Wolfgang R. Hess
Biogeosciences, 13, 2319–2337, https://doi.org/10.5194/bg-13-2319-2016, https://doi.org/10.5194/bg-13-2319-2016, 2016
Short summary
Short summary
The Southwest Pacific has one of the highest N2 fixation rates in the global ocean, yet information is scarce on the bacterioplankton interrelationships. We detected high microbial diversity in the New Caledonia lagoon and inside a 50 000 L experimental enclosure of the same water mass over 3 weeks and give evidence for previously unknown niche partitioning. Phosphate fertilization promoted the growth of efficient N2 fixing cyanobacteria triggering the growth of most heterotrophic bacteria.
H. Berthelot, T. Moutin, S. L'Helguen, K. Leblanc, S. Hélias, O. Grosso, N. Leblond, B. Charrière, and S. Bonnet
Biogeosciences, 12, 4099–4112, https://doi.org/10.5194/bg-12-4099-2015, https://doi.org/10.5194/bg-12-4099-2015, 2015
Related subject area
Biogeochemistry: Organic Biogeochemistry
Novel hydrocarbon-utilizing soil mycobacteria synthesize unique mycocerosic acids at a Sicilian everlasting fire
Alkenone isotopes show evidence of active carbon concentrating mechanisms in coccolithophores as aqueous carbon dioxide concentrations fall below 7 µmol L−1
Seasonal variability and sources of in situ brGDGT production in a permanently stratified African crater lake
Characterising organic carbon sources in Anthropocene affected Arctic upland lake catchments, Disko Island, West Greenland
Sediment release of dissolved organic matter to the oxygen minimum zone off Peru
Better molecular preservation of organic matter in an oxic than in a sulfidic depositional environment: evidence from Thalassiphora pelagica (Dinoflagellata, Eocene) cysts
Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England)
The nonconservative distribution pattern of organic matter in the Rajang, a tropical river with peatland in its estuary
Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication
High-pH and anoxic conditions during soil organic matter extraction increases its electron-exchange capacity and ability to stimulate microbial Fe(III) reduction by electron shuttling
Sterol preservation in hypersaline microbial mats
Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs)
Distribution and degradation of terrestrial organic matter in the sediments of peat-draining rivers, Sarawak, Malaysian Borneo
Validation of carbon isotope fractionation in algal lipids as a pCO2 proxy using a natural CO2 seep (Shikine Island, Japan)
Composition and cycling of dissolved organic matter from tropical peatlands of coastal Sarawak, Borneo, revealed by fluorescence spectroscopy and parallel factor analysis
Latitudinal variations in δ30Si and δ15N signatures along the Peruvian shelf: quantifying the effects of nutrient utilization versus denitrification over the past 600 years
Diapycnal dissolved organic matter supply into the upper Peruvian oxycline
Composition and vertical flux of particulate organic matter to the oxygen minimum zone of the central Baltic Sea: impact of a sporadic North Sea inflow
Main drivers of transparent exopolymer particle distribution across the surface Atlantic Ocean
Biochemical and structural controls on the decomposition dynamics of boreal upland forest moss tissues
Spatiotemporal transformation of dissolved organic matter along an alpine stream flow path on the Qinghai–Tibet Plateau: importance of source and permafrost degradation
A quest for the biological sources of long chain alkyl diols in the western tropical North Atlantic Ocean
Long-chain diols in rivers: distribution and potential biological sources
Leaf wax n-alkanes in modern plants and topsoils from eastern Georgia (Caucasus) – implications for reconstructing regional paleovegetation
The role of diatom resting spores in pelagic–benthic coupling in the Southern Ocean
Calcium content and high calcium adaptation of plants in karst areas of southwestern Hunan, China
Substrate potential of last interglacial to Holocene permafrost organic matter for future microbial greenhouse gas production
Variation pattern of particulate organic carbon and nitrogen in oceans and inland waters
C5 glycolipids of heterocystous cyanobacteria track symbiont abundance in the diatom Hemiaulus hauckii across the tropical North Atlantic
Molecular fingerprinting of particulate organic matter as a new tool for its source apportionment: changes along a headwater drainage in coarse, medium and fine particles as a function of rainfalls
Variations and determinants of carbon content in plants: a global synthesis
The Holocene sedimentary record of cyanobacterial glycolipids in the Baltic Sea: an evaluation of their application as tracers of past nitrogen fixation
Technical note: An inverse method to relate organic carbon reactivity to isotope composition from serial oxidation
A mechanistic model of an upper bound on oceanic carbon export as a function of mixed layer depth and temperature
New molecular evidence for surface and sub-surface soil erosion controls on the composition of stream DOM during storm events
Source, composition, and environmental implication of neutral carbohydrates in sediment cores of subtropical reservoirs, South China
Isoprenoid emission response to changing light conditions of English oak, European beech and Norway spruce
Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments
Particle export fluxes to the oxygen minimum zone of the eastern tropical North Atlantic
Spatial variability of organic matter molecular composition and elemental geochemistry in surface sediments of a small boreal Swedish lake
Role of zooplankton in determining the efficiency of the biological carbon pump
Contrasting composition of terrigenous organic matter in the dissolved, particulate and sedimentary organic carbon pools on the outer East Siberian Arctic Shelf
BVOC emissions from English oak (Quercus robur) and European beech (Fagus sylvatica) along a latitudinal gradient
Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior
Source, transport and fate of soil organic matter inferred from microbial biomarker lipids on the East Siberian Arctic Shelf
Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition
Chemodiversity of dissolved organic matter in the Amazon Basin
Identification and analysis of low-molecular-weight dissolved organic carbon in subglacial basal ice ecosystems by ion chromatography
Evidence for methane production by the marine algae Emiliania huxleyi
Molecular characterization of dissolved organic matter from subtropical wetlands: a comparative study through the analysis of optical properties, NMR and FTICR/MS
Nadine T. Smit, Laura Villanueva, Darci Rush, Fausto Grassa, Caitlyn R. Witkowski, Mira Holzheimer, Adriaan J. Minnaard, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 18, 1463–1479, https://doi.org/10.5194/bg-18-1463-2021, https://doi.org/10.5194/bg-18-1463-2021, 2021
Short summary
Short summary
Soils from an everlasting fire (gas seep) in Sicily, Italy, reveal high relative abundances of novel uncultivated mycobacteria and unique 13C-depleted mycocerosic acids (multi-methyl branched fatty acids) close to the main gas seep. Our results imply that mycocerosic acids in combination with their depleted δ13C values offer a new biomarker tool to study the role of soil mycobacteria as hydrocarbon consumers in the modern and past global carbon cycle.
Marcus P. S. Badger
Biogeosciences, 18, 1149–1160, https://doi.org/10.5194/bg-18-1149-2021, https://doi.org/10.5194/bg-18-1149-2021, 2021
Short summary
Short summary
Reconstructing ancient atmospheric CO2 is an important aim of palaeoclimate science in order to understand the Earth's climate system. One method, the alkenone proxy based on molecular fossils of coccolithophores, has been recently shown to be ineffective at low-to-moderate CO2 levels. In this paper I show that this is likely due to changes in the biogeochemistry of the coccolithophores when there is low carbon availability, but for much of the Cenozoic the alkenone proxy should have utility.
Loes G. J. van Bree, Francien Peterse, Allix J. Baxter, Wannes De Crop, Sigrid van Grinsven, Laura Villanueva, Dirk Verschuren, and Jaap S. Sinninghe Damsté
Biogeosciences, 17, 5443–5463, https://doi.org/10.5194/bg-17-5443-2020, https://doi.org/10.5194/bg-17-5443-2020, 2020
Short summary
Short summary
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on their temperature dependence in global soils, but aquatic production complicates their use in lakes. BrGDGTs in the water column of Lake Chala, East Africa, respond to oxygen conditions and mixing. Changes in their signal can be linked to bacterial community composition rather than membrane adaptation to changing conditions. Their integrated signal in the sediment reflects mean air temperature.
