Articles | Volume 13, issue 14
https://doi.org/10.5194/bg-13-4237-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-4237-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Evaluation of 4 years of continuous δ13C(CO2) data using a moving Keeling plot method
Sanam Noreen Vardag
CORRESPONDING AUTHOR
Department of Physics and Astronomy, Institut für Umweltphysik,
Heidelberg University, Heidelberg, Germany
Samuel Hammer
Department of Physics and Astronomy, Institut für Umweltphysik,
Heidelberg University, Heidelberg, Germany
Ingeborg Levin
Department of Physics and Astronomy, Institut für Umweltphysik,
Heidelberg University, Heidelberg, Germany
Related authors
Andreas Luther, Julian Kostinek, Ralph Kleinschek, Sara Defratyka, Mila Stanisavljević, Andreas Forstmaier, Alexandru Dandocsi, Leon Scheidweiler, Darko Dubravica, Norman Wildmann, Frank Hase, Matthias M. Frey, Jia Chen, Florian Dietrich, Jarosław Nȩcki, Justyna Swolkień, Christoph Knote, Sanam N. Vardag, Anke Roiger, and André Butz
Atmos. Chem. Phys., 22, 5859–5876, https://doi.org/10.5194/acp-22-5859-2022, https://doi.org/10.5194/acp-22-5859-2022, 2022
Short summary
Short summary
Coal mining is an extensive source of anthropogenic methane emissions. In order to reduce and mitigate methane emissions, it is important to know how much and where the methane is emitted. We estimated coal mining methane emissions in Poland based on atmospheric methane measurements and particle dispersion modeling. In general, our emission estimates suggest higher emissions than expected by previous annual emission reports.
David W. T. Griffith, Denis Pöhler, Stefan Schmitt, Samuel Hammer, Sanam N. Vardag, and Ulrich Platt
Atmos. Meas. Tech., 11, 1549–1563, https://doi.org/10.5194/amt-11-1549-2018, https://doi.org/10.5194/amt-11-1549-2018, 2018
Short summary
Short summary
Measurements of atmospheric trace gases over an open path complement in situ measurements by spatial averaging. This paper describes the first open-path measurements of CO2, CH4 and other trace gases by near-infrared Fourier transform spectroscopy. The measurements were made in Heidelberg, Germany, for 4 months in 2014 over a 1.5 km path and compared to in situ measurements made at one end of the path. The experiment setup and methods (and the comparisons of open path to in situ) are described.
S. N. Vardag, C. Gerbig, G. Janssens-Maenhout, and I. Levin
Atmos. Chem. Phys., 15, 12705–12729, https://doi.org/10.5194/acp-15-12705-2015, https://doi.org/10.5194/acp-15-12705-2015, 2015
Short summary
Short summary
In this model sensitivity study we compare and evaluate the surrogate tracers CO2, CO, δ13C-CO2 and Δ14C-CO2 for estimating continuous anthropogenic CO2. The results can be used to optimize the measurement network design with respect to the partitioning of total CO2 into biospheric and anthropogenic CO2 contributions. This enables improvement and validation of highly resolved emission inventories using atmospheric observation and regional modeling.
S. N. Vardag, S. Hammer, M. Sabasch, D. W. T. Griffith, and I. Levin
Atmos. Meas. Tech., 8, 579–592, https://doi.org/10.5194/amt-8-579-2015, https://doi.org/10.5194/amt-8-579-2015, 2015
S. N. Vardag, S. Hammer, S. O'Doherty, T. G. Spain, B. Wastine, A. Jordan, and I. Levin
Atmos. Chem. Phys., 14, 8403–8418, https://doi.org/10.5194/acp-14-8403-2014, https://doi.org/10.5194/acp-14-8403-2014, 2014
Fabian Maier, Christoph Gerbig, Ingeborg Levin, Ingrid Super, Julia Marshall, and Samuel Hammer
Geosci. Model Dev., 15, 5391–5406, https://doi.org/10.5194/gmd-15-5391-2022, https://doi.org/10.5194/gmd-15-5391-2022, 2022
Short summary
Short summary
We show that the default representation of point source emissions in WRF–STILT leads to large overestimations when modelling fossil fuel CO2 concentrations for a 30 m high observation site during stable atmospheric conditions. We therefore introduce a novel point source modelling approach in WRF-STILT that takes into account their effective emission heights and results in a much better agreement with observations.
Andreas Luther, Julian Kostinek, Ralph Kleinschek, Sara Defratyka, Mila Stanisavljević, Andreas Forstmaier, Alexandru Dandocsi, Leon Scheidweiler, Darko Dubravica, Norman Wildmann, Frank Hase, Matthias M. Frey, Jia Chen, Florian Dietrich, Jarosław Nȩcki, Justyna Swolkień, Christoph Knote, Sanam N. Vardag, Anke Roiger, and André Butz
Atmos. Chem. Phys., 22, 5859–5876, https://doi.org/10.5194/acp-22-5859-2022, https://doi.org/10.5194/acp-22-5859-2022, 2022
Short summary
Short summary
Coal mining is an extensive source of anthropogenic methane emissions. In order to reduce and mitigate methane emissions, it is important to know how much and where the methane is emitted. We estimated coal mining methane emissions in Poland based on atmospheric methane measurements and particle dispersion modeling. In general, our emission estimates suggest higher emissions than expected by previous annual emission reports.
Ingeborg Levin, Ute Karstens, Samuel Hammer, Julian DellaColetta, Fabian Maier, and Maksym Gachkivskyi
Atmos. Chem. Phys., 21, 17907–17926, https://doi.org/10.5194/acp-21-17907-2021, https://doi.org/10.5194/acp-21-17907-2021, 2021
Short summary
Short summary
The radon tracer method is applied to atmospheric methane and radon observations from the upper Rhine valley to independently estimate methane emissions from the region. Comparison of our top-down results with bottom-up inventory data requires high-resolution footprint modelling and representative radon flux data. In agreement with inventories, observed emissions decreased, but only until 2005. A limitation of this method is that point-source emissions are not captured or not fully captured.
Ingeborg Levin, Ute Karstens, Markus Eritt, Fabian Maier, Sabrina Arnold, Daniel Rzesanke, Samuel Hammer, Michel Ramonet, Gabriela Vítková, Sebastien Conil, Michal Heliasz, Dagmar Kubistin, and Matthias Lindauer
Atmos. Chem. Phys., 20, 11161–11180, https://doi.org/10.5194/acp-20-11161-2020, https://doi.org/10.5194/acp-20-11161-2020, 2020
Short summary
Short summary
Based on observations and Stochastic Time-Inverted Lagrangian Transport (STILT) footprint modelling, a sampling strategy has been developed for tall tower stations of the Integrated Carbon Observation System (ICOS) research infrastructure atmospheric station network. This strategy allows independent quality control of in situ measurements, provides representative coverage of the influence area of the sites, and is capable of automated targeted sampling of fossil fuel CO2 emission hotspots.
Claudia Grossi, Scott D. Chambers, Olivier Llido, Felix R. Vogel, Victor Kazan, Alessandro Capuana, Sylvester Werczynski, Roger Curcoll, Marc Delmotte, Arturo Vargas, Josep-Anton Morguí, Ingeborg Levin, and Michel Ramonet
Atmos. Meas. Tech., 13, 2241–2255, https://doi.org/10.5194/amt-13-2241-2020, https://doi.org/10.5194/amt-13-2241-2020, 2020
Short summary
Short summary
The sustainable support of radon metrology at the environmental level offers new scientific possibilities for the quantification of greenhouse gas (GHG) emissions and the determination of their source terms as well as for the identification of radioactive sources for the assessment of radiation exposure. This study helps to harmonize the techniques commonly used for atmospheric radon and radon progeny activity concentration measurements.
Matthias Kuderer, Samuel Hammer, and Ingeborg Levin
Atmos. Chem. Phys., 18, 7951–7959, https://doi.org/10.5194/acp-18-7951-2018, https://doi.org/10.5194/acp-18-7951-2018, 2018
Short summary
Short summary
Atmospheric 14CO2 measurements allow for estimating the regional fossil fuel CO2 component. However, results potentially need to be corrected for 14CO2 contamination from near-by nuclear facilities (NF). Our dispersion estimates of corresponding contaminations for Heidelberg, based on differently resolved wind fields, show differences of up to a factor of 2. Estimates from highly resolved models coupled with temporally resolved 14CO2 emissions from NFs are required for more accurate results.
David W. T. Griffith, Denis Pöhler, Stefan Schmitt, Samuel Hammer, Sanam N. Vardag, and Ulrich Platt
Atmos. Meas. Tech., 11, 1549–1563, https://doi.org/10.5194/amt-11-1549-2018, https://doi.org/10.5194/amt-11-1549-2018, 2018
Short summary
Short summary
Measurements of atmospheric trace gases over an open path complement in situ measurements by spatial averaging. This paper describes the first open-path measurements of CO2, CH4 and other trace gases by near-infrared Fourier transform spectroscopy. The measurements were made in Heidelberg, Germany, for 4 months in 2014 over a 1.5 km path and compared to in situ measurements made at one end of the path. The experiment setup and methods (and the comparisons of open path to in situ) are described.
Taku Umezawa, Carl A. M. Brenninkmeijer, Thomas Röckmann, Carina van der Veen, Stanley C. Tyler, Ryo Fujita, Shinji Morimoto, Shuji Aoki, Todd Sowers, Jochen Schmitt, Michael Bock, Jonas Beck, Hubertus Fischer, Sylvia E. Michel, Bruce H. Vaughn, John B. Miller, James W. C. White, Gordon Brailsford, Hinrich Schaefer, Peter Sperlich, Willi A. Brand, Michael Rothe, Thomas Blunier, David Lowry, Rebecca E. Fisher, Euan G. Nisbet, Andrew L. Rice, Peter Bergamaschi, Cordelia Veidt, and Ingeborg Levin
Atmos. Meas. Tech., 11, 1207–1231, https://doi.org/10.5194/amt-11-1207-2018, https://doi.org/10.5194/amt-11-1207-2018, 2018
Short summary
Short summary
Isotope measurements are useful for separating different methane sources. However, the lack of widely accepted standards and calibration methods for stable carbon and hydrogen isotopic ratios of methane in air has caused significant measurement offsets among laboratories. We conducted worldwide interlaboratory comparisons, surveyed the literature and assessed them systematically. This study may be of help in future attempts to harmonize data sets of isotopic composition of atmospheric methane.
