Articles | Volume 13, issue 24
https://doi.org/10.5194/bg-13-6669-2016
https://doi.org/10.5194/bg-13-6669-2016
Research article
 | 
21 Dec 2016
Research article |  | 21 Dec 2016

Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils

Ben Bond-Lamberty, A. Peyton Smith, and Vanessa Bailey

Related authors

Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024,https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Impact of the numerical solution approach of a plant hydrodynamic model (v0.1) on vegetation dynamics
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022,https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Ideas and perspectives: Enhancing research and monitoring of carbon pools and land-to-atmosphere greenhouse gases exchange in developing countries
Dong-Gill Kim, Ben Bond-Lamberty, Youngryel Ryu, Bumsuk Seo, and Dario Papale
Biogeosciences, 19, 1435–1450, https://doi.org/10.5194/bg-19-1435-2022,https://doi.org/10.5194/bg-19-1435-2022, 2022
Short summary
AWESOME: Archive for Water Erosion and Sediment Outflow MEasurements
Jinshi Jian, Xuan Du, Juying Jiao, Xiaohua Ren, Karl Auerswald, Ryan Stewart, Zeli Tan, Jianlin Zhao, Daniel L. Evans, Guangju Zhao, Nufang Fang, Wenyi Sun, Chao Yue, and Ben Bond-Lamberty
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-87,https://doi.org/10.5194/essd-2022-87, 2022
Manuscript not accepted for further review
Short summary
A permafrost implementation in the simple carbon–climate model Hector v.2.3pf
Dawn L. Woodard, Alexey N. Shiklomanov, Ben Kravitz, Corinne Hartin, and Ben Bond-Lamberty
Geosci. Model Dev., 14, 4751–4767, https://doi.org/10.5194/gmd-14-4751-2021,https://doi.org/10.5194/gmd-14-4751-2021, 2021
Short summary

Related subject area

Biogeochemistry: Soils
Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024,https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Technical note: An open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water
Sahiti Bulusu, Cristina Prieto García, Helen E. Dahlke, and Elad Levintal
Biogeosciences, 21, 3007–3013, https://doi.org/10.5194/bg-21-3007-2024,https://doi.org/10.5194/bg-21-3007-2024, 2024
Short summary
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grassland
Violeta Mendoza-Martinez, Scott L. Collins, and Jennie R. McLaren
Biogeosciences, 21, 2655–2667, https://doi.org/10.5194/bg-21-2655-2024,https://doi.org/10.5194/bg-21-2655-2024, 2024
Short summary
Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh
Sean Fettrow, Andrew Wozniak, Holly A. Michael, and Angelia L. Seyfferth
Biogeosciences, 21, 2367–2384, https://doi.org/10.5194/bg-21-2367-2024,https://doi.org/10.5194/bg-21-2367-2024, 2024
Short summary
Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024,https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary

Cited articles

Alexander, H. D. and Mack, M. C.: A canopy shift in interior Alaskan boreal forests: consequences for above- and belowground carbon and nitrogen pools during post-fire succession, Ecosystems, 19, 98–114, https://doi.org/10.1007/s10021-015-9920-7, 2016.
Allaire, S. E., Lange, S. F., Lafond, J. A., Pelletier, B., Cambouris, A. N., and Dutilleul, P.: Multiscale spatial variability of CO2 emissions and correlations with physico-chemical soil properties, Geoderma, 170, 251–260, https://doi.org/10.1016/j.geoderma.2011.11.019, 2012.
Bailey, V. L., Bilskis, C. L., Fansler, S. J., McCue, L. A., Smith, J. L., and Konopka, A.: Measurements of microbial community activities in individual soil macroaggregates, Soil Biol. Biochem., 48, 192–195, https://doi.org/10.1016/j.soilbio.2012.01.004, 2012.
Barber, V. A., Juday, G. P., and Finney, B. P.: Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress, Nature, 405, 668–673, 2000.
Bieniek, P. A., Walsh, J. E., Thoman, R. L., and Bhatt, U. S.: Using climate divisions to analyze variations and trends in Alaska temperature and precipitation, J. Climate, 27, 2800–2818, https://doi.org/10.1175/JCLI-D-13-00342.1, 2014.
Download
Short summary
We used a laboratory experiment to examine how climate change and permafrost melting might alter soils in high-latitude regions. Soils were subjected to two temperatures and drought, and gas emissions were monitored. Carbon dioxide fluxes were influenced by temperature, water, and soil nitrogen, while methane emissions were much smaller and linked only with nitrogen. This suggests that such soils may be very sensitive to changes in moisture as discontinuous permafrost thaws in interior Alaska.
Altmetrics
Final-revised paper
Preprint