Mark A. Stevenson, Suzanne McGowan, Emma J. Pearson, George E. A. Swann, Melanie J. Leng, Vivienne J. Jones, Joseph J. Bailey, Xianyu Huang, and Erika Whiteford
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-347, https://doi.org/10.5194/bg-2020-347, 2020
Revised manuscript accepted for BG
Short summary
Short summary
We link detailed stable isotope and biomarker analyses from the catchments of three Arctic upland lakes on Disko Island (West Greenland) to a recent dated sediment core to understand how carbon cycling has changed over the past ~500 years. We find that the carbon deposited in sediments in these upland lakes are predominately sourced from in-lake production due to the catchments limited terrestrial vegetation and elevation and that recent increases in algal production link with climate change.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Gerard J. M. Versteegh, Alexander J. P. Houben, and Karin A. F. Zonneveld
Biogeosciences, 17, 3545–3561, https://doi.org/10.5194/bg-17-3545-2020, https://doi.org/10.5194/bg-17-3545-2020, 2020
Short summary
Short summary
Anoxic sediments mostly contain much more organic matter than oxic ones, and therefore organic matter in anoxic settings is often considered to be preserved better than in oxic settings. However, through the analysis of the same fossil dinoflagellate cyst species from both oxic and anoxic settings, we show that at a molecular level the preservation in the oxic sediments may be better since in the anoxic setting the cyst macromolecule has been altered by postdepositional modification.
Jingjing Guo, Miriam Glendell, Jeroen Meersmans, Frédérique Kirkels, Jack J. Middelburg, and Francien Peterse
Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020, https://doi.org/10.5194/bg-17-3183-2020, 2020
Short summary
Short summary
The fluxes of soil organic carbon (OC) transport from land to sea are poorly constrained, mostly due to the lack of a specific tracer for soil OC. Here we evaluate the use of specific molecules derived from soil bacteria as a tracer for soil OC in a small river catchment. We find that the initial soil signal is lost upon entering the aquatic environment. However, the local environmental history of the catchment is reflected by these molecules in the lake sediments that act as their sink.
Zhuo-Yi Zhu, Joanne Oakes, Bradley Eyre, Youyou Hao, Edwin Sien Aun Sia, Shan Jiang, Moritz Müller, and Jing Zhang
Biogeosciences, 17, 2473–2485, https://doi.org/10.5194/bg-17-2473-2020, https://doi.org/10.5194/bg-17-2473-2020, 2020
Short summary
Short summary
Samples were collected in August 2016 in the Rajang River and its estuary, with tropical forest in the river basin and peatland in the estuary. Organic matter composition was influenced by transportation in the river basin, whereas peatland added clear biodegraded parts to the fluvial organic matter, which implies modification of the initial lability and/or starting points in the subsequent degradation and alternation processes after the organic matter enters the sea.
Wenjie Xiao, Yasong Wang, Yongsheng Liu, Xi Zhang, Linlin Shi, and Yunping Xu
Biogeosciences, 17, 2135–2148, https://doi.org/10.5194/bg-17-2135-2020, https://doi.org/10.5194/bg-17-2135-2020, 2020
Short summary
Short summary
The hadal zone (6–11 km depth) is the least explored habitat on Earth. We studied microbial branched glycerol dialkyl glycerol tetraethers (brGDGTs) in the Challenger Deep, Mariana Trench. One unique feature is the strong predominance of 6-methyl brGDGT, which likely reflects an adaption of brGDGT-producing bacteria to alkaline seawater and low temperature. BrGDGTs, with elemental and isotopic data, suggest an autochthonous product for brGDGT. A new approach is proposed for brGDGT sourcing.
Yuge Bai, Edisson Subdiaga, Stefan B. Haderlein, Heike Knicker, and Andreas Kappler
Biogeosciences, 17, 683–698, https://doi.org/10.5194/bg-17-683-2020, https://doi.org/10.5194/bg-17-683-2020, 2020
Short summary
Short summary
Biogeochemical processes of SOM are key for greenhouse gas emission and water quality. We extracted SOM by water or by NaOH–HCl under oxic–anoxic conditions. Chemical and anoxic extractions lead to higher SOM electron exchange capacities, resulting in stimulation of microbial Fe(III) reduction. Therefore, aqueous pH-neutral SOM extracts should be used to reflect environmental SOM redox processes, and artifacts of chemical extractions need to be considered when evaluating SOM redox processes.
Yan Shen, Volker Thiel, Pablo Suarez-Gonzalez, Sebastiaan W. Rampen, and Joachim Reitner
Biogeosciences, 17, 649–666, https://doi.org/10.5194/bg-17-649-2020, https://doi.org/10.5194/bg-17-649-2020, 2020
Short summary
Short summary
Today, sterols are widespread in plants, animals, and fungi but are almost absent in the oldest rocks. Microbial mats, representing the earliest complex ecosystems on Earth, were omnipresent in Precambrian marine environments and may have degraded the sterols at that time. Here we analyze the distribution of sterols through a microbial mat. This provides insight into how variations in biological and nonbiological factors affect the preservation of sterols in modern and ancient microbial mats.
Sarah Coffinet, Travis B. Meador, Lukas Mühlena, Kevin W. Becker, Jan Schröder, Qing-Zeng Zhu, Julius S. Lipp, Verena B. Heuer, Matthew P. Crump, and Kai-Uwe Hinrichs
Biogeosciences, 17, 317–330, https://doi.org/10.5194/bg-17-317-2020, https://doi.org/10.5194/bg-17-317-2020, 2020
Short summary
Short summary
This study deals with two membrane lipids called BDGTs and PDGTs. Membrane lipids are molecules forming the cell envelope of all organisms. Different organisms produce different lipids thus they can be used to detect the presence of specific organisms in the environment. We analyzed the structure of these new lipids and looked for potential producers. We found that they are likely made by microbes emitting methane below the sediment surface and could be used to track these specific microbes.
Ying Wu, Kun Zhu, Jing Zhang, Moritz Müller, Shan Jiang, Aazani Mujahid, Mohd Fakharuddin Muhamad, and Edwin Sien Aun Sia
Biogeosciences, 16, 4517–4533, https://doi.org/10.5194/bg-16-4517-2019, https://doi.org/10.5194/bg-16-4517-2019, 2019
Short summary
Short summary
Our understanding of terrestrial organic matter (TOM) in tropical peat-draining rivers remains limited, especially in Southeast Asia. We explored the characteristics of TOM via bulk parameters and lignin phenols of sediment in Malaysia. This showed that the most important plant source of the organic matter in these rivers is woody angiosperm C3 plants with limited diagenetic alteration. This slower degradation of TOM may be a link to higher total nitrogen content, especially for the small river.
Caitlyn R. Witkowski, Sylvain Agostini, Ben P. Harvey, Marcel T. J. van der Meer, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 4451–4461, https://doi.org/10.5194/bg-16-4451-2019, https://doi.org/10.5194/bg-16-4451-2019, 2019
Short summary
Short summary
Carbon dioxide concentrations (pCO2) in the atmosphere play an integral role in Earth system dynamics, especially climate. Past climates help us understand future ones, but reconstructing pCO2 over the geologic record remains a challenge. This research demonstrates new approaches for exploring past pCO2 via the carbon isotope fractionation in general algal lipids, which we test over a high CO2 gradient from a naturally occurring CO2 seep.
Yongli Zhou, Patrick Martin, and Moritz Müller
Biogeosciences, 16, 2733–2749, https://doi.org/10.5194/bg-16-2733-2019, https://doi.org/10.5194/bg-16-2733-2019, 2019
Short summary
Short summary
We found that peatlands in coastal Sarawak, Borneo, export extremely humified organic matter, which dominates the riverine organic matter pool and conservatively mixes with seawater, while the freshly produced fraction is low and stable in concentration at all salinities. We estimated that terrigenous fractions, which showed high photolability, still account for 20 % of the coastal dissolved organic carbon pool, implying the importance of peat-derived organic matter in the coastal carbon cycle.
Kristin Doering, Claudia Ehlert, Philippe Martinez, Martin Frank, and Ralph Schneider
Biogeosciences, 16, 2163–2180, https://doi.org/10.5194/bg-16-2163-2019, https://doi.org/10.5194/bg-16-2163-2019, 2019
Alexandra N. Loginova, Sören Thomsen, Marcus Dengler, Jan Lüdke, and Anja Engel
Biogeosciences, 16, 2033–2047, https://doi.org/10.5194/bg-16-2033-2019, https://doi.org/10.5194/bg-16-2033-2019, 2019
Short summary
Short summary
High primary production in the Peruvian upwelling system is followed by rapid heterotrophic utilization of organic matter and supports the formation of one of the most intense oxygen minimum zones (OMZs) in the world. Here, we estimated vertical fluxes of oxygen and dissolved organic matter (DOM) from the surface to the OMZ. Our results suggest that DOM remineralization substantially reduces oxygen concentration in the upper water column and controls the shape of the upper oxycline.