Peter Bergamaschi, Ute Karstens, Alistair J. Manning, Marielle Saunois, Aki Tsuruta, Antoine Berchet, Alexander T. Vermeulen, Tim Arnold, Greet Janssens-Maenhout, Samuel Hammer, Ingeborg Levin, Martina Schmidt, Michel Ramonet, Morgan Lopez, Jost Lavric, Tuula Aalto, Huilin Chen, Dietrich G. Feist, Christoph Gerbig, László Haszpra, Ove Hermansen, Giovanni Manca, John Moncrieff, Frank Meinhardt, Jaroslaw Necki, Michal Galkowski, Simon O'Doherty, Nina Paramonova, Hubertus A. Scheeren, Martin Steinbacher, and Ed Dlugokencky
Atmos. Chem. Phys., 18, 901–920, https://doi.org/10.5194/acp-18-901-2018, https://doi.org/10.5194/acp-18-901-2018, 2018
Short summary
Short summary
European methane (CH4) emissions are estimated for 2006–2012 using atmospheric in situ measurements from 18 European monitoring stations and 7 different inverse models. Our analysis highlights the potential significant contribution of natural emissions from wetlands (including peatlands and wet soils) to the total European emissions. The top-down estimates of total EU-28 CH4 emissions are broadly consistent with the sum of reported anthropogenic CH4 emissions and the estimated natural emissions.
Heather Graven, Colin E. Allison, David M. Etheridge, Samuel Hammer, Ralph F. Keeling, Ingeborg Levin, Harro A. J. Meijer, Mauro Rubino, Pieter P. Tans, Cathy M. Trudinger, Bruce H. Vaughn, and James W. C. White
Geosci. Model Dev., 10, 4405–4417, https://doi.org/10.5194/gmd-10-4405-2017, https://doi.org/10.5194/gmd-10-4405-2017, 2017
Short summary
Short summary
Modelling of carbon isotopes 13C and 14C in land and ocean components of Earth system models provides opportunities for new insights and improved understanding of global carbon cycling, and for model evaluation. We compiled existing historical datasets to define the annual mean carbon isotopic composition of atmospheric CO2 for 1850–2015 that can be used in CMIP6 and other modelling activities.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Markella Prokopiou, Patricia Martinerie, Célia J. Sapart, Emmanuel Witrant, Guillaume Monteil, Kentaro Ishijima, Sophie Bernard, Jan Kaiser, Ingeborg Levin, Thomas Blunier, David Etheridge, Ed Dlugokencky, Roderik S. W. van de Wal, and Thomas Röckmann
Atmos. Chem. Phys., 17, 4539–4564, https://doi.org/10.5194/acp-17-4539-2017, https://doi.org/10.5194/acp-17-4539-2017, 2017
Short summary
Short summary
Nitrous oxide is the third most important anthropogenic greenhouse gas with an increasing mole fraction. To understand its natural and anthropogenic sources
we employ isotope measurements. Results show that while the N2O mole fraction increases, its heavy isotope content decreases. The isotopic changes observed underline the dominance of agricultural emissions especially at the early part of the record, whereas in the later decades the contribution from other anthropogenic sources increases.
Dominik Schmithüsen, Scott Chambers, Bernd Fischer, Stefan Gilge, Juha Hatakka, Victor Kazan, Rolf Neubert, Jussi Paatero, Michel Ramonet, Clemens Schlosser, Sabine Schmid, Alex Vermeulen, and Ingeborg Levin
Atmos. Meas. Tech., 10, 1299–1312, https://doi.org/10.5194/amt-10-1299-2017, https://doi.org/10.5194/amt-10-1299-2017, 2017
Short summary
Short summary
A European-wide 222radon/222radon progeny comparison study has been conducted at nine measurement stations in order to determine differences between existing 222radon instrumentation and atmospheric data sets, respectively. Mean differences up to 45 % were found between monitors. These differences need to be taken into account if the data shall serve for quantitative regional atmospheric transport model validation.
Ingeborg Levin, Dominik Schmithüsen, and Alex Vermeulen
Atmos. Meas. Tech., 10, 1313–1321, https://doi.org/10.5194/amt-10-1313-2017, https://doi.org/10.5194/amt-10-1313-2017, 2017
Short summary
Short summary
222Radon is often used to parameterise atmospheric transport in the lower troposphere. It can be measured via its decay products, which are bound to aerosol. Air sampling through long tubing, which sometimes cannot be avoided at tall tower sites, may then cause severe aerosol and corresponding radon daughter activity loss. We have quantified this loss for 8.2 mm ID Decabon tubing used at European stations and provide a length-dependent correction function for this experimental setting.
E. N. Koffi, P. Bergamaschi, U. Karstens, M. Krol, A. Segers, M. Schmidt, I. Levin, A. T. Vermeulen, R. E. Fisher, V. Kazan, H. Klein Baltink, D. Lowry, G. Manca, H. A. J. Meijer, J. Moncrieff, S. Pal, M. Ramonet, H. A. Scheeren, and A. G. Williams
Geosci. Model Dev., 9, 3137–3160, https://doi.org/10.5194/gmd-9-3137-2016, https://doi.org/10.5194/gmd-9-3137-2016, 2016
Short summary
Short summary
We evaluate the capability of the TM5 model to reproduce observations of the boundary layer dynamics and the associated variability of trace gases close to the surface, using 222Rn. Focusing on the European scale, we compare the TM5 boundary layer heights with observations from radiosondes, lidar, and ceilometer. Furthermore, we compare TM5 simulations of 222Rn activity concentrations, using a novel, process-based 222Rn flux map over Europe, with 222Rn harmonized measurements from 10 stations.
A. Laeng, J. Plieninger, T. von Clarmann, U. Grabowski, G. Stiller, E. Eckert, N. Glatthor, F. Haenel, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, L. Deaver, A. Engel, M. Hervig, I. Levin, M. McHugh, S. Noël, G. Toon, and K. Walker
Atmos. Meas. Tech., 8, 5251–5261, https://doi.org/10.5194/amt-8-5251-2015, https://doi.org/10.5194/amt-8-5251-2015, 2015
U. Karstens, C. Schwingshackl, D. Schmithüsen, and I. Levin
Atmos. Chem. Phys., 15, 12845–12865, https://doi.org/10.5194/acp-15-12845-2015, https://doi.org/10.5194/acp-15-12845-2015, 2015
Short summary
Short summary
Detailed 222Rn flux maps are a prerequisite for the use of radon in atmospheric transport studies. We present a high-resolution 222Rn flux map for Europe, based on a parameterization of 222Rn production and transport in the soil. Spatial variations in 222Rn exhalation rates are determined by soil uranium content, water table depth and soil texture. Temporal variations are related to soil moisture variations as the diffusion in the soil depends on available air-filled pore space.
S. N. Vardag, C. Gerbig, G. Janssens-Maenhout, and I. Levin
Atmos. Chem. Phys., 15, 12705–12729, https://doi.org/10.5194/acp-15-12705-2015, https://doi.org/10.5194/acp-15-12705-2015, 2015
Short summary
Short summary
In this model sensitivity study we compare and evaluate the surrogate tracers CO2, CO, δ13C-CO2 and Δ14C-CO2 for estimating continuous anthropogenic CO2. The results can be used to optimize the measurement network design with respect to the partitioning of total CO2 into biospheric and anthropogenic CO2 contributions. This enables improvement and validation of highly resolved emission inventories using atmospheric observation and regional modeling.
