Articles | Volume 13, issue 22
Biogeosciences, 13, 6229–6245, 2016
https://doi.org/10.5194/bg-13-6229-2016
Biogeosciences, 13, 6229–6245, 2016
https://doi.org/10.5194/bg-13-6229-2016
Research article
18 Nov 2016
Research article | 18 Nov 2016

Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw

Henk-Jan van der Kolk et al.

Related authors

PVN 1.0: using dynamic PFTs and restoration scenarios to model CO2 and CH4 emissions in peatlands
Tanya Juliette Rebecca Lippmann, Monique Heijmans, Han Dolman, Ype van der Velde, Dimmie Hendriks, and Ko van Huissteden
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-143,https://doi.org/10.5194/gmd-2022-143, 2022
Preprint withdrawn
Short summary
Cutting peatland CO2 emissions with rewetting measures
Jim Boonman, Mariet Margaretha Hefting, Corine Julia Annette van Huissteden, Merit van den Berg, Jakobus van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-276,https://doi.org/10.5194/bg-2021-276, 2021
Revised manuscript under review for BG
Short summary
Plant trait response of tundra shrubs to permafrost thaw and nutrient addition
Maitane Iturrate-Garcia, Monique M. P. D. Heijmans, J. Hans C. Cornelissen, Fritz H. Schweingruber, Pascal A. Niklaus, and Gabriela Schaepman-Strub
Biogeosciences, 17, 4981–4998, https://doi.org/10.5194/bg-17-4981-2020,https://doi.org/10.5194/bg-17-4981-2020, 2020
Short summary
Permafrost seasonal surface changes revealed from Sentinel-1 InSAR time-series, Yamal peninsula
Kanayim Teshebaeva, Ko J. van Huissteden, Alexander V. Puzanov, Dmitry N. Balykin, Anton I. Sinitsky, and Nelley Kovalevskaya
Proc. IAHS, 382, 183–187, https://doi.org/10.5194/piahs-382-183-2020,https://doi.org/10.5194/piahs-382-183-2020, 2020
Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging
Marinka E. B. van Puijenbroek, Corjan Nolet, Alma V. de Groot, Juha M. Suomalainen, Michel J. P. M. Riksen, Frank Berendse, and Juul Limpens
Biogeosciences, 14, 5533–5549, https://doi.org/10.5194/bg-14-5533-2017,https://doi.org/10.5194/bg-14-5533-2017, 2017
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
Diazotrophy as a key driver of the response of marine net primary productivity to climate change
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022,https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations
Negar Vakilifard, Richard G. Williams, Philip B. Holden, Katherine Turner, Neil R. Edwards, and David J. Beerling
Biogeosciences, 19, 4249–4265, https://doi.org/10.5194/bg-19-4249-2022,https://doi.org/10.5194/bg-19-4249-2022, 2022
Short summary
Acidification, deoxygenation, and nutrient and biomass declines in a warming Mediterranean Sea
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022,https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022,https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models
Taraka Davies-Barnard, Sönke Zaehle, and Pierre Friedlingstein
Biogeosciences, 19, 3491–3503, https://doi.org/10.5194/bg-19-3491-2022,https://doi.org/10.5194/bg-19-3491-2022, 2022
Short summary

Cited articles

Anisimov, O. A. and Nelson, F. E.: Permafrost zonationa and climate change in the northern hemisphere: results from transient general circulation models, Climatic Change, 35, 241–258, 1997.
Berendse, F.: Litter decomposition – a neglected component of plant fitness, J. Ecol., 82, 187–190, 1994a.
Berendse, F.: Competition between plant populations at low and high nutrient supplies, Oikos, 71, 253–260, 1994b.
Bintanja, R. and Selten, F. M.: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat, Nature, 509, 479–482, 2014.
Björk, R. G., Majdi, H., Klemedtsson, L., Lewis-Jonsson, L., and Molau, U.: Long-term warming effects on root morphology, root mass distribution, and microbial activity in two dry tundra plant communities in northern Sweden, New Phytol., 176, 862–873, 2007.
Download
Short summary
Changes in tundra vegetation structure may amplify Arctic climate warming. Our simulations with a new tundra vegetation model suggest that precipitation increases favour grass abundance, whereas warming favours shrub dominance. However, abrupt permafrost thaw initiating wetland formation leads to grass dominance. Our simulations show that a wetter tundra, due to increased precipitation or abrupt permafrost thaw, could result in local shrub decline instead of the widely expected shrub expansion.
Altmetrics
Final-revised paper
Preprint