Carolina Cisternas-Novoa, Frédéric A. C. Le Moigne, and Anja Engel
Biogeosciences, 16, 927–947, https://doi.org/10.5194/bg-16-927-2019, https://doi.org/10.5194/bg-16-927-2019, 2019
Short summary
Short summary
We investigate the composition and vertical fluxes of POM in two deep basins of the Baltic Sea (GB: Gotland Basin and LD: Landsort Deep). The two basins showed different O2 regimes resulting from the intrusion of oxygen-rich water from the North Sea that ventilated the deep waters in GB, but not in LD.
In GB, O2 intrusions lead to a high abundance of manganese oxides that aggregate with POM, altering its composition and vertical flux and contributing to a higher POC transfer efficiency in GB.
Marina Zamanillo, Eva Ortega-Retuerta, Sdena Nunes, Pablo Rodríguez-Ros, Manuel Dall'Osto, Marta Estrada, Maria Montserrat Sala, and Rafel Simó
Biogeosciences, 16, 733–749, https://doi.org/10.5194/bg-16-733-2019, https://doi.org/10.5194/bg-16-733-2019, 2019
Short summary
Short summary
Many marine microorganisms produce polysaccharide-rich transparent exopolymer particles (TEPs) for rather unknown reasons but with important consequences for the ocean carbon cycle, sea–air gas exchange and formation of organic aerosols. Here we compare surface–ocean distributions of TEPs and physical, chemical and biological variables along a N–S transect in the Atlantic Ocean. Our data suggest that phytoplankton and not bacteria are the main TEP producers, and solar radiation acts as a sink.
Michael Philben, Sara Butler, Sharon A. Billings, Ronald Benner, Kate A. Edwards, and Susan E. Ziegler
Biogeosciences, 15, 6731–6746, https://doi.org/10.5194/bg-15-6731-2018, https://doi.org/10.5194/bg-15-6731-2018, 2018
Short summary
Short summary
We explored the relationship between chemical composition and the temperature sensitivity of moss decomposition using 959-day lab incubations. Mass loss was low despite the predominance of carbohydrates, indicating the persistence of labile C. Scanning electron microscopy revealed little change in the moss cell-wall structure. These results suggest that the moss cell-wall matrix protects labile C from decomposition, contributing to the globally important stocks of moss-derived C.
Yinghui Wang, Robert G. M. Spencer, David C. Podgorski, Anne M. Kellerman, Harunur Rashid, Phoebe Zito, Wenjie Xiao, Dandan Wei, Yuanhe Yang, and Yunping Xu
Biogeosciences, 15, 6637–6648, https://doi.org/10.5194/bg-15-6637-2018, https://doi.org/10.5194/bg-15-6637-2018, 2018
Short summary
Short summary
With global warming, thawing of permafrost releases dissolved organic matter (DOM) into streams. By analyzing DOM along an alpine stream on the Qinghai–Tibet Plateau, we found DOM was mainly from the active layer, but with deepening of the active layer, the contribution of the deep permafrost layer increased, causing a change in the chemical composition of DOM. From the head- to downstream, DOM is undergoing rapid degradation, but some components are persistent and can be transported downstream.
Sergio Balzano, Julie Lattaud, Laura Villanueva, Sebastiaan W. Rampen, Corina P. D. Brussaard, Judith van Bleijswijk, Nicole Bale, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 5951–5968, https://doi.org/10.5194/bg-15-5951-2018, https://doi.org/10.5194/bg-15-5951-2018, 2018
Short summary
Short summary
We tried to identify the microbes which biosynthesize a class of lipids widespread in seawater, the long chain alkyl diols (LCDs). We could not find any microorganism likely involved in the production of LCDs. The amounts of LCDs found are too high to be produced by living organisms and are likely to be part of the refractory organic matter persisting for long periods in the water column.
Julie Lattaud, Frédérique Kirkels, Francien Peterse, Chantal V. Freymond, Timothy I. Eglinton, Jens Hefter, Gesine Mollenhauer, Sergio Balzano, Laura Villanueva, Marcel T. J. van der Meer, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 4147–4161, https://doi.org/10.5194/bg-15-4147-2018, https://doi.org/10.5194/bg-15-4147-2018, 2018
Short summary
Short summary
Long-chain diols (LCDs) are biomarkers that occur widespread in marine environments and also in lakes and rivers. In this study, we looked at the distribution of LCDs in three river systems (Godavari, Danube, and Rhine) in relation to season, precipitation, and temperature. We found out that the LCDs are likely being produced in calm areas of the river systems and that marine LCDs have a different distribution than riverine LCDs.
Marcel Bliedtner, Imke K. Schäfer, Roland Zech, and Hans von Suchodoletz
Biogeosciences, 15, 3927–3936, https://doi.org/10.5194/bg-15-3927-2018, https://doi.org/10.5194/bg-15-3927-2018, 2018
Short summary
Short summary
In this study, we systematically analyze leaf wax derived n-alkane patterns in eastern Georgia to test their potential for paleoenvironmental reconstructions in the semi-humid to semi-arid central southern Caucasus region. We investigated the influence of vegetation types on the leaf wax signal in modern plants and topsoil material. Our results show distinct and systematic differences in the n-alkane patterns between vegetation types and prove their potential for vegetation reconstructions.
Mathieu Rembauville, Stéphane Blain, Clara Manno, Geraint Tarling, Anu Thompson, George Wolff, and Ian Salter
Biogeosciences, 15, 3071–3084, https://doi.org/10.5194/bg-15-3071-2018, https://doi.org/10.5194/bg-15-3071-2018, 2018
Short summary
Short summary
Sinking phytoplankton from the surface ocean provide the principal energy source to deep-ocean ecosystems. Our aim was to understand how different phytoplankton communities impact the chemical nature of this sinking material. We show certain types of phytoplankton can preferentially export energy-rich storage compounds to the seafloor. Any climate-driven effects on phytoplankton community structure could thus impact remote deep-ocean ecosystems thousands of kilometres beneath the surface.
Xiaocong Wei, Xiangwen Deng, Wenhua Xiang, Pifeng Lei, Shuai Ouyang, Hongfang Wen, and Liang Chen
Biogeosciences, 15, 2991–3002, https://doi.org/10.5194/bg-15-2991-2018, https://doi.org/10.5194/bg-15-2991-2018, 2018
Short summary
Short summary
Karst is a kind of typical calcium-rich environment, which is widely distributed. We measured the Ca2+ content of 41 plant species, as well as soil total Ca2+ and exchange Ca2+. We found out that different plants have different ways to high Ca2+ adaptation. According to the different high Ca2+ adaptation of the 17 dominant species, we divided them into 3 categories: Ca-indifferent plants, high-Ca plants and low-Ca plants. Our results can provide a theoretical basis for vegetation restoration.
Janina G. Stapel, Georg Schwamborn, Lutz Schirrmeister, Brian Horsfield, and Kai Mangelsdorf
Biogeosciences, 15, 1969–1985, https://doi.org/10.5194/bg-15-1969-2018, https://doi.org/10.5194/bg-15-1969-2018, 2018
Short summary
Short summary
Climate warming in the Arctic results in thawing of permafrost deposits. This promotes the accessibility of freeze-locked old organic matter (OM) accumulated during the past. Characterizing OM of different depositional ages, we were able to show that OM from last glacial Yedoma deposits possess the highest potential to provide organic substrates such as acetate for microbial greenhouse gas production and therefore to accelerate the carbon–climate feedback cycle during ongoing global warming.
Changchun Huang, Quanliang Jiang, Ling Yao, Hao Yang, Chen Lin, Tao Huang, A-Xing Zhu, and Yimin Zhang
Biogeosciences, 15, 1827–1841, https://doi.org/10.5194/bg-15-1827-2018, https://doi.org/10.5194/bg-15-1827-2018, 2018
Short summary
Short summary
The latitudinal dependency of POC / PON in ocean and inland water is significant, regulated by trophic state and climate, etc. factors. POC / PON significantly increased from coastal water (6.89 ± 2.38) to open ocean (7.59 ± 4.22) with the increasing rate of 0.0024 / km. The re-examination of the global relationship between, and variations in, POC and PON could be important for the global and regional coupling between the carbon and nitrogen cycles in the ocean and freshwater.