S. N. Vardag, S. Hammer, M. Sabasch, D. W. T. Griffith, and I. Levin
Atmos. Meas. Tech., 8, 579–592, https://doi.org/10.5194/amt-8-579-2015, https://doi.org/10.5194/amt-8-579-2015, 2015
C. Elsässer, D. Wagenbach, I. Levin, A. Stanzick, M. Christl, A. Wallner, S. Kipfstuhl, I. K. Seierstad, H. Wershofen, and J. Dibb
Clim. Past, 11, 115–133, https://doi.org/10.5194/cp-11-115-2015, https://doi.org/10.5194/cp-11-115-2015, 2015
S. N. Vardag, S. Hammer, S. O'Doherty, T. G. Spain, B. Wastine, A. Jordan, and I. Levin
Atmos. Chem. Phys., 14, 8403–8418, https://doi.org/10.5194/acp-14-8403-2014, https://doi.org/10.5194/acp-14-8403-2014, 2014
R. Weller, I. Levin, D. Schmithüsen, M. Nachbar, J. Asseng, and D. Wagenbach
Atmos. Chem. Phys., 14, 3843–3853, https://doi.org/10.5194/acp-14-3843-2014, https://doi.org/10.5194/acp-14-3843-2014, 2014
B. D. Hall, A. Engel, J. Mühle, J. W. Elkins, F. Artuso, E. Atlas, M. Aydin, D. Blake, E.-G. Brunke, S. Chiavarini, P. J. Fraser, J. Happell, P. B. Krummel, I. Levin, M. Loewenstein, M. Maione, S. A. Montzka, S. O'Doherty, S. Reimann, G. Rhoderick, E. S. Saltzman, H. E. Scheel, L. P. Steele, M. K. Vollmer, R. F. Weiss, D. Worthy, and Y. Yokouchi
Atmos. Meas. Tech., 7, 469–490, https://doi.org/10.5194/amt-7-469-2014, https://doi.org/10.5194/amt-7-469-2014, 2014
V. V. Petrenko, P. Martinerie, P. Novelli, D. M. Etheridge, I. Levin, Z. Wang, T. Blunier, J. Chappellaz, J. Kaiser, P. Lang, L. P. Steele, S. Hammer, J. Mak, R. L. Langenfelds, J. Schwander, J. P. Severinghaus, E. Witrant, G. Petron, M. O. Battle, G. Forster, W. T. Sturges, J.-F. Lamarque, K. Steffen, and J. W. C. White
Atmos. Chem. Phys., 13, 7567–7585, https://doi.org/10.5194/acp-13-7567-2013, https://doi.org/10.5194/acp-13-7567-2013, 2013
S. Hammer, G. Konrad, A. T. Vermeulen, O. Laurent, M. Delmotte, A. Jordan, L. Hazan, S. Conil, and I. Levin
Atmos. Meas. Tech., 6, 1201–1216, https://doi.org/10.5194/amt-6-1201-2013, https://doi.org/10.5194/amt-6-1201-2013, 2013
Related subject area
Biogeochemistry: Stable Isotopes & Other Tracers
Permafrost degradation and nitrogen cycling in Arctic rivers: insights from stable nitrogen isotope studies
Neodymium budget in the Mediterranean Sea: evaluating the role of atmospheric dusts using a high-resolution dynamical-biogeochemical model
Nitrate isotope investigations reveal future impacts of climate change on nitrogen inputs and cycling in Arctic fjords: Kongsfjorden and Rijpfjorden (Svalbard)
Mineralization of autochthonous particulate organic carbon is a fast channel of organic matter turnover in Germany's largest drinking water reservoir
Carbon isotopic ratios of modern C3 and C4 vegetation on the Indian peninsula and changes along the plant–soil–river continuum – implications for vegetation reconstructions
Controls on nitrite oxidation in the upper Southern Ocean: insights from winter kinetics experiments in the Indian sector
Tracing the source of nitrate in a forested stream showing elevated concentrations during storm events
Intra-skeletal variability in phosphate oxygen isotope composition reveals regional heterothermies in marine vertebrates
Isotopic differences in soil–plant–atmosphere continuum composition and control factors of different vegetation zones on the northern slope of the Qilian Mountains
An analysis of the variability in δ13C in macroalgae from the Gulf of California: indicative of carbon concentration mechanisms and isotope discrimination during carbon assimilation
Determination of respiration and photosynthesis fractionation coefficients for atmospheric dioxygen inferred from a vegetation-soil-atmosphere analog of the terrestrial biosphere in closed chambers
Summertime productivity and carbon export potential in the Weddell Sea, with a focus on the waters adjacent to Larsen C Ice Shelf
Particulate biogenic barium tracer of mesopelagic carbon remineralization in the Mediterranean Sea (PEACETIME project)
Hydrogen and carbon isotope fractionation factors of aerobic methane oxidation in deep-sea water
Host-influenced geochemical signature in the parasitic foraminifera Hyrrokkin sarcophaga
Comparing modified substrate-induced respiration with selective inhibition (SIRIN) and N2O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions
How are oxygen budgets influenced by dissolved iron and growth of oxygenic phototrophs in an iron-rich spring system? Initial results from the Espan Spring in Fürth, Germany
Stable isotope ratios in seawater nitrate reflect the influence of Pacific water along the northwest Atlantic margin
High-resolution 14C bomb peak dating and climate response analyses of subseasonal stable isotope signals in wood of the African baobab – a case study from Oman
Geographic variability in freshwater methane hydrogen isotope ratios and its implications for global isotopic source signatures
Seasonality of nitrogen sources, cycling, and loading in a New England river discerned from nitrate isotope ratios
Evaluating the response of δ13C in Haloxylon ammodendron, a dominant C4 species in Asian desert ecosystems, to water and nitrogen addition as well as the availability of its δ13C as an indicator of water use efficiency
Modern silicon dynamics of a small high-latitude subarctic lake
Radium-228-derived ocean mixing and trace element inputs in the South Atlantic
Nitrogen isotopic fractionations during nitric oxide production in an agricultural soil
Silicon uptake and isotope fractionation dynamics by crop species
Barium stable isotopes as a fingerprint of biological cycling in the Amazon River basin
Bottomland hardwood forest growth and stress response to hydroclimatic variation: evidence from dendrochronology and tree ring Δ13C values
N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction – validation with the 15N gas-flux method in laboratory and field studies
Technical note: Single-shell δ11B analysis of Cibicidoides wuellerstorfi using femtosecond laser ablation MC-ICPMS and secondary ion mass spectrometry
Biogeochemical evidence of anaerobic methane oxidation and anaerobic ammonium oxidation in a stratified lake using stable isotopes
Effects of 238U variability and physical transport on water column 234Th downward fluxes in the coastal upwelling system off Peru
Do degree and rate of silicate weathering depend on plant productivity?
Alpine Holocene tree-ring dataset: age-related trends in the stable isotopes of cellulose show species-specific patterns
Ideas and perspectives: The same carbon behaves like different elements – an insight into position-specific isotope distributions
Seasonal dynamics of the COS and CO2 exchange of a managed temperate grassland
Leaf-scale quantification of the effect of photosynthetic gas exchange on Δ17O of atmospheric CO2
The stable carbon isotope signature of methane produced by saprotrophic fungi
Understanding the effects of early degradation on isotopic tracers: implications for sediment source attribution using compound-specific isotope analysis (CSIA)
Oxygen isotope composition of waters recorded in carbonates in strong clumped and oxygen isotopic disequilibrium
Isotopic evidence for alteration of nitrous oxide emissions and producing pathways' contribution under nitrifying conditions
Trace element composition of size-fractionated suspended particulate matter samples from the Qatari Exclusive Economic Zone of the Arabian Gulf: the role of atmospheric dust
Benthic carbon fixation and cycling in diffuse hydrothermal and background sediments in the Bransfield Strait, Antarctica
Changes in gross oxygen production, net oxygen production, and air-water gas exchange during seasonal ice melt in Whycocomagh Bay, a Canadian estuary in the Bras d'Or Lake system
Plants or bacteria? 130 years of mixed imprints in Lake Baldegg sediments (Switzerland), as revealed by compound-specific isotope analysis (CSIA) and biomarker analysis
Commercial traceability of Arapaima spp. fisheries in the Amazon basin: can biogeochemical tags be useful?
Distribution of Fe isotopes in particles and colloids in the salinity gradient along the Lena River plume, Laptev Sea
Early season N2O emissions under variable water management in rice systems: source-partitioning emissions using isotope ratios along a depth profile
Evolution of 231Pa and 230Th in overflow waters of the North Atlantic
Southern Ocean controls of the vertical marine δ13C gradient – a modelling study
Adam Francis, Raja S. Ganeshram, Robyn E. Tuerena, Robert G. M. Spencer, Robert M. Holmes, Jennifer A. Rogers, and Claire Mahaffey
Biogeosciences, 20, 365–382, https://doi.org/10.5194/bg-20-365-2023, https://doi.org/10.5194/bg-20-365-2023, 2023
Short summary
Short summary
Climate change is causing extensive permafrost degradation and nutrient releases into rivers with great ecological impacts on the Arctic Ocean. We focused on nitrogen (N) release from this degradation and associated cycling using N isotopes, an understudied area. Many N species are released at degradation sites with exchanges between species. N inputs from permafrost degradation and seasonal river N trends were identified using isotopes, helping to predict climate change impacts.
Mohamed Ayache, Jean-Claude Dutay, Kazuyo Tachikawa, Thomas Arsouze, and Catherine Jeandel
Biogeosciences, 20, 205–227, https://doi.org/10.5194/bg-20-205-2023, https://doi.org/10.5194/bg-20-205-2023, 2023
Short summary
Short summary
The neodymium (Nd) is one of the most useful tracers to fingerprint water mass provenance. However, the use of Nd is hampered by the lack of adequate quantification of the external sources. Here, we present the first simulation of dissolved Nd concentration and Nd isotopic composition in the Mediterranean Sea using a high-resolution model. We aim to better understand how the various external sources affect the Nd cycle and particularly assess how it is impacted by atmospheric inputs.
Marta Santos-Garcia, Raja S. Ganeshram, Robyn E. Tuerena, Margot C. F. Debyser, Katrine Husum, Philipp Assmy, and Haakon Hop
Biogeosciences, 19, 5973–6002, https://doi.org/10.5194/bg-19-5973-2022, https://doi.org/10.5194/bg-19-5973-2022, 2022
Short summary
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Marlene Dordoni, Michael Seewald, Karsten Rinke, Kurt Friese, Robert van Geldern, Jakob Schmidmeier, and Johannes A. C. Barth
Biogeosciences, 19, 5343–5355, https://doi.org/10.5194/bg-19-5343-2022, https://doi.org/10.5194/bg-19-5343-2022, 2022
Short summary
Short summary
Organic matter (OM) turnover into dissolved inorganic carbon (DIC) was investigated by means of carbon isotope mass balances in Germany's largest water reservoir. This includes a metalimnetic oxygen minimum (MOM). Autochthonous particulate organic carbon (POC) was the main contributor to DIC, with rates that were highest for the MOM. Generally low turnover rates outline the environmental fragility of this water body in the case that OM loads increase due to storm events or land use changes.