Nicole J. Bale, Tracy A. Villareal, Ellen C. Hopmans, Corina P. D. Brussaard, Marc Besseling, Denise Dorhout, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 1229–1241, https://doi.org/10.5194/bg-15-1229-2018, https://doi.org/10.5194/bg-15-1229-2018, 2018
Short summary
Short summary
Associations between diatoms and N-fixing cyanobacteria (diatom–diazotroph associations, DDAs) play an important role in the N cycle of the tropical North Atlantic. Heterocysts are the site of N fixation and contain unique glycolipids. We measured these glycolipids in the water column and surface sediment from the tropical North Atlantic. We found a significant correlation between the concentration of glycolipid and of DDAs, strengthening their application as biomarkers.
Laurent Jeanneau, Richard Rowland, and Shreeram Inamdar
Biogeosciences, 15, 973–985, https://doi.org/10.5194/bg-15-973-2018, https://doi.org/10.5194/bg-15-973-2018, 2018
Short summary
Short summary
The source of particulate organic matter in headwaters during storm events remains an open question. We use the molecular composition of organic matter sampled during four spring–summer storms and compare it to potential sources. We identify litter, streambed and vicinal soils as the main sources of particulate organic matter. Their proportions depend on (i) the size of the catchment and (ii) the rain event.
Suhui Ma, Feng He, Di Tian, Dongting Zou, Zhengbing Yan, Yulong Yang, Tiancheng Zhou, Kaiyue Huang, Haihua Shen, and Jingyun Fang
Biogeosciences, 15, 693–702, https://doi.org/10.5194/bg-15-693-2018, https://doi.org/10.5194/bg-15-693-2018, 2018
Short summary
Short summary
Plant carbon (C) content is critical to the assessment of the global C cycle. Our results showed that the global average C contents in organs were significantly lower than a canonical value of 50 %. Plant C content tended to decrease with increasing latitude, and life form explained more variation than climate. Our findings suggest that specific C content values of different organs and life forms should be incorporated into the estimations of regional and global vegetation biomass C stocks.
Martina Sollai, Ellen C. Hopmans, Nicole J. Bale, Anchelique Mets, Lisa Warden, Matthias Moros, and Jaap S. Sinninghe Damsté
Biogeosciences, 14, 5789–5804, https://doi.org/10.5194/bg-14-5789-2017, https://doi.org/10.5194/bg-14-5789-2017, 2017
Short summary
Short summary
The Baltic Sea is characterized by recurring summer phytoplankton blooms, dominated by a few cyanobacterial species. These bacteria are able to use dinitrogen gas as the source for nitrogen and produce very specific lipids. We analyzed these lipids in a sediment core to study their presence over the past 7000 years. This reveals that cyanobacterial blooms have not only occurred in the last decades but were common at times when the Baltic was connected to the North Sea.
Jordon D. Hemingway, Daniel H. Rothman, Sarah Z. Rosengard, and Valier V. Galy
Biogeosciences, 14, 5099–5114, https://doi.org/10.5194/bg-14-5099-2017, https://doi.org/10.5194/bg-14-5099-2017, 2017
Short summary
Short summary
The balance between organic matter (OM) fixation and decay is a major control on atmospheric CO2 concentrations. Understanding the environmental, chemical, and physical mechanisms that control the distribution of OM decay rates is therefore critical for constraining the global carbon cycle. In this manuscript, we derive a method to relate OM reactivity to its isotope composition using a kinetic model and provide a novel framework to discern the controls on OM decay rates.
Zuchuan Li and Nicolas Cassar
Biogeosciences, 14, 5015–5027, https://doi.org/10.5194/bg-14-5015-2017, https://doi.org/10.5194/bg-14-5015-2017, 2017
Marie Denis, Laurent Jeanneau, Patrice Petitjean, Anaëlle Murzeau, Marine Liotaud, Louison Yonnet, and Gérard Gruau
Biogeosciences, 14, 5039–5051, https://doi.org/10.5194/bg-14-5039-2017, https://doi.org/10.5194/bg-14-5039-2017, 2017
Short summary
Short summary
The results of this study highlight the changes of DOM composition in soil solutions and surface runoff, probably controlled by water-table dynamics and pre-event hydrological conditions. These changes should be taken into account for a better understanding of micropollutant mobility. Moreover, this work has implications for modeling DOM export in headwater catchments, as many studies assume that DOM transfer during storm events consists of the flushing of pre-existing soil solution DOM.
Dandan Duan, Dainan Zhang, Yu Yang, Jingfu Wang, Jing'an Chen, and Yong Ran
Biogeosciences, 14, 4009–4022, https://doi.org/10.5194/bg-14-4009-2017, https://doi.org/10.5194/bg-14-4009-2017, 2017
Short summary
Short summary
Neutral carbohydrates, carbon isotopic composition, and algal productivity proxies in three reservoir sediment cores, South China, were investigated. Monosaccharide compositions and diagnostic parameters indicate a predominant contribution of phytoplankton in the sediment cores. Algal monosaccharide content is highly related to the algal productivity and increasing mean air temperature, but not to nutrient input, demonstrating the effect of climate warming in low-latitude regions.
Ylva van Meeningen, Guy Schurgers, Riikka Rinnan, and Thomas Holst
Biogeosciences, 14, 4045–4060, https://doi.org/10.5194/bg-14-4045-2017, https://doi.org/10.5194/bg-14-4045-2017, 2017
Short summary
Short summary
Leaf scale measurements have been performed on English oak, European beech and Norway spruce at a field site in Denmark to study the release of volatile compounds in response to a change in light. Whilst some compounds, like isoprene and sabinene, increased with increasing light, other compounds, like camphene, showed no light response for most of the trees. This can help to increase our knowledge of how species and compounds respond to light and to possibly improve how they can be modeled.
Shuwen Sun, Enno Schefuß, Stefan Mulitza, Cristiano M. Chiessi, André O. Sawakuchi, Matthias Zabel, Paul A. Baker, Jens Hefter, and Gesine Mollenhauer
Biogeosciences, 14, 2495–2512, https://doi.org/10.5194/bg-14-2495-2017, https://doi.org/10.5194/bg-14-2495-2017, 2017
Anja Engel, Hannes Wagner, Frédéric A. C. Le Moigne, and Samuel T. Wilson
Biogeosciences, 14, 1825–1838, https://doi.org/10.5194/bg-14-1825-2017, https://doi.org/10.5194/bg-14-1825-2017, 2017
Short summary
Short summary
To better understand the role of oxygen for the biological carbon pump, we studied particle fluxes through hypoxic waters in the eastern tropical North Atlantic. Attenuation of organic carbon fluxes over depth was lower than expected from seawater temperatures, indicating co-effects of oxygen concentration. Differences were observed for individual organic components, suggesting that future carbon export fluxes may depend on changes in surface ocean organic matter quality under global change.
Julie Tolu, Johan Rydberg, Carsten Meyer-Jacob, Lorenz Gerber, and Richard Bindler
Biogeosciences, 14, 1773–1792, https://doi.org/10.5194/bg-14-1773-2017, https://doi.org/10.5194/bg-14-1773-2017, 2017
Short summary
Short summary
In this study, we demonstrated that the composition of sediment organic matter can vary significantly within a single lake, in a close relationship with the spatial patterns of elemental inorganic geochemistry. This results from a combination of different bio-, geo- and physicochemical lake factors, and our results highlight that the potential for large spatial variability across lakes should be considered when studying carbon, nutrient and trace element cycling at lake and global scales.
Emma L. Cavan, Stephanie A. Henson, Anna Belcher, and Richard Sanders
Biogeosciences, 14, 177–186, https://doi.org/10.5194/bg-14-177-2017, https://doi.org/10.5194/bg-14-177-2017, 2017
Short summary
Short summary
The biological carbon pump (BCP) plays a key role in regulating atmospheric CO2. Controls on the efficiency at which this occurs are poorly known. Here we combine in situ observations with an ecosystem model to show that zooplankton have an important role in regulating the efficiency of the BCP. Predicted future changes in ocean conditions, such as expansion of oxygen minimum zones, may decrease the role of zooplankton in the BCP globally, increasing its efficiency and altering atmospheric CO2.
Joan A. Salvadó, Tommaso Tesi, Marcus Sundbom, Emma Karlsson, Martin Kruså, Igor P. Semiletov, Elena Panova, and Örjan Gustafsson
Biogeosciences, 13, 6121–6138, https://doi.org/10.5194/bg-13-6121-2016, https://doi.org/10.5194/bg-13-6121-2016, 2016
Short summary
Short summary
Fluvial discharge and coastal erosion of the permafrost-dominated East Siberian Arctic delivers large quantities of terrigenous organic carbon (Terr-OC) to marine waters. We assessed its fate and composition in different marine pools with a suite of biomarkers. The dissolved organic carbon is transporting off-shelf “young” and fresh vascular plant material, while sedimentary and near-bottom particulate organic carbon preferentially carries old organic carbon released from thawing permafrost.
Ylva van Meeningen, Guy Schurgers, Riikka Rinnan, and Thomas Holst
Biogeosciences, 13, 6067–6080, https://doi.org/10.5194/bg-13-6067-2016, https://doi.org/10.5194/bg-13-6067-2016, 2016
Short summary
Short summary
English oak and European beech are common European trees known to release volatile compounds such as isoprene and monoterpenes. By doing leaf chamber measurements at three sites in Europe, the aim was to study how the emission differed for cloned trees growing at different sites. The measured emission rates from clones varied between sites, but the relative compound contribution was stable both within and between sites. This can help to increase our knowledge of emission pattern variability.
Lisa Bröder, Tommaso Tesi, Joan A. Salvadó, Igor P. Semiletov, Oleg V. Dudarev, and Örjan Gustafsson
Biogeosciences, 13, 5003–5019, https://doi.org/10.5194/bg-13-5003-2016, https://doi.org/10.5194/bg-13-5003-2016, 2016
Short summary
Short summary
Thawing permafrost may release large amounts of terrestrial organic carbon (TerrOC) to the Arctic Ocean. We assessed its fate in the marine environment with a suite of biomarkers. Across the Laptev Sea their concentrations in surface sediments decreased significantly and showed a trend to qualitatively more degraded TerrOC with increasing water depth. We infer that the degree of degradation of TerrOC is a function of the time spent under oxic conditions during protracted cross-shelf transport.
Juliane Bischoff, Robert B. Sparkes, Ayça Doğrul Selver, Robert G. M. Spencer, Örjan Gustafsson, Igor P. Semiletov, Oleg V. Dudarev, Dirk Wagner, Elizaveta Rivkina, Bart E. van Dongen, and Helen M. Talbot
Biogeosciences, 13, 4899–4914, https://doi.org/10.5194/bg-13-4899-2016, https://doi.org/10.5194/bg-13-4899-2016, 2016
Short summary
Short summary
The Arctic contains a large pool of carbon that is vulnerable to warming and can be released by rivers and coastal erosion. We study microbial lipids (BHPs) in permafrost and shelf sediments to trace the source, transport and fate of this carbon. BHPs in permafrost deposits are released to the shelf by rivers and coastal erosion, in contrast to other microbial lipids (GDGTs) that are transported by rivers. Several further analyses are needed to understand the complex East Siberian Shelf system.
Lisa Thieme, Daniel Graeber, Martin Kaupenjohann, and Jan Siemens
Biogeosciences, 13, 4697–4705, https://doi.org/10.5194/bg-13-4697-2016, https://doi.org/10.5194/bg-13-4697-2016, 2016
Short summary
Short summary
Freezing can affect dissolved organic matter properties and concentrations. Nevertheless, water samples are regularly frozen for sample preservation. To test, if fast-freezing with liquid nitrogen instead of normal freezing at −18 °C can prevent changes in DOM characteristics, we compared fresh and differently frozen terrestrial water samples. We found that fast-freezing with liquid nitrogen can prevent bulk organic matter concentrations but not its spectroscopic properties.
Michael Gonsior, Juliana Valle, Philippe Schmitt-Kopplin, Norbert Hertkorn, David Bastviken, Jenna Luek, Mourad Harir, Wanderley Bastos, and Alex Enrich-Prast
Biogeosciences, 13, 4279–4290, https://doi.org/10.5194/bg-13-4279-2016, https://doi.org/10.5194/bg-13-4279-2016, 2016
Short summary
Short summary
We present in this study a highly diverse and complex chemodiversity of dissolved organic matter (DOM) in the Amazon Basin analyzed by modern ultrahigh-resolution mass spectrometry and optical property analyses. DOM within the Rio Madeira (white water), Rio Negro (black water) and Rio Tapajós (clear water) area showed a large overlap of thousands of molecular formulae, but also unique signatures were apparent for each region, with significant correlations to colored DOM.
Emily C. O'Donnell, Jemma L. Wadham, Grzegorz P. Lis, Martyn Tranter, Amy E. Pickard, Marek Stibal, Paul Dewsbury, and Sean Fitzsimons
Biogeosciences, 13, 3833–3846, https://doi.org/10.5194/bg-13-3833-2016, https://doi.org/10.5194/bg-13-3833-2016, 2016
Short summary
Short summary
We use a novel ion chromatographic analysis that provides the first identification and quantification of major low-molecular-weight dissolved organic carbon (LMW-DOC) compounds in basal ice. LMW-DOC concentrations were dependent on the bioavailability of the overridden organic carbon, which in turn was influenced by the type of overridden material. The overridden material may thus act as a direct (abiotic leaching) and indirect (microbial cycling) source of DOC to the subglacial environment.
Katharina Lenhart, Thomas Klintzsch, Gerald Langer, Gernot Nehrke, Michael Bunge, Sylvia Schnell, and Frank Keppler
Biogeosciences, 13, 3163–3174, https://doi.org/10.5194/bg-13-3163-2016, https://doi.org/10.5194/bg-13-3163-2016, 2016
Short summary
Short summary
In this study we investigated marine algae as a source of CH4 in oxic surface waters of oceans. Algae-derived CH4 may explain the CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox".
This finding of an overlooked source of CH4 in marine environments will be of considerable importance to scientists in many disciplines because algae play a crucial role in organic matter cycling in marine and freshwater ecosystems.
Norbert Hertkorn, Mourad Harir, Kaelin M. Cawley, Philippe Schmitt-Kopplin, and Rudolf Jaffé
Biogeosciences, 13, 2257–2277, https://doi.org/10.5194/bg-13-2257-2016, https://doi.org/10.5194/bg-13-2257-2016, 2016
Short summary
Short summary
Wetlands commonly feature high levels of natural dissolved organic matter (DOM), a critical component in their biogeochemical functions. Here we describe the first detailed, comparative, molecular characterization of DOM in three sub-tropical, pulsed, wetlands, using optical properties, high field nuclear magnetic resonance and ultrahigh resolution mass spectrometry, and compare compositional features to variations in organic matter sources and flooding characteristics.
Cited articles
Agawin, N. S. R., Rabouille, S., Veldhuis, M. J. W., Servatius, L., Hol, S., van Overzee, H. M. J., and Huisman, J.: Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species, Limnol. Oceanogr., 52, 2233–2248, 2007.
Aminot, A. and Kérouel, R.: Dosage automatique des nutriments dans les eaux marines: méthodes en flux continu, Ed. Ifremer, Méthodes d'analyse en milieu marin, 188 pp., 2007.
Andrew, A. A., Del Vecchio, R., Subramaniam, A., and Blough, N. V.: Chromophoric dissolved organic matter (CDOM) in the Equatorial Atlantic Ocean: Optical properties and their relation to CDOM structure and source, Mar. Chem., 148, 33–43, 2013.
Antoine, D., Babin, M., Berthon, J. F., Bricaud, A., Gentili, B., Loisel, H., Maritorena, S., and Stramski, D.: Shedding Light on the Sea: André Morel's Legacy to Optical Oceanography, Ann. Rev. Mar. Sci., 6, 15.1–15.21, 2014.
Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A., Obolensky, G., and Hoepffner, N.: Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe, J. Geophys. Res., 108, 3211, https://doi.org/10.1029/2001JC000882, 2003.
Balcarczyk, K. L., Jones Jr., J. B., Jaffe, R., and Maie, N.: Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost, Biogeochemistry, 94, 255–270, 2009.
Becker, J. W., Berube, P. M. Follett, C. L., Waterbury, J. B., Chisholm, S. W., Delong, E. F., and Repeta, D. J.: Closely related phytoplankton species produce similar suites of dissolved organic matter, Front. Microbiol., 5, 111, https://doi.org/10.3389/fmicb.2014.00111, 2014.