Frédérique M. S. A. Kirkels, Hugo J. de Boer, Paulina Concha Hernández, Chris R. T. Martes, Marcel T. J. van der Meer, Sayak Basu, Muhammed O. Usman, and Francien Peterse
Biogeosciences, 19, 4107–4127, https://doi.org/10.5194/bg-19-4107-2022, https://doi.org/10.5194/bg-19-4107-2022, 2022
Short summary
Short summary
The distinct carbon isotopic values of C3 and C4 plants are widely used to reconstruct past hydroclimate, where more C3 plants reflect wetter and C4 plants drier conditions. Here we examine the impact of regional hydroclimatic conditions on plant isotopic values in the Godavari River basin, India. We find that it is crucial to identify regional plant isotopic values and consider drought stress, which introduces a bias in C3 / C4 plant estimates and associated hydroclimate reconstructions.
Mhlangabezi Mdutyana, Tanya Marshall, Xin Sun, Jessica M. Burger, Sandy J. Thomalla, Bess B. Ward, and Sarah E. Fawcett
Biogeosciences, 19, 3425–3444, https://doi.org/10.5194/bg-19-3425-2022, https://doi.org/10.5194/bg-19-3425-2022, 2022
Short summary
Short summary
Nitrite-oxidizing bacteria in the winter Southern Ocean show a high affinity for nitrite but require a minimum (i.e., "threshold") concentration before they increase their rates of nitrite oxidation significantly. The classic Michaelis–Menten model thus cannot be used to derive the kinetic parameters, so a modified equation was employed that also yields the threshold nitrite concentration. Dissolved iron availability may play an important role in limiting nitrite oxidation.
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Hiroyuki Sase, Masayuki Morohashi, and Hiroki Yotsuyanagi
Biogeosciences, 19, 3247–3261, https://doi.org/10.5194/bg-19-3247-2022, https://doi.org/10.5194/bg-19-3247-2022, 2022
Short summary
Short summary
Excessive leaching of nitrate from forested catchments during storm events degrades water quality and causes eutrophication in downstream areas. Thus, tracing the source of nitrate increase during storm events in forested streams is important for sustainable forest management. Based on the isotopic compositions of stream nitrate, including Δ17O, this study clarifies that the source of stream nitrate increase during storm events was soil nitrate in the riparian zone.
Nicolas Séon, Romain Amiot, Guillaume Suan, Christophe Lécuyer, François Fourel, Fabien Demaret, Arnauld Vinçon-Laugier, Sylvain Charbonnier, and Peggy Vincent
Biogeosciences, 19, 2671–2681, https://doi.org/10.5194/bg-19-2671-2022, https://doi.org/10.5194/bg-19-2671-2022, 2022
Short summary
Short summary
We analysed the oxygen isotope composition of bones and teeth of four marine species possessing regional heterothermies. We observed a consistent link between oxygen isotope composition and temperature heterogeneities recorded by classical methods. This opens up new perspectives on the determination of the thermoregulatory strategies of extant marine vertebrates where conventional methods are difficult to apply, but also allows us to investigate thermophysiologies of extinct vertebrates.
Yuwei Liu, Guofeng Zhu, Zhuanxia Zhang, Zhigang Sun, Leilei Yong, Liyuan Sang, Lei Wang, and Kailiang Zhao
Biogeosciences, 19, 877–889, https://doi.org/10.5194/bg-19-877-2022, https://doi.org/10.5194/bg-19-877-2022, 2022
Short summary
Short summary
We took the water cycle process of soil–plant–atmospheric precipitation as the research objective. In the water cycle of soil–plant–atmospheric precipitation, precipitation plays the main controlling role. The main source of replenishment for alpine meadow plants is precipitation and alpine meltwater; the main source of replenishment for forest plants is soil water; and the plants in the arid foothills mainly use groundwater.
Roberto Velázquez-Ochoa, María Julia Ochoa-Izaguirre, and Martín Federico Soto-Jiménez
Biogeosciences, 19, 1–27, https://doi.org/10.5194/bg-19-1-2022, https://doi.org/10.5194/bg-19-1-2022, 2022
Short summary
Short summary
Our research is the first approximation to understand the δ13C macroalgal variability in one of the most diverse marine ecosystems in the world, the Gulf of California. The life-form is the principal cause of δ13C macroalgal variability, mainly taxonomy. However, changes in habitat characteristics and environmental conditions also influence the δ13C macroalgal variability. The δ13C macroalgae is indicative of carbon concentration mechanisms and isotope discrimination during carbon assimilation.
Clémence Paul, Clément Piel, Joana Sauze, Nicolas Pasquier, Frédéric Prié, Sébastien Devidal, Roxanne Jacob, Arnaud Dapoigny, Olivier Jossoud, Alexandru Milcu, and Amaëlle Landais
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-324, https://doi.org/10.5194/bg-2021-324, 2021
Revised manuscript accepted for BG
Short summary
Short summary
To improve the interpretation of the δ18Oatm and Δ17O of O2 in air bubbles in ice core, we need to better quantify the oxygen fractionation coefficients associated with biological processes. We performed a simplified analog of the terrestrial biosphere in a closed chamber. We found a respiration fractionation in agreement with the previous estimates at the micro-organism scale. And a terrestrial photosynthetic fractionation was found. This has an impact on the estimation of the Dole effect.
Raquel F. Flynn, Thomas G. Bornman, Jessica M. Burger, Shantelle Smith, Kurt A. M. Spence, and Sarah E. Fawcett
Biogeosciences, 18, 6031–6059, https://doi.org/10.5194/bg-18-6031-2021, https://doi.org/10.5194/bg-18-6031-2021, 2021
Short summary
Short summary
Biological activity in the shallow Weddell Sea affects the biogeochemistry of recently formed deep waters. To investigate the drivers of carbon and nutrient export, we measured rates of primary production and nitrogen uptake, characterized the phytoplankton community, and estimated nutrient depletion ratios across the under-sampled western Weddell Sea in mid-summer. Carbon export was highest at the ice shelves and was determined by a combination of physical, chemical, and biological factors.
Stéphanie H. M. Jacquet, Christian Tamburini, Marc Garel, Aurélie Dufour, France Van Vambeke, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 5891–5902, https://doi.org/10.5194/bg-18-5891-2021, https://doi.org/10.5194/bg-18-5891-2021, 2021
Short summary
Short summary
We compared carbon remineralization rates (MRs) in the western and central Mediterranean Sea in late spring during the PEACETIME cruise, as assessed using the barium tracer. We reported higher and deeper (up to 1000 m depth) MRs in the western basin, potentially sustained by an additional particle export event driven by deep convection. The central basin is the site of a mosaic of blooming and non-blooming water masses and showed lower MRs that were restricted to the upper mesopelagic layer.
Shinsuke Kawagucci, Yohei Matsui, Akiko Makabe, Tatsuhiro Fukuba, Yuji Onishi, Takuro Nunoura, and Taichi Yokokawa
Biogeosciences, 18, 5351–5362, https://doi.org/10.5194/bg-18-5351-2021, https://doi.org/10.5194/bg-18-5351-2021, 2021
Short summary
Short summary
Hydrogen and carbon isotope ratios of methane as well as the relevant biogeochemical parameters and microbial community compositions in hydrothermal plumes in the Okinawa Trough were observed. We succeeded in simultaneously determining hydrogen and carbon isotope fractionation factors associated with aerobic oxidation of methane in seawater (εH = 49.4 ± 5.0 ‰, εC = 5.2 ± 0.4 ‰) – the former being the first of its kind ever reported.
Nicolai Schleinkofer, David Evans, Max Wisshak, Janina Vanessa Büscher, Jens Fiebig, André Freiwald, Sven Härter, Horst R. Marschall, Silke Voigt, and Jacek Raddatz
Biogeosciences, 18, 4733–4753, https://doi.org/10.5194/bg-18-4733-2021, https://doi.org/10.5194/bg-18-4733-2021, 2021
Short summary
Short summary
We have measured the chemical composition of the carbonate shells of the parasitic foraminifera Hyrrokkin sarcophaga in order to test if it is influenced by the host organism (bivalve or coral). We find that both the chemical and isotopic composition is influenced by the host organism. For example strontium is enriched in foraminifera that grew on corals, whose skeleton is built from aragonite, which is naturally enriched in strontium compared to the bivalves' calcite shell.
Lena Rohe, Traute-Heidi Anderson, Heinz Flessa, Anette Goeske, Dominika Lewicka-Szczebak, Nicole Wrage-Mönnig, and Reinhard Well
Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021, https://doi.org/10.5194/bg-18-4629-2021, 2021
Short summary
Short summary
This is the first experimental setup combining a complex set of methods (microbial inhibitors and isotopic approaches) to differentiate between N2O produced by fungi or bacteria during denitrification in three soils. Quantifying the fungal fraction with inhibitors was not successful due to large amounts of uninhibited N2O production. All successful methods suggested a small or missing fungal contribution. Artefacts occurring with microbial inhibition to determine N2O fluxes are discussed.
Inga Köhler, Raul E. Martinez, David Piatka, Achim J. Herrmann, Arianna Gallo, Michelle M. Gehringer, and Johannes A. C. Barth
Biogeosciences, 18, 4535–4548, https://doi.org/10.5194/bg-18-4535-2021, https://doi.org/10.5194/bg-18-4535-2021, 2021
Short summary
Short summary
We investigated how high Fe(II) levels influence the O2 budget of a circum-neutral Fe(II)-rich spring and if a combined study of dissolved O (DO) and its isotopic composition can help assess this effect. We showed that dissolved Fe(II) can exert strong effects on the δ18ODO even though a constant supply of atmospheric O2 occurs. In the presence of photosynthesis, direct effects of Fe oxidation become masked. Critical Fe(II) concentrations indirectly control the DO by enhancing photosynthesis.
Owen A. Sherwood, Samuel H. Davin, Nadine Lehmann, Carolyn Buchwald, Evan N. Edinger, Moritz F. Lehmann, and Markus Kienast
Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021, https://doi.org/10.5194/bg-18-4491-2021, 2021
Short summary
Short summary
Pacific water flowing eastward through the Canadian Arctic plays an important role in redistributing nutrients to the northwest Atlantic Ocean. Using samples collected from northern Baffin Bay to the southern Labrador Shelf, we show that stable isotopic ratios in seawater nitrate reflect the fraction of Pacific to Atlantic water. These results provide a new framework for interpreting patterns of nitrogen isotopic variability recorded in modern and archival organic materials in the region.
Franziska Slotta, Lukas Wacker, Frank Riedel, Karl-Uwe Heußner, Kai Hartmann, and Gerhard Helle
Biogeosciences, 18, 3539–3564, https://doi.org/10.5194/bg-18-3539-2021, https://doi.org/10.5194/bg-18-3539-2021, 2021
Short summary
Short summary
The African baobab is a challenging climate and environmental archive for its semi-arid habitat due to dating uncertainties and parenchyma-rich wood anatomy. Annually resolved F14C data of tree-ring cellulose (1941–2005) from a tree in Oman show the annual character of the baobab’s growth rings but were up to 8.8 % lower than expected for 1964–1967. Subseasonal δ13C and δ18O patterns reveal years with low average monsoon rain as well as heavy rainfall events from pre-monsoonal cyclones.
Peter M. J. Douglas, Emerald Stratigopoulos, Sanga Park, and Dawson Phan
Biogeosciences, 18, 3505–3527, https://doi.org/10.5194/bg-18-3505-2021, https://doi.org/10.5194/bg-18-3505-2021, 2021
Short summary
Short summary
Hydrogen isotopes could be a useful tool to help resolve the geographic distribution of methane emissions from freshwater environments. We analyzed an expanded global dataset of freshwater methane hydrogen isotope ratios and found significant geographic variation linked to water isotopic composition. This geographic variability could be used to resolve changing methane fluxes from freshwater environments and provide more accurate estimates of the relative balance of global methane sources.
Veronica R. Rollinson, Julie Granger, Sydney C. Clark, Mackenzie L. Blanusa, Claudia P. Koerting, Jamie M. P. Vaudrey, Lija A. Treibergs, Holly C. Westbrook, Catherine M. Matassa, Meredith G. Hastings, and Craig R. Tobias
Biogeosciences, 18, 3421–3444, https://doi.org/10.5194/bg-18-3421-2021, https://doi.org/10.5194/bg-18-3421-2021, 2021
Short summary
Short summary
We measured nutrients and the naturally occurring nitrogen (N) and oxygen (O) stable isotope ratios of nitrate discharged from a New England river over an annual cycle, to monitor N loading and identify dominant sources from the watershed. We uncovered a seasonality to loading and sources of N from the watershed. Seasonality in the nitrate isotope ratios also informed on N cycling, conforming to theoretical expectations of riverine nutrient cycling.
Zixun Chen, Xuejun Liu, Xiaoqing Cui, Yaowen Han, Guoan Wang, and Jiazhu Li
Biogeosciences, 18, 2859–2870, https://doi.org/10.5194/bg-18-2859-2021, https://doi.org/10.5194/bg-18-2859-2021, 2021
Short summary
Short summary
δ13C in plants is a sensitive long-term indicator of physiological acclimatization. The present study suggests that precipitation change and increasing atmospheric N deposition have little impact on δ13C of H. ammodendron, a dominant plant in central Asian deserts, but affect its gas exchange. In addition, this study shows that δ13C of H. ammodendron could not indicate its water use efficiency (WUE), suggesting that whether δ13C of C4 plants indicates WUE is species-specific.
Petra Zahajská, Carolina Olid, Johanna Stadmark, Sherilyn C. Fritz, Sophie Opfergelt, and Daniel J. Conley
Biogeosciences, 18, 2325–2345, https://doi.org/10.5194/bg-18-2325-2021, https://doi.org/10.5194/bg-18-2325-2021, 2021
Short summary
Short summary
The drivers of high accumulation of single-cell siliceous algae (diatoms) in a high-latitude lake have not been fully characterized before. We studied silicon cycling of the lake through water, radon, silicon, and stable silicon isotope balances. Results showed that groundwater brings 3 times more water and dissolved silica than the stream inlet. We demonstrate that groundwater discharge and low sediment deposition have driven the high diatom accumulation in the studied lake in the past century.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Zhongjie Yu and Emily M. Elliott
Biogeosciences, 18, 805–829, https://doi.org/10.5194/bg-18-805-2021, https://doi.org/10.5194/bg-18-805-2021, 2021
Short summary
Short summary
In this study, we demonstrated distinct nitrogen isotope effects for nitric oxide (NO) production from major microbial and chemical NO sources in an agricultural soil. These results highlight characteristic bond-forming and breaking mechanisms associated with microbial and chemical NO production and implicate that simultaneous isotopic analyses of NO and nitrous oxide (N2O) can lead to unprecedented insights into the sources and processes controlling NO and N2O emissions from agricultural soils.
Daniel A. Frick, Rainer Remus, Michael Sommer, Jürgen Augustin, Danuta Kaczorek, and Friedhelm von Blanckenburg
Biogeosciences, 17, 6475–6490, https://doi.org/10.5194/bg-17-6475-2020, https://doi.org/10.5194/bg-17-6475-2020, 2020
Short summary
Short summary
Silicon is taken up by some plants to increase structural stability and to develop stress resistance and is rejected by others. To explore the underlying mechanisms, we used the stable isotopes of silicon that shift in their relative abundance depending on the biochemical transformation involved. On species with a rejective (tomato, mustard) and active (wheat) uptake mechanism, grown in hydroculture, we found that the transport of silicic acid is controlled by the precipitation of biogenic opal.
Quentin Charbonnier, Julien Bouchez, Jérôme Gaillardet, and Éric Gayer
Biogeosciences, 17, 5989–6015, https://doi.org/10.5194/bg-17-5989-2020, https://doi.org/10.5194/bg-17-5989-2020, 2020
Short summary
Short summary
The abundance and isotope composition of the trace metal barium (Ba) allows us to track and quantify nutrient cycling throughout the Amazon Basin. In particular, we show that the Ba biological fingerprint evolves from that of a strong net nutrient uptake in the mountainous area of the Andes towards efficient nutrient recycling on the plains of the Lower Amazon. Our study highlights the fact that the geochemical signature of rock-derived nutrients transported by the Amazon is scarred by life.
Ajinkya G. Deshpande, Thomas W. Boutton, Ayumi Hyodo, Charles W. Lafon, and Georgianne W. Moore
Biogeosciences, 17, 5639–5653, https://doi.org/10.5194/bg-17-5639-2020, https://doi.org/10.5194/bg-17-5639-2020, 2020
Short summary
Short summary
Wetland forests in the southern USA are threatened by changing climate and human-induced pressures. We used tree ring widths and C isotopes as indicators of forest growth and physiological stress, respectively, and compared these to past climate data. We observed that vegetation growing in the drier patches is susceptible to stress, while vegetation growth and physiology in wetter patches is less sensitive to unfavorable environmental conditions, highlighting the importance of optimal wetness.
Dominika Lewicka-Szczebak, Maciej Piotr Lewicki, and Reinhard Well
Biogeosciences, 17, 5513–5537, https://doi.org/10.5194/bg-17-5513-2020, https://doi.org/10.5194/bg-17-5513-2020, 2020
Short summary
Short summary
We present the first validation of N2O isotopic approaches for estimating N2O source pathways and N2O reduction. These approaches are widely used for tracing soil nitrogen cycling, but the results of these estimations are very uncertain. Here we report the results from parallel treatments allowing for precise validation of these approaches, and we propose the best strategies for results interpretation, including the new idea of an isotope model integrating three isotopic signatures of N2O.
Markus Raitzsch, Claire Rollion-Bard, Ingo Horn, Grit Steinhoefel, Albert Benthien, Klaus-Uwe Richter, Matthieu Buisson, Pascale Louvat, and Jelle Bijma
Biogeosciences, 17, 5365–5375, https://doi.org/10.5194/bg-17-5365-2020, https://doi.org/10.5194/bg-17-5365-2020, 2020
Short summary
Short summary
The isotopic composition of boron in carbonate shells of marine unicellular organisms is a popular tool to estimate seawater pH. Usually, many shells need to be dissolved and measured for boron isotopes, but the information on their spatial distribution is lost. Here, we investigate two techniques that allow for measuring boron isotopes within single shells and show that they yield robust mean values but provide additional information on the heterogeneity within and between single shells.
Florian Einsiedl, Anja Wunderlich, Mathieu Sebilo, Ömer K. Coskun, William D. Orsi, and Bernhard Mayer
Biogeosciences, 17, 5149–5161, https://doi.org/10.5194/bg-17-5149-2020, https://doi.org/10.5194/bg-17-5149-2020, 2020
Short summary
Short summary
Nitrate pollution of freshwaters and methane emissions into the atmosphere are crucial factors in deteriorating the quality of drinking water and in contributing to global climate change. Here, we report vertical concentration and stable isotope profiles of CH4, NO3-, NO2-, and NH4+ in the water column of Fohnsee (southern Bavaria, Germany) that may indicate linkages between nitrate-dependent anaerobic methane oxidation and the anaerobic oxidation of ammonium.
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Ralf A. Oeser and Friedhelm von Blanckenburg
Biogeosciences, 17, 4883–4917, https://doi.org/10.5194/bg-17-4883-2020, https://doi.org/10.5194/bg-17-4883-2020, 2020
Short summary
Short summary
We present a novel strategy to decipher the relative impact of biogenic and abiotic drivers of weathering. We parameterized the nutrient fluxes in four ecosystems along a climate and vegetation gradient situated on the Chilean Coastal Cordillera. We investigated how nutrient demand by plants drives weathering. We found that the increase in biomass nutrient demand is accommodated by faster nutrient recycling rather than an increase in the weathering–release rates.