Berthelot, H., Moutin, T., L'Helguen, S., Leblanc, K., Hélias, S., Grosso, O., Leblond, N., Charrière, B., and Bonnet, S.: Dinitrogen fixation and dissolved organic nitrogen fueled primary production and particulate export during the VAHINE mesocosm experiment (New Caledonia lagoon), Biogeosciences, 12, 4099–4112, https://doi.org/10.5194/bg-12-4099-2015, 2015.
Bidigare, R., Schofield, O., and Prezelin, B.: Influence of zeaxanthin on quantum yield of photosynthesis of Synechococcus clone WH 7803 (CD2), Mar. Ecol.-Prog. Ser., 56, 177–188, 1989.
Biegala, I. C. and Raimbault, P.: High abundance of diazotrophic picocyanobacteria (< 3 µm) in a Southwest Pacific coral lagoon, Aquat. Microb. Ecol., 51, 45–53, 2008.
Biers, E. J., Zepp, R. G., and Moran, M. A.: The role of nitrogen in chromophoric and fluorescent dissolved organic matter formation, Mar. Chem., 103, 46–60, 2007.
Blough, N. V. and Del Vecchio, R.: Chromophoric DOM in the coastal environment, in: Biogeochemistry of Marine Dissolved Organic Matter, edited by: Hansel, D. A. and Carlson, C. A., Academic Press, San Diego, California, 509–546, 2002.
Bonnet, S., Moutin, T., Rodier, M., Grisoni, J.-M., Louis, F., Folcher, E., Bourgeois, B., Boré, J.-M., and Renaud, A.: Introduction to the project VAHINE: VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific, Biogeosciences, 13, 2803–2814, https://doi.org/10.5194/bg-13-2803-2016, 2016.
Bracchini, L., Tognazzi, A., Dattilo, A. M., Decembrini, F., Rossi, C., and Loiselle, S. A.: Sensitivity analysis of CDOM spectral slope in artificial and natural samples: an application in the central eastern Mediterranean Basin, Aquat. Sci., 72, 485–498, 2010.
Bricaud, A., Claustre, H., Ras, J., and Oubelkheir, K.: Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations, J. Geophys. Res., 109, C11010, https://doi.org/10.1029/2004JC002419, 2004.
Bricaud, A., Babin, M., Claustre, H., Ras, J., and Tièche, F.: Light absorption properties and absorption budget of Southeast Pacific waters, J. Geophys. Res., 115, C08009, https://doi.org/10.1029/2009JC005517, 2010.
Bronk, D. A.: Rates of NH4+ uptake, intracellular transformation, and dissolved organic nitrogen release in two clones of marine Synechococcus spp., J. Plankton Res., 21, 1337–1353, 1999.
Carreto, J. J.: A new keto-carotenoid from the dino-flagellate Protopendinium depressurn (Bayley) Balech, 1974, J. Plankton Res., 7, 421–423, 1985.
Chari, N. V. H. K., Keerthi, S., Sarma, N. S., Rao Pandi, S., Chiranjeevulu, G., Kiran, R., and Koduru, U.: Fluorescence and absorption characteristics of dissolved organic matter excreted by phytoplankton species of western Bay of Bengal under axenic laboratory condition, J. Exp. Mar. Biol. Ecol., 445, 148–155, 2013.
Coble, P. G.: Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy, Mar. Chem., 51, 325–346, 1996.
Coble, P. G.: Marine optical biogeochemistry – the chemistry of ocean color, Chem. Rev., 107, 402–418, 2007.
Davis, J. and Benner, R: Quantitative estimates of labile and semi-labile dissolved organic carbon in the western Arctic Ocean: A molecular approach, Limnol. Oceanogr., 52, 2434–2444, 2007.
Del Vecchio, R. and Blough, N. V.: Photobleaching of chromophoric dissolved organic matter in natural waters: Kinetics and modelling, Mar. Chem. 78, 231–253, 2002.
Dupouy, C., Petit, M., and Dandonneau, Y.: Satellite detected cyanobacteria bloom in the southwestern tropical Pacific. Implication for nitrogen fixation, Int. J. Remote Sens., 8, 389–396, 1988.
Dupouy, C., Neveux, J., and André, J. M.: Spectral absorption coefficient of photosynthetically active pigments in the equatorial Pacific (165° E–150° W), Deep-Sea Res. Pt. II, 44, 1881–1906, 1997.
Dupouy, C., Loisel, H., Neveux, J., Brown, S. L., Moulin, C., Blanchot, J., Le Bouteiller, A., and Landry, M. R.: Microbial absorption and backscattering coefficients from in situ and POLDER satellite data during an El Nino–Southern Oscillation cold phase in the equatorial Pacific (180°), J. Geophys. Res., 108, 8138, https://doi.org/10.1029/2001JC001298, 2003.
Dupouy, C., Neveux, J., Dirberg, G., Röttgers, R., Tenório, M. M. B., and Ouillon, S.: Bio-optical properties of the marine cyanobacteria Trichodesmium spp, J. Appl. Remote Sens., 2, 1–17, 2008.
Dupouy, C., Frouin, R., Röttgers, R., Neveux, J., Gallois, F., Panché, J. Y., Gérard, P., Fontana, C., Pinazo, C., Ouillon, S., and Minghelli-Roman, A.: Ocean color response to an episode of heavy rainfall in the lagoon of New Caledonia, Proc. SPIE, 7459, Ocean Remote Sensing: Methods and Applications, 7459, 74590G, https://doi.org/10.1117/12.829251, 2009.
Dupouy, C., Röttgers, R., Tedetti, M., Martias, C., Murakami, H., Doxaran, D., Lantoine, F., Rodier, M., Favareto, L., Kampel, M., Goutx, M., and Frouin, R.: Influence of CDOM and Particle Composition on Ocean Color of the Eastern New Caledonia Lagoon during the CALIOPE Cruises, Proc. of SPIE, 9261, Ocean Remote Sensing and Monitoring from Space, 92610M, 2014.
Fellman, J. B., Hood, E., and Spencer, R. G. M.: Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review, Limnol. Oceanogr., 55, 2452–2462, 2010.
Foster, R. A., Subramaniam, A., and Zehr, J. P.: Distribution and activity of diazotrophs in the Eastern Equatorial Atlantic, Environ. Microbiol., 11, 741–750, 2009.
Fuchs, R., Dupouy, C., Douillet, P., Caillaud, M., Mangin, A., and Pinazo, C.: Modelling the impact of a La Niña event on a South West Pacific Lagoon, Mar. Pollut. Bull., 64, 1596–15613, 2012.
Grenz, C., Le Borgne, R., Fichez, R., and Torréton, J. P.: Tropical lagoon multidisciplinary investigations: An overview of the PNEC New Caledonia pilot site, Mar. Pollut. Bull., 61, 267–268, 2010.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K.: Absorption spectral slopes and slope ratios as indicators of molecular weight, source and photobleaching of chromophoric dissolved organic matter, Limnol. Oceanogr., 53, 955–969, 2008.
Hernes, P. J. and Benner, R.: Terrigenous organic matter sources and reactivity in the North Atlantic Ocean and a comparison to the Arctic and Pacific oceans, Mar. Chem., 100, 66–79, 2006.
Ishii, S. K. L. and Boyer, T. H.: Behavior of Reoccurring PARAFAC Components in Fluorescent Dissolved Organic Matter in Natural and Engineered Systems: A Critical Review, Environ. Sci. Technol., 46, 2006–2017, 2012.
Kirchman, D. L., K'nees, E., and Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural waters, Appl. Environ. Microb., 49, 599–607, 1985.
Kowalczuk, P., Durako, M. J., Young, H., Kahn, A. E., Cooper, W. J., and Gonsior, M.: Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFACmodel: interannual variability, Mar. Chem., 113, 182–196, 2009.
Kowalczuk, P., Tilstone, G. H., Zabłocka, M., Röttgers, R., and Thomas, R.: Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and Parallel Factor Analysis, Mar. Chem., 157, 170–184, 2013.
Lantoine, F. and Neveux, J.: Spatial and seasonal variations in abundance and spectral characteristics of phycoerythrins in the tropical northeastern Atlantic Ocean, Deep-Sea Res. Pt. I, 44, 223–246, 1997.