Tito Arosio, Malin M. Ziehmer, Kurt Nicolussi, Christian Schlüchter, and Markus Leuenberger
Biogeosciences, 17, 4871–4882, https://doi.org/10.5194/bg-17-4871-2020, https://doi.org/10.5194/bg-17-4871-2020, 2020
Short summary
Short summary
Stable isotopes in tree-ring cellulose are tools for climatic reconstructions, but interpretation is challenging due to nonclimate trends. We analyzed the tree-age trends in tree-ring isotopes of deciduous larch and evergreen cembran pine. Samples covering the whole Holocene were collected at the tree line in the Alps. For cambial ages over 100 years, we prove the absence of age trends in δD, δ18O, and δ13C for both species. For lower cambial ages, trends differ for each isotope and species.
Yuyang He, Xiaobin Cao, and Huiming Bao
Biogeosciences, 17, 4785–4795, https://doi.org/10.5194/bg-17-4785-2020, https://doi.org/10.5194/bg-17-4785-2020, 2020
Short summary
Short summary
Different carbon sites in a large organic molecule have different isotope compositions. Different carbon sites may not have the chance to exchange isotopes at all. The lack of appreciation of this notion might be blamed for an unsettled debate on the thermodynamic state of an organism. Here we demonstrate using minerals, N2O, and acetic acid that the dearth of exchange among different carbon sites renders them as independent as if they were different elements in organic molecules.
Felix M. Spielmann, Albin Hammerle, Florian Kitz, Katharina Gerdel, and Georg Wohlfahrt
Biogeosciences, 17, 4281–4295, https://doi.org/10.5194/bg-17-4281-2020, https://doi.org/10.5194/bg-17-4281-2020, 2020
Short summary
Short summary
Carbonyl sulfide (COS) can be used as a proxy for plant photosynthesis on an ecosystem scale. However, the relationships between COS and CO2 fluxes and their dependence on daily to seasonal changes in environmental drivers are still poorly understood. We examined COS and CO2 ecosystem fluxes above an agriculturally used mountain grassland for 6 months. Harvesting of the grassland disturbed the otherwise stable COS-to-CO2 uptake ratio. We even found the canopy to release COS during those times.
Getachew Agmuas Adnew, Thijs L. Pons, Gerbrand Koren, Wouter Peters, and Thomas Röckmann
Biogeosciences, 17, 3903–3922, https://doi.org/10.5194/bg-17-3903-2020, https://doi.org/10.5194/bg-17-3903-2020, 2020
Short summary
Short summary
We measured the effect of photosynthesis, the largest flux in the carbon cycle, on the triple oxygen isotope composition of atmospheric CO2 at the leaf level during gas exchange using three plant species. The main factors that limit the impact of land vegetation on the triple oxygen isotope composition of atmospheric CO2 are identified, characterized and discussed. The effect of photosynthesis on the isotopic composition of CO2 is commonly quantified as discrimination (ΔA).
Moritz Schroll, Frank Keppler, Markus Greule, Christian Eckhardt, Holger Zorn, and Katharina Lenhart
Biogeosciences, 17, 3891–3901, https://doi.org/10.5194/bg-17-3891-2020, https://doi.org/10.5194/bg-17-3891-2020, 2020
Short summary
Short summary
Fungi have recently been identified to produce the greenhouse gas methane. Here, we investigated the stable carbon isotope values of methane produced by saprotrophic fungi. Our results show that stable isotope values of methane from fungi are dependent on the fungal species and the metabolized substrate. They cover a broad range and overlap with stable carbon isotope values of methane reported for methanogenic archaea, the thermogenic degradation of organic matter, and other eukaryotes.
Pranav Hirave, Guido L. B. Wiesenberg, Axel Birkholz, and Christine Alewell
Biogeosciences, 17, 2169–2180, https://doi.org/10.5194/bg-17-2169-2020, https://doi.org/10.5194/bg-17-2169-2020, 2020
Short summary
Short summary
Sediment input into water bodies is a prominent threat to freshwater ecosystems. We tested the stability of tracers employed in freshwater sediment tracing based on compound-specific isotope analysis during early degradation in soil. While bulk δ13C values showed no stability, δ13C values of plant-derived fatty acids and n-alkanes were stably transferred to the soil without soil particle size dependency after an early degradation in organic horizons, thus indicating their suitability as tracers.
Caroline Thaler, Amandine Katz, Magali Bonifacie, Bénédicte Ménez, and Magali Ader
Biogeosciences, 17, 1731–1744, https://doi.org/10.5194/bg-17-1731-2020, https://doi.org/10.5194/bg-17-1731-2020, 2020
Short summary
Short summary
Paleoenvironment reconstructions, retrieved from δ18O and Δ47 values measured in carbonate, are compromised when crystallization occurs in isotopic disequilibrium. We show that some paleoenvironmental information can still be retrieved from these paired disequilibrium Δ47 and δ18O values. The possibility of retrieving information on paleowaters, sediments' interstitial waters, or organisms' body water at the carbonate precipitation loci will help understand past Earth and life evolution.
Guillaume Humbert, Mathieu Sébilo, Justine Fiat, Longqi Lang, Ahlem Filali, Véronique Vaury, Mathieu Spérandio, and Anniet M. Laverman
Biogeosciences, 17, 979–993, https://doi.org/10.5194/bg-17-979-2020, https://doi.org/10.5194/bg-17-979-2020, 2020
Short summary
Short summary
Mitigating emissions of the greenhouse gas N2O requires understanding of the relative contribution of its producing processes in response to environmental variables. We show, using isotopic analysis, that N2O emissions from a nitrifying system were sensitive to oxygenation, temperature and NH4+ concentrations with nitrite reduction being the main N2O source. Temperature appears to be the main control on N2O production, due to its dissimilar effects on ammonium and nitrite oxidizing activities.
Oguz Yigiterhan, Ebrahim Mohd Al-Ansari, Alex Nelson, Mohamed Alaa Abdel-Moati, Jesse Turner, Hamood Abdulla Alsaadi, Barbara Paul, Ibrahim Abdullatif Al-Maslamani, Mehsin Abdulla Al-Ansi Al-Yafei, and James W. Murray
Biogeosciences, 17, 381–404, https://doi.org/10.5194/bg-17-381-2020, https://doi.org/10.5194/bg-17-381-2020, 2020
Short summary
Short summary
We analyze net-tow samples of plankton and associated particulate matter from the Exclusive Economic Zone, Qatar, Arabian Gulf, using net tows with mesh sizes of 50 and 200 μm to examine the composition of plankton populations. We also focus on the role and composition of the atmospheric dust, representative of terrigenous material, deposited in the Gulf. We concluded that Al, Fe, Cr, Co, Mn, Ni, Pb, and Li are of dust origin and As, Cd, Cu, Mo, Zn, and Ca are of anthropogenic/biogenic origin.
Clare Woulds, James B. Bell, Adrian G. Glover, Steven Bouillon, and Louise S. Brown
Biogeosciences, 17, 1–12, https://doi.org/10.5194/bg-17-1-2020, https://doi.org/10.5194/bg-17-1-2020, 2020
Short summary
Short summary
Sedimented hydrothermal vents occur where heated, mineral-rich (hydrothermal) water seeps through seafloor sediments. They host chemosynthetic microbes, which use chemical energy to fix dissolved carbon dioxide into sugars (chemosynthesis). We conducted carbon tracing experiments, and observed chemosynthesis at both vent and non-vent sites. Thus, chemosynthesis occurred over a much larger area than expected, suggesting it is more widespread than previously thought.
Cara C. Manning, Rachel H. R. Stanley, David P. Nicholson, Brice Loose, Ann Lovely, Peter Schlosser, and Bruce G. Hatcher
Biogeosciences, 16, 3351–3376, https://doi.org/10.5194/bg-16-3351-2019, https://doi.org/10.5194/bg-16-3351-2019, 2019
Short summary
Short summary
We measured rates of biological activity and gas exchange in a Canadian estuary during ice melt. We quantified gas exchange using inert, deliberately released tracers and found that the gas transfer rate at > 90 % ice cover was 6 % of the rate for nearly ice-free conditions. We measured oxygen concentration and isotopic composition and used the data to detect changes in the rates of photosynthesis and respiration (autotrophy and heterotrophy) as the ice melted.
Marlène Lavrieux, Axel Birkholz, Katrin Meusburger, Guido L. B. Wiesenberg, Adrian Gilli, Christian Stamm, and Christine Alewell
Biogeosciences, 16, 2131–2146, https://doi.org/10.5194/bg-16-2131-2019, https://doi.org/10.5194/bg-16-2131-2019, 2019
Short summary
Short summary
A fingerprinting approach using compound-specific stable isotopes was applied to a lake sediment core to reconstruct erosion processes over the past 150 years in a Swiss catchment. Even though the reconstruction of land use and eutrophication history was successful, the observation of comparatively low δ13C values of plant-derived fatty acids in the sediment suggests their alteration within the lake. Thus, their use as a tool for source attribution in sediment cores needs further investigation.
Luciana A. Pereira, Roberto V. Santos, Marília Hauser, Fabrice Duponchelle, Fernando Carvajal, Christophe Pecheyran, Sylvain Bérail, and Marc Pouilly
Biogeosciences, 16, 1781–1797, https://doi.org/10.5194/bg-16-1781-2019, https://doi.org/10.5194/bg-16-1781-2019, 2019
Short summary
Short summary
This study presents the first step for a chemical origin certification of pirarucu fishery in the Amazon. A preliminary isotopic tool to improve the actual tracking system integrates ecological, social, and economic aspects of Amazon dynamics. The geographic origin validation of farmed and wild fishes contributes to environmental and social practices, secures food and income to communities, helps manage endangered species, reinforces aquaculture, and combats illegal fisheries.
Sarah Conrad, Johan Ingri, Johan Gelting, Fredrik Nordblad, Emma Engström, Ilia Rodushkin, Per S. Andersson, Don Porcelli, Örjan Gustafsson, Igor Semiletov, and Björn Öhlander
Biogeosciences, 16, 1305–1319, https://doi.org/10.5194/bg-16-1305-2019, https://doi.org/10.5194/bg-16-1305-2019, 2019
Short summary
Short summary
Iron analysis of the particulate, colloidal, and truly dissolved fractions along the Lena River freshwater plume showed that the particulate iron dominates close to the coast. Over 99 % particulate and about 90 % colloidal iron were lost, while the truly dissolved phase was almost constant. Iron isotopes suggest that the shelf acts as a sink for particles and colloids with negative iron isotope values, while colloids with positive iron isotope values travel further out into the Arctic Ocean.
Elizabeth Verhoeven, Matti Barthel, Longfei Yu, Luisella Celi, Daniel Said-Pullicino, Steven Sleutel, Dominika Lewicka-Szczebak, Johan Six, and Charlotte Decock
Biogeosciences, 16, 383–408, https://doi.org/10.5194/bg-16-383-2019, https://doi.org/10.5194/bg-16-383-2019, 2019
Short summary
Short summary
This study utilized state-of-the-art measurements of nitrogen isotopes to evaluate nitrogen cycling and to assess the biological sources of the potent greenhouse gas, N2O, in response to water-saving practices in rice systems. Water-saving practices did emit more N2O, and high N2O production had a lower 15N isotope signature. Modeling and visual interpretation indicate that these emissions mostly came from denitrification or nitrifier denitrification, controlled upstream by nitrification rates.
Feifei Deng, Gideon M. Henderson, Maxi Castrillejo, Fiz F. Perez, and Reiner Steinfeldt
Biogeosciences, 15, 7299–7313, https://doi.org/10.5194/bg-15-7299-2018, https://doi.org/10.5194/bg-15-7299-2018, 2018
Short summary
Short summary
To better use Pa / Th to reconstruct deep water ventilation rate, we assessed controls on 230Th and 231Pa in the northern North Atlantic. With extended optimum multi-parameter analysis and CFC-based water-mass age, we found the imprint of young overflow water on Th and Pa and enhanced scavenging near the seafloor. A significantly higher advective loss of Pa to the south relative to Th in the Atlantic was estimated, supporting the use of Pa / Th for assessing basin-scale meridional transport.
Anne L. Morée, Jörg Schwinger, and Christoph Heinze
Biogeosciences, 15, 7205–7223, https://doi.org/10.5194/bg-15-7205-2018, https://doi.org/10.5194/bg-15-7205-2018, 2018
Short summary
Short summary
Changes in the distribution of the carbon isotope 13C can be used to study the climate system if the governing processes (ocean circulation and biogeochemistry) are understood. We show the Southern Ocean importance for the global 13C distribution and that changes in 13C can be strongly influenced by biogeochemistry. Interpretation of 13C as a proxy for climate signals needs to take into account the effects of changes in biogeochemistry in addition to changes in ocean circulation.
Cited articles
Alden, C. B., Miller, B., J., and White, J. W.: Can bottom-up ocean CO2 fluxes be reconciled with atmospheric 13C observations?, Tellus B, 62, 369–388, https://doi.org/10.1111/j.1600-0889.2010.00481.x, 2010.
Andres, R. J., Marland, G., Boden, T., and Bischof, S.: Carbon Dioxide Emissions from Fossil Fuel Consumption and Cement Manufacture, 1751–1991; and an Estimate of Their Isotopic Composition and Latitudinal Distribution, Environmental Sciences, http://www.osti.gov/scitech/biblio/10185357 (last access: 22 July 2016), 1994.
Ballantyne, A. P., Miller, J. B., and Tans, P. P.: Apparent seasonal cycle in isotopic discrimination of carbon in the atmosphere and biosphere due to vapor pressure deficit, Global Biogeochem. Cy., 24, gB3018, https://doi.org/10.1029/2009GB003623, 2010.
Ballantyne, A. P., Miller, J. B., Baker, I. T., Tans, P. P., and White, J. W. C.: Novel applications of carbon isotopes in atmospheric CO2: what can atmospheric measurements teach us about processes in the biosphere?, Biogeosciences, 8, 3093–3106, https://doi.org/10.5194/bg-8-3093-2011, 2011.
Bastos, A., Janssens, I. A., Gouveia, C. M., Trigo, R. M., Ciais, P., Chevallier, F., Peñuelas, J., Rödenbeck, C., Piao, S., Friedlingstein, P., and Running, S. W.: European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling, Nature Communications, 7, 10315, https://doi.org/10.1038/ncomms10315, 2016.
Bowling, D. R., Sargent, S. D., Tanner, B. D., and Ehleringer, J. R.: Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange, Agr. Forest Meteorol., 118, 1–19, https://doi.org/10.1016/S0168-1923(03)00074-1, 2003.
Bush, S., Pataki, D., and Ehleringer, J.: Sources of variation in δ13C of fossil fuel emissions in Salt Lake City, USA, Appl. Geochem., 22, 715–723, 2007.
Ciais, P., Tans, P. P., Trolier, M., White, J. W. C., and Francey, R.: A large Northern Hemisphere terrestrial CO2 sink indicated by the 13C ∕ 12C ratio of atmospheric CO2, Science, 269, 1098–1102, 1995.
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevalier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., and Valentini, R.: Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, 437, 529–533, 2005.
Ciais, P., Crisp, D., Denier van der Gon, H., Engelen, R., Janssens-Maenhout, G., Heiman, M., Rayner, P., and Scholze, M.: Towards a European Operational Observing System to Monitor Fossil CO2 Emissions, Study report, Tech. rep., Copernicus, http://www.copernicus.eu/main/towards-european-operational-observing-system-monitor (last access: 4 July 2016), 2015.
Denier van der Gon, H., Hendriks, C., Kuenen, J., Segers, A., and Visschedijk, A.: Description of current temporal emission patterns and sensitivity of predicted AQ for temporal emission patterns, TNP Report, EU FP7 MACC deliverable report, https://gmes-atmosphere.eu/documents/deliverables/d-emis/MACC_TNO_del_1_3_v2.pdf (last access: 22 July 2016), 2011.
Dlugokencky, E., Lang, P., Masarie, K., Crotwell, A., and Crotwell, M.: Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network Sampling Network, 1968–2014, ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/ (last access: 4 July 2016), 2015.
EC-JRC/PBL: Emission Database for Global Atmospheric Research (EDGAR), version 4.3., http://edgar.jrc.ec.europa.eu/index.php, last access: 10 December 2015.
Esler, M. B., Griffith, D. W., Wilson, S. R., and Steele, L. P.: Precision trace gas analysis by FT-IR spectroscopy. 2. The 13C ∕ 12C isotope ratio of CO2, Anal. Chem., 72, 216–21, 2000.
Eyer, S., Tuzson, B., Popa, M. E., van der Veen, C., Röckmann, T., Rothe, M., Brand, W. A., Fisher, R., Lowry, D., Nisbet, E. G., Brennwald, M. S., Harris, E., Zellweger, C., Emmenegger, L., Fischer, H., and Mohn, J.: Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy: method development and first intercomparison results, Atmos. Meas. Tech., 9, 263–280, https://doi.org/10.5194/amt-9-263-2016, 2016.
Griffith, D., Deutscher, N., Krummel, P., Fraser, P., Schoot, M., and Allison, C.: The UoW FTIR trace gas analyser: Comparison with LoFlo, AGAGE and tank measurements at Cape Grim and GASLAB, Baseline atmospheric program (Australia), 2010.
Griffith, D. W. T., Deutscher, N. M., Caldow, C., Kettlewell, G., Riggenbach, M., and Hammer, S.: A Fourier transform infrared trace gas and isotope analyser for atmospheric applications, Atmos. Meas. Tech., 5, 2481–2498, https://doi.org/10.5194/amt-5-2481-2012, 2012.
Gurney, K. R., Mendoza, D. L., Zhou, Y., Fischer, M. L., Miller, C. C., Geethakumar, S., and de la Rue du Can, S.: High resolution fossil fuel combustion CO2 emission fluxes for the United States, Environ. Sci. Technol., 43, 5535–5541, 2009.
Hammer, S., Griffith, D. W. T., Konrad, G., Vardag, S., Caldow, C., and Levin, I.: Assessment of a multi-species in situ FTIR for precise atmospheric greenhouse gas observations, Atmos. Meas. Tech., 6, 1153–1170, https://doi.org/10.5194/amt-6-1153-2013, 2013.
Heimann, M. and Körner, S.: The global atmospheric tracer model TM3, in: Technical Report, edited by: Biogeochemie, edited by: Körner, S., vol. 5, p. 131, Max-Planck-Institut für Biogeochemie, Jena, 2003.
Karlsson, J., Jansson, M., and Jonsson, A.: Respiration of allochthonous organic carbon in unproductive forest lakes determined by the Keeling plot method, Limnol. Oceanogr., 52, 603–608, https://doi.org/10.4319/lo.2007.52.2.0603, 2007.
Keeling, C. D.: The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas, Geochim. Cosmochim. Ac., 13, 322–224, 1958.
Keeling, C. D.: The concentrations and isotopic abundances of atmospheric carbon dioxide in rural and marine air, Geochim. Cosmochim. Ac., 24, 277–298, 1961.
Knohl, A., Werner, R. A., Brand, W. A., and Buchmann, N.: Short-term variations in δ13C of ecosystem respiration reveals link between assimilation and respiration in a deciduous forest, Oecologia, 142, 70–82, https://doi.org/10.1007/s00442-004-1702-4, 2005.
Krystek, M. and Anton, M.: A weighted total least-squares algorithm for fitting a straight line, Meas. Sci. Technol., 18, 3438, https://doi.org/10.1088/0957-0233/18/11/025, 2007.