Le Bouteiller, A., Blanchot, J., and Rodier, M.: Size distribution patterns of phytoplankton in the western Pacific: towards a generalization for the tropical open ocean, Deep-Sea Res., 39, 805–823, 1992.
Lefort, T. and Gasol, J. M.: Short-time scale coupling of picoplankton community structure and single-cell heterotrophic activity in winter in coastal NW Mediterranean Sea waters, J. Plankton Res., 36, 243–258, 2014.
Lohrenz, S. E., Weidemann, A. D., and Tuel, M.: Phytoplankton spectral absorption as influenced by community size structure and pigment composition, J. Plankton Res., 25, 35–61, 2003.
Lønborg, C., Yokokawa, T., Herndl, G. J., and Álvarez-Salgado, X. A.: Production and degradation of fluorescent dissolved organic matter in surface waters of the eastern north Atlantic ocean, Deep-Sea Res. Pt. I, 96, 28–37, 2015.
Lutz, V. A., Sathyendranath, S., and Head, E. J. H.: Absorption coefficient of phytoplankton: Regional variations in the North Atlantic, Mar. Ecol.-Prog. Ser., 135, 197–213, 1996.
Lutz, V. A., Sathyendranath, S., Head, E., and Li, W. K. W: Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton, J. Plankton Res., 23, 555–569, 2001.
Marie, D., Partensky, F., Vaulot, D., and Brussaard, C. P. D.: Enumeration of phytoplankton, bacteria, and viruses in marine samples, in: , Current Protocols in Cytometry, edited by: Robinson, J. P., Darzynkiewicz, Z., Dean, P. N., Orfao, A., Rabinovitch, P. S., Stewart, C. C., Tanke, H. J., and Wheeless, L. L., John Wiley & Sons Inc., New York, 11.11.1–11.11.15, 1999.
Masotti, I., Ruiz Pino, D., and Le Bouteiller, A.: Photosynthetic characteristics of Trichodesmium in the southwest Pacific Ocean: importance and significance, Mar. Ecol.-Prog. Ser., 338, 47–59, 2007.
Matsuoka, A., Babin, M., Doxaran, D., Hooker, S. B., Mitchell, B. G., Bélanger, S., and Bricaud, A.: A synthesis of light absorption properties of the Arctic Ocean: application to semianalytical estimates of dissolved organic carbon concentrations from space, Biogeosciences, 11, 3131–3147, https://doi.org/10.5194/bg-11-3131-2014, 2014.
Morel, A.: Consequences of a Synechococcus bloom upon the optical properties of oceanic (case 1) waters, Limnol. Oceanogr., 42, 1746–1754, 1997.
Morel, A. and Prieur, L.: Analysis of variations in ocean color, Limnol. Oceanogr., 22, 709–722, 1977.
Morel, A., Ahn, Y. H., Partensky, F., Vaulot, D., and Claustre, H.: Prochlorococcus and Synechococcus – A comparative study of their optical properties in relation to their size and pigmentation, J. Mar. Res., 51, 617–649, 1993.
Morel, A., Claustre, H., and Gentili, B.: The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance, Biogeosciences, 7, 3139–3151, https://doi.org/10.5194/bg-7-3139-2010, 2010.
Murphy, K. R., Stedmon, C. A., Waite, T. D., and Ruiz, G. M.: Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy, Mar. Chem., 108, 40–58, 2008.
Nagata, T.: Production mechanims of dissolved organic matter, in: Microbial Ecology of the Oceans, edited by: Kirchman, D. L., Wiley-Liss, New York, 121–152, 2000.
Nelson, N. B. and Siegel, D. A.: The Global Distribution and Dynamics of Chromophoric Dissolved Organic Matter, Annu. Rev. Mar. Sci., 5, 447–476, 2013.
Nelson, N. B., Siegel, D. A., and Michaels, A. F.: Seasonal dynamics of colored dissolved material in the Sargasso Sea, Deep-Sea Res. Pt. I, 45, 931–957, 1998.
Nelson, N. B., Siegel, D. A., Carlson, C. A., and Swan, C. M.: Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter, Geophys. Res. Lett. 37, L03610, https://doi.org/10.1029/2009GL042325, 2010.
Neveux, J., Lantoine, F., Vaulot, D., Marie, D., and Blanchot, J.: Phycoerythrins in the southern tropical and equatorial Pacific Ocean: evidence for new cyanobacterial types, J. Geophys. Res., 104, 3311–3321, 1999.
Neveux, J., Tenório, M. M. B., Jacquet, S., Torréton, J.-P., Douillet, P., Ouillon, S., and Dupouy, C.: Chlorophylls and Phycoerythrins as Markers of Environmental Forcings Including Cyclone Erica Effect (March 2003) on Phytoplankton in the Southwest Lagoon of New Caledonia and Oceanic Adjacent Area, Intern. J. Oceanogr., 2009, 232513, https://doi.org/10.1155/2009/232513, 2009.
Nieto-Cid, M., Álvarez-Salgado, X. A., and Pérez, F. F.: Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system, Limnol. Oceanogr., 51, 1391–1400, 2006.
Organelli, E., Bricaud, A., Antoine, D., and Matsuoka, A.: Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site), Deep-Sea Res. Pt. I, 91, 72–85, 2014.
Ortega-Retuerta, E., Frazer, T. K., Duarte, C. M., Ruiz-Halpern, S., Tovar-Sanchez, A., Arrieta, J. M., and Reche, I.: Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the Southern Ocean, Limnol. Oceanogr., 54, 1941–1950, 2009.
Ouillon, S., Douillet, P., Lefebvre, J. P., Le Gendre, R., Jouon, A., Bonneton, P., Fernandez, J. M., Chevillon, C., Magand, O., Lefèvre, J., Le Hir, P., Laganier, R., Dumas, F., Marchesiello, P., Bel Madani, A., Andréfouët, S., Panché, J. Y., and Fichez, R.: Circulation and suspended sediment transport in a coral reef lagoon: The south-west lagoon of New Caledonia, Mar. Pollut. Bull., 61, 269–296, 2010.
Para, J., Coble, P. G., Charrière, B., Tedetti, M., Fontana, C., and Sempéré, R.: Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River, Biogeosciences, 7, 4083–4103, https://doi.org/10.5194/bg-7-4083-2010, 2010.
Pavlov, A. K., Silyakova, A., Granskog, M. A., Bellerby, R. G. J., Engel, A., Schulz, K. G., and Brussaard C. P. D.: Marine CDOM accumulation during a coastal Arctic mesocosm experiment: No response to elevated pCO2 levels, J. Geophys. Res.-Biogeo., 119, 1216–1230, https://doi.org/10.1002/2013JG002587, 2014.
Pujo-Pay, M. and Raimbault, P.: Improvement of the Wet-Oxidation Procedure for Simultaneous Determination of Particulate Organic Nitrogen and Phosphorus Collected on Filters, Mar. Ecol.-Prog. Ser., 105, 203–207, 1994.
Rochelle-Newall, E. J. and Fisher, T. R.: Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton, Mar. Chem., 77, 7–21, 2002.
Rochelle-Newall, E. J., Fisher, T. R., Fan, C., and Glibert, P. M.: Dynamics of chromophoric dissolved organic matter and dissolved organic carbon in experimental mesocosms, Int. J. Remote Sens., 20, 627–641, 1999.
Rochelle-Newall, E., Delille, B., Frankignoulle, M., Gattuso, J. P., Jacquet, S., Riebesell, U., Terbrüggen A., and Zondervan, I.: Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels, Mar. Ecol.-Prog. Ser., 272, 25–31, 2004.
Rodier, M. and Le Borgne, R.: Population and trophic dynamics of Trichodesmium thiebautii in the SE lagoon of New Caledonia. Comparison with T. erythraeum in the SW lagoon, Mar. Pollut. Bull., 61, 349–359, 2010.
Romera-Castillo, C., Sarmento, H., Álvarez-Salgado, X. A., Gasol, J. M., and Marrasé, C.: Production of chromophoric dissolved organic matter by marine phytoplankton, Limnol. Oceanogr., 55, 446–454, 2010.
Romera-Castillo, C., Sarmento, H., Álvarez-Salgado, X. A., Gasol, J. M., and Marrasé, C.: Net Production and Consumption of Fluorescent Colored Dissolved Organic Matter by Natural Bacterial Assemblages Growing on Marine Phytoplankton Exudates, Appl. Environ. Microbiol., 77, 7490–7498, 2011.