Lai, C.-T., Ehleringer, J. R., Tans, P., Wofsy, S. C., Urbanski, S. P., and Hollinger, D. Y.: Estimating photosynthetic 13C discrimination in terrestrial CO2 exchange from canopy to regional scales, Global Biogeochem. Cy., 18, gB1041, https://doi.org/10.1029/2003GB002148, 2004.
Levin, I., Bergamaschi, P., Dörr, H., and Trapp, D.: Stable isotopic signature of methane from major sources in Germany, Chemosphere, proceedings of the NATO advanced research workshop, 26, 161–177, https://doi.org/10.1016/0045-6535(93)90419-6, 1993.
Lin, J., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., and Grainger, C. A.: A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model, J. Geophys. Res., 108, 17 pp., https://doi.org/10.1029/2002JD003161, 2003.
Lloyd, J. and Farquhar, G. D.: 13C discrimination during CO2 assimilation by the terrestrial biosphere, Oecologia, 99, 201–215, 1994.
Lopez, M., Schmidt, M., Delmotte, M., Colomb, A., Gros, V., Janssen, C., Lehman, S. J., Mondelain, D., Perrussel, O., Ramonet, M., Xueref-Remy, I., and Bousquet, P.: CO, NOx and 13CO2 as tracers for fossil fuel CO2: results from a pilot study in Paris during winter 2010, Atmos. Chem. Phys., 13, 7343–7358, https://doi.org/10.5194/acp-13-7343-2013, 2013.
Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X., Dunn, A. L., Lin, J. C., Gerbig, C., Munger, J. W., Chow, V. Y., and Gottlieb, E. W.: A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM), Global Biogeochem. Cy., 22, https://doi.org/10.1029/2006GB002735, 2008.
Marland, G., Pielke Sr., R. A., Apps, M., Avissar, R., Betts, R. A., Davis, K. J., Frumhoff, P. C., Jackson, S. T., Joyce, L. A., Kauppi, P., Katzenberger, J., MacDicken, K. G., Neilson, R. P., Niles, J. O., Niyogi, D. S., Norby, R. J., Pena, N., Sampson, N., and Xue, Y.: The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy, Clim. Policy, 3, 149–157, https://doi.org/10.3763/cpol.2003.0318, 2003.
McManus, J. B., Nelson, D. D., and Zahniser, M. S.: Long-term continuous sampling of 12CO2, 13CO2 and 12C18O16O in ambient air with a quantum cascade laser spectrometer, Isot. Environ. Healt. S., 46, 49–63, https://doi.org/10.1080/10256011003661326, 2010.
Miller, J. B. and Tans, P. P.: Calculating isotopic fractionation from atmospheric measurements at various scales, Tellus, 55, 207–214, 2003.
Mook, W. G.: Environmental isotopes in the hydrological cycle – Principles and applications, Technical Documents in Hydrology, I, 2000.
Mook, W. G., Koopmans, M., Carter, A. F., and Keeling, C. D.: Seasonal, latitudinal, and secular variations in the abundance and isotopic ratios of atmospheric carbon dioxide: 1. Results from land stations, J. Geophys. Res., 88, 10915–10933, https://doi.org/10.1029/JC088iC15p10915, 1983.
Moore, J. and Jacobson, A. D.: Seasonally varying contributions to urban CO2 in the Chicago, Illinois, USA region: Insights from a high-resolution CO2 concentration and δ13C record, Elementa: Science of the Anthropocene, 3, 000052, https://doi.org/10.12952/journal.elementa.000052, 2015.
Newman, S., Xu, X., Gurney, K. R., Hsu, Y. K., Li, K. F., Jiang, X., Keeling, R., Feng, S., O'Keefe, D., Patarasuk, R., Wong, K. W., Rao, P., Fischer, M. L., and Yung, Y. L.: Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity, Atmos. Chem. Phys., 16, 3843-3863, https://doi.org/10.5194/acp-16-3843-2016, 2016.
Ogée, J., Peylin, P., Cuntz, M., Bariac, T., Brunet, Y., Berbigier, P., Richard, P., and Ciais, P.: Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: An error propagation analysis with 13CO2 and CO18O data, Global Biogeochem. Cy., 18, gB2019, https://doi.org/10.1029/2003GB002166, 2004.
Pataki, D. E.: The application and interpretation of Keeling plots in terrestrial carbon cycle research, Global Biogeochem. Cy., 17, 1022, https://doi.org/10.1029/2001GB001850, 2003.
Röckmann, T., Eyer, S., van der Veen, C., Popa, M. E., Tuzson, B., Monteil, G., Houweling, S., Harris, E., Brunner, D., Fischer, H., Zazzeri, G., Lowry, D., Nisbet, E. G., Brand, W. A., Necki, J. M., Emmenegger, L., and Mohn, J.: In-situ observations of the isotopic composition of methane at the Cabauw tall tower site, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-60, in review, 2016.
Rödenbeck, C.: Estimating CO2 sources and sinks from atmospheric mixing ratio measurements using a global inversion of atmospheric transport, http://www.bgc-jena.mpg.de/bgc-systems/pmwiki2/uploads/Publications/6.pdf (last access: 21 July 2016), 2005.
Salmon, Y., Buchmann, N., and Barnard, R. L.: Response of δ13C in plant and soil respiration to a water pulse, Biogeosciences Discuss., 8, 4493–4527, https://doi.org/10.5194/bgd-8-4493-2011, 2011.
Schmidt, M.: Messung und Bilanzierung anthropogener Treibhausgase in Deutschland, Dissertation, Universität Heidelberg, Heidelberg, 1999.
Schumacher, M., Werner, R. A., Meijer, H. A. J., Jansen, H. G., Brand, W. A., Geilmann, H., and Neubert, R. E. M.: Oxygen isotopic signature of CO2 from combustion processes, Atmos. Chem. Phys., 11, 1473–1490, https://doi.org/10.5194/acp-11-1473-2011, 2011.
Steinbach, J., Gerbig, C., Rödenbeck, C., Karstens, U., Minejima, C., and Mukai, H.: The CO2 release and Oxygen uptake from Fossil Fuel Emission Estimate (COFFEE) dataset: effects from varying oxidative ratios, Atmos. Chem. Phys., 11, 6855–6870, https://doi.org/10.5194/acp-11-6855-2011, 2011.
Sturm, P., Leuenberger, M., Valentino, F. L., Lehmann, B., and Ihly, B.: Measurements of CO2, its stable isotopes, O2/N2, and 222Rn at Bern, Switzerland, Atmos. Chem. Phys., 6, 1991–2004, https://doi.org/10.5194/acp-6-1991-2006, 2006.
Torn, M. S., Biraud, S. C., Still, C. J., Riley, W. J., and Berry, J. A.: Seasonal and interannual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains, Tellus B, 63, 181–195, https://doi.org/10.1111/j.1600-0889.2010.00519.x, 2011.
Tuzson, B., Zeeman, M., Zahniser, M., and Emmenegger, L.: Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements, Infrared Physics and Technology, 51, 198–206, https://doi.org/10.1016/j.infrared.2007.05.006, 2008.
Vardag, S. N., Hammer, S., O'Doherty, S., Spain, T. G., Wastine, B., Jordan, A., and Levin, I.: Comparisons of continuous atmospheric CH4, CO2 and N2O measurements – results from a travelling instrument campaign at Mace Head, Atmos. Chem. Phys., 14, 8403–8418, https://doi.org/10.5194/acp-14-8403-2014, 2014.
Vardag, S. N., Hammer, S., Sabasch, M., Griffith, D. W. T., and Levin, I.: First continuous measurements of δ18O-CO2 in air with a Fourier transform infrared spectrometer, Atmos. Meas. Tech., 8, 579–592, https://doi.org/10.5194/amt-8-579-2015, 2015a.
Vardag, S. N., Gerbig, C., Janssens-Maenhout, G., and Levin, I.: Estimation of continuous anthropogenic CO2: model-based evaluation of CO2, CO, δ13C(CO2) and Δ14C(CO2) tracer methods, Atmos. Chem. Phys., 15, 12705–12729, https://doi.org/10.5194/acp-15-12705-2015, 2015b.
Vogel, F. R., Hammer, S., Steinhof, A., Kromer, B., and Levin, I.: Implication of weekly and diurnal 14C calibration on hourly estimates of CO-based fossil fuel CO2 at a moderately polluted site in southwestern Germany, Tellus B, 62, 512–520, https://doi.org/10.1111/j.1600-0889.2010.00477.x, 2010.
Vogel, F. R., Huang, L., Ernst, D., Giroux, L., Racki, S., and Worthy, D. E. J.: Evaluation of a cavity ring-down spectrometer for in situ observations of 13CO2, Atmos. Meas. Tech., 6, 301–308, https://doi.org/10.5194/amt-6-301-2013, 2013.
White, J., Vaughn, B., and Michel, S.: Stable Isotopic Composition of Atmospheric Carbon Dioxide (13C and 18O) from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1990–2014, ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2c13/flask/ (last access: 16 March 2016), 2015.
Widory, D., Proust, E., Bellenfant, G., and Bour, O.: Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO2 levels: The added value of the isotope (δ13C- and δ18O-CO2; δ13C- and δD-CH4) approach, Waste Manage., 32, 1685–1692, 2012.
Zobitz, J., Keener, J., Schnyder, H., and Bowling, D.: Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research, Esevier-Agricultural and Forest Meteorology, 136, 2006.
Short summary
Using a synthetic dataset, we show how to best determine the mean source signature, δS, at high temporal resolution using continuous CO2 and δ13C(CO2) data. We apply this method to measured data from Heidelberg and find a distinct seasonal cycle of δS. Disentangling this record into its source components requires the isotopic end members of CO2 from the biosphere and those from the fuel mix. They can be estimated from the δS record, but only when their relative share is close to 100 %.
Using a synthetic dataset, we show how to best determine the mean source signature, δS, at high...
Altmetrics
Final-revised paper
Preprint