Röttgers, R. and Doerffer, R.: Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter, Limnol. Oceanogr.-Meth., 5, 126–135, 2007.
Röttgers, R. and Koch, B. P.: Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean, Biogeosciences, 9, 2585–2596, https://doi.org/10.5194/bg-9-2585-2012, 2012.
Röttgers, R., Häse, C., and Doerffer, R.: Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching and correction for chlorophyll fluorescence, Limnol. Oceanogr.-Meth., 5, 1–12, 2007.
Röttgers, R., Dupouy, C., Taylor, B. B., Bracher, A., and Wozniak, S. B.: Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region, Limnol. Oceanogr., 59, 1449–1460, 2014.
Sempéré, R., Para, J., Tedetti, M., Charrière, B., and Mallet, M.: Variability of solar radiation and CDOM in surface coastal waters of the Northwestern Mediterranean Sea, Photochem. Photobiol., 91, 851–861, 2015.
Siegel, D. A., Maritorena, S., Nelson, N. B., Hansell, D. A., and Lorenzi-Kayser, M.: Global distribution and dynamics of colored dissolved and detrital organic materials, J. Geophys. Res., 107, 3228, https://doi.org/10.1029/2001JC000965, 2002.
Siegel, D. A., Maritorena, S., Nelson, N. B., and Behrenfeld, M. J.: Independence and interdependencies of global ocean color properties; Reassessing the bio-optical assumption, J. Geophys. Res., 110, C07011, https://doi.org/10.1029/2004JC002527, 2005.
Smith, D. C. and Azam, F.: A simple, economical method for measuring bacterial protein synthesis rates in sea water using 3H-Leucine, Mar. Microb. Food Webs, 6, 107–114, 1992.
Sohrin, R. and Sempéré, R.: Temporal variation in total organic carbon in the Northeast Atlantic in 2000–2001, J. Geophys. Res., 110, C10S90, https://doi.org/10.1029/2004JC002731, 2005.
Stedmon, C. A. and Bro, R.: Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial, Limnol. Oceanogr.-Meth., 6, 572–579, 2008.
Stedmon, C. A. and Cory, R. M.: Biological Origins and Fate of Fluorescent Dissolved Organic Matter in Aquatic Environments, in: Aquatic Organic Matter Fluorescence, edited by: Coble, P. G., Lead, J., Baker, A., Reynolds, D. M., and Spencer, R. G. M., Cambridge University Press, New York, 278–299, 2014.
Stedmon, C. A., Markager, S., and Bro, R.: Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Mar. Chem., 82, 239–254, 2003.
Steinberg, D. K., Nelson, N., Carlson, C. A., and Prusak, A. C.: Production of chromophoric dissolved organic matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacterium Trichodesmium spp., Mar. Ecol.-Prog. Ser., 267, 45–56, 2004.
Stramski, D. and Mobley, C. D.: Effects of microbial particles on oceanic optics: A database of single-particle optical properties, Limnol. Oceanogr., 42, 538–549, 1997.
Stuart, V., Sathyendranath, S., Platt, T., Maass, H., and Irwin, B. D.: Pigment and species composition of natural phytoplankton populations: Effect on the absorption spectra, J. Plankton Res., 20, 187–217, 1998.
Subramaniam, A., Carpenter, E. J., Karentz, D., and Falkowski, P. G.: Bio-optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. I. Absorption and photosynthetic action spectra, Limnol. Oceanogr., 44, 608–617, 1999.
Swan, C. M., Siegel, D. A., Nelson, N. B., Carlson, C. A., and Nasir, E.: Biogeochemical and hydrographic controls on chromophoric dissolved organic matter distribution in the Pacific Ocean, Deep-Sea Res. Pt. I, 56, 2175–2192, 2009.
Swan, C. M., Siegel, D. A., Nelson, N. B., and Kostadinov, T. S.: The effect of surface irradiance on the absorption spectrum of chromophoric dissolved organic matter in the global ocean, Deep-Sea Res. Pt. I, 63, 52–64, 2012.
Tedetti, M., Sempéré, R., Vasilkov, A., Charrière, B., Nérini, D., Miller, W., Kawamura, K., and Raimbault, P.: High penetration of ultraviolet radiation in the south east Pacific waters, Geophys. Res. Lett., 34, L12610, https://doi.org/10.1029/2007GL029823, 2007.
Tedetti, M., Charrière, B., Bricaud, A., Para, J., Raimbault, P., and Sempéré, R.: Distribution of normalized waterleaving radiances at UV and visible wave bands in relation with chlorophyll a and colored detrital matter content in the southeast Pacific, J. Geophys. Res., 115, C02010, https://doi.org/10.1029/2009JC005289, 2010.
Tedetti, M., Longhitano, R., Garcia, N., Guigue, C., Ferretto, N., and Goutx, M.: Fluorescence properties of dissolved organic matter in coastal Mediterranean waters influenced by a municipal sewage effluent (Bay of Marseilles, France), Environ. Chem., 9, 438–449, 2012.
Tilstone, G. H., Peters, S. W. M., van derWoerd, H. J., Eleveld, M. A., Ruddick, K., Schönfeld, W., Krasemann, H., Martinez-Vicente, V., Blondeau-Patissier, D., Röttgers, R., Sørensen, K., Jørgenseng, P. V., and Shutler, J. D.: Variability in specific-absorption properties and their use in a semianalytical ocean colour algorithm for MERIS in north sea andwestern English channel coastal waters, Remote Sens. Environ., 118, 320–338, 2012.
Turk-Kubo, K. A., Frank, I. E., Hogan, M. E., Desnues, A., Bonnet, S., and Zehr, J. P.: Diazotroph community succession during the VAHINE mesocosm experiment (New Caledonia lagoon), Biogeosciences, 12, 7435–7452, https://doi.org/10.5194/bg-12-7435-2015, 2015.
Twardowski, M. S., Boss, E., Sullivan, J. M., and Donaghay, P. L.: Modeling the spectral shape of absorption by chromophoric dissolved organic matter, Mar. Chem., 89, 69–88, 2004.
Vernet, M. and Whitehead, K.: Release of ultraviolet-absorbing compounds by the red-tide dinoflagellate Lingulodinium polyedra, Mar. Biol., 127, 35–44, 1996.
Whitehead, K. and Vernet, M.: Influence of mycosporine-like amino acids (MAAs) on UV absorption by particulate and dissolved organic matter in La Jolla Bay, Limnol. Oceanogr., 45, 1788–1796, 2000.
Wozniak, B., Dera, J., Ficek, D., Machrowski, R., Kaczmarek, S., Ostrowska, M., and Koblentz-Mischke, O. I.: Modelling the influence of acclimation on the absorption properties of marine phytoplankton, Oceanologia, 41, 187–210, 1999.
Wyman, M.: An in vivo method for the estimation of phycoerythrin concentrations in marine cyanobacteria (Synechococcus spp.), Limnol. Oceanogr., 37, 1300–1306, 1992.
Xing, X., Claustre, H., Wang, H., Poteau, A., and D'Ortenzio, F.: Seasonal dynamics in colored dissolved organic matter in the Mediterranean Sea: patterns and drivers, Deep-Sea Res. Pt. I, 83, 93–101, 2014.
Yamashita, Y. and Tanoue, E.: In situ production of chromophoric dissolved organic matter in coastal environments, Geophys. Res. Lett., 31, 1–4, https://doi.org/10.1029/2004GL019734, 2004.
Yamashita, Y., Jaffe, R., Maie, N., and Tanoue, E.: Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC), Limnol. Oceanogr., 53, 1900–1908, 2008.
Yamashita, Y., Nosaka, Y., Suzuki, K., Ogawa, H., Takahashi, K., and Saito, H.: Photobleaching as a factor controlling spectral characteristics of chromophoric dissolved organic matter in open ocean, Biogeosciences, 10, 7207–7217, https://doi.org/10.5194/bg-10-7207-2013, 2013.
Short summary
In the framework of the VAHINE project, we investigated the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23-day mesocosm experiment conducted in the south-west Pacific at the mouth of the New Caledonian coral lagoon. We found that the dynamics of CDOM and particulate matter absorption were strongly coupled with those of cyanobacteria Synechococcus spp. and bacterial production.
In the framework of the VAHINE project, we investigated the spectral characteristics and the...
Altmetrics
Final-revised paper
Preprint