Research article
06 Apr 2017
Research article | 06 Apr 2017
Potential sources of variability in mesocosm experiments on the response of phytoplankton to ocean acidification
Maria Moreno de Castro et al.
Related authors
The Coastal Observing System for Northern and Arctic Seas (COSYNA)
Burkard Baschek, Friedhelm Schroeder, Holger Brix, Rolf Riethmüller, Thomas H. Badewien, Gisbert Breitbach, Bernd Brügge, Franciscus Colijn, Roland Doerffer, Christiane Eschenbach, Jana Friedrich, Philipp Fischer, Stefan Garthe, Jochen Horstmann, Hajo Krasemann, Katja Metfies, Lucas Merckelbach, Nino Ohle, Wilhelm Petersen, Daniel Pröfrock, Rüdiger Röttgers, Michael Schlüter, Jan Schulz, Johannes Schulz-Stellenfleth, Emil Stanev, Joanna Staneva, Christian Winter, Kai Wirtz, Jochen Wollschläger, Oliver Zielinski, and Friedwart Ziemer
Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017,https://doi.org/10.5194/os-13-379-2017, 2017
Short summary
Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling
Markus Schartau, Philip Wallhead, John Hemmings, Ulrike Löptien, Iris Kriest, Shubham Krishna, Ben A. Ward, Thomas Slawig, and Andreas Oschlies
Biogeosciences, 14, 1647–1701, https://doi.org/10.5194/bg-14-1647-2017,https://doi.org/10.5194/bg-14-1647-2017, 2017
Short summary
Maximum sinking velocities of suspended particulate matter in a coastal transition zone
Joeran Maerz, Richard Hofmeister, Eefke M. van der Lee, Ulf Gräwe, Rolf Riethmüller, and Kai W. Wirtz
Biogeosciences, 13, 4863–4876, https://doi.org/10.5194/bg-13-4863-2016,https://doi.org/10.5194/bg-13-4863-2016, 2016
Short summary
Related subject area
The role of sediment-induced light attenuation on primary production during Hurricane Gustav (2008)
Zhengchen Zang, Z. George Xue, Kehui Xu, Samuel J. Bentley, Qin Chen, Eurico J. D'Sa, Le Zhang, and Yanda Ou
Biogeosciences, 17, 5043–5055, https://doi.org/10.5194/bg-17-5043-2020,https://doi.org/10.5194/bg-17-5043-2020, 2020
Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model
Taylor A. Shropshire, Steven L. Morey, Eric P. Chassignet, Alexandra Bozec, Victoria J. Coles, Michael R. Landry, Rasmus Swalethorp, Glenn Zapfe, and Michael R. Stukel
Biogeosciences, 17, 3385–3407, https://doi.org/10.5194/bg-17-3385-2020,https://doi.org/10.5194/bg-17-3385-2020, 2020
Short summary
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020,https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019,https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Biogeochemical response of the Mediterranean Sea to the transient SRES-A2 climate change scenario
Camille Richon, Jean-Claude Dutay, Laurent Bopp, Briac Le Vu, James C. Orr, Samuel Somot, and François Dulac
Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019,https://doi.org/10.5194/bg-16-135-2019, 2019
Short summary
Causes of simulated long-term changes in phytoplankton biomass in the Baltic proper: a wavelet analysis
Jenny Hieronymus, Kari Eilola, Magnus Hieronymus, H. E. Markus Meier, Sofia Saraiva, and Bengt Karlson
Biogeosciences, 15, 5113–5129, https://doi.org/10.5194/bg-15-5113-2018,https://doi.org/10.5194/bg-15-5113-2018, 2018
Short summary
Modelling N2 fixation related to Trichodesmium sp.: driving processes and impacts on primary production in the tropical Pacific Ocean
Cyril Dutheil, Olivier Aumont, Thomas Gorguès, Anne Lorrain, Sophie Bonnet, Martine Rodier, Cécile Dupouy, Takuhei Shiozaki, and Christophe Menkes
Biogeosciences, 15, 4333–4352, https://doi.org/10.5194/bg-15-4333-2018,https://doi.org/10.5194/bg-15-4333-2018, 2018
Short summary
Seasonal patterns in phytoplankton biomass across the northern and deep Gulf of Mexico: a numerical model study
Fabian A. Gomez, Sang-Ki Lee, Yanyun Liu, Frank J. Hernandez Jr., Frank E. Muller-Karger, and John T. Lamkin
Biogeosciences, 15, 3561–3576, https://doi.org/10.5194/bg-15-3561-2018,https://doi.org/10.5194/bg-15-3561-2018, 2018
Short summary
Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach
Anne Marx, Marcus Conrad, Vadym Aizinger, Alexander Prechtel, Robert van Geldern, and Johannes A. C. Barth
Biogeosciences, 15, 3093–3106, https://doi.org/10.5194/bg-15-3093-2018,https://doi.org/10.5194/bg-15-3093-2018, 2018
Short summary
Modelling potential production of macroalgae farms in UK and Dutch coastal waters
Johan van der Molen, Piet Ruardij, Karen Mooney, Philip Kerrison, Nessa E. O'Connor, Emma Gorman, Klaas Timmermans, Serena Wright, Maeve Kelly, Adam D. Hughes, and Elisa Capuzzo
Biogeosciences, 15, 1123–1147, https://doi.org/10.5194/bg-15-1123-2018,https://doi.org/10.5194/bg-15-1123-2018, 2018
Short summary
Implications of sea-ice biogeochemistry for oceanic production and emissions of dimethyl sulfide in the Arctic
Hakase Hayashida, Nadja Steiner, Adam Monahan, Virginie Galindo, Martine Lizotte, and Maurice Levasseur
Biogeosciences, 14, 3129–3155, https://doi.org/10.5194/bg-14-3129-2017,https://doi.org/10.5194/bg-14-3129-2017, 2017
Short summary
Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling
Markus Schartau, Philip Wallhead, John Hemmings, Ulrike Löptien, Iris Kriest, Shubham Krishna, Ben A. Ward, Thomas Slawig, and Andreas Oschlies
Biogeosciences, 14, 1647–1701, https://doi.org/10.5194/bg-14-1647-2017,https://doi.org/10.5194/bg-14-1647-2017, 2017
Short summary
Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese
Marco van Hulten, Rob Middag, Jean-Claude Dutay, Hein de Baar, Matthieu Roy-Barman, Marion Gehlen, Alessandro Tagliabue, and Andreas Sterl
Biogeosciences, 14, 1123–1152, https://doi.org/10.5194/bg-14-1123-2017,https://doi.org/10.5194/bg-14-1123-2017, 2017
Short summary
Marine regime shifts in ocean biogeochemical models: a case study in the Gulf of Alaska
Claudie Beaulieu, Harriet Cole, Stephanie Henson, Andrew Yool, Thomas R. Anderson, Lee de Mora, Erik T. Buitenhuis, Momme Butenschön, Ian J. Totterdell, and J. Icarus Allen
Biogeosciences, 13, 4533–4553, https://doi.org/10.5194/bg-13-4533-2016,https://doi.org/10.5194/bg-13-4533-2016, 2016
Short summary
Modeling pCO2 variability in the Gulf of Mexico
Zuo Xue, Ruoying He, Katja Fennel, Wei-Jun Cai, Steven Lohrenz, Wei-Jen Huang, Hanqin Tian, Wei Ren, and Zhengchen Zang
Biogeosciences, 13, 4359–4377, https://doi.org/10.5194/bg-13-4359-2016,https://doi.org/10.5194/bg-13-4359-2016, 2016
Short summary
Seasonal variability of the oxygen minimum zone off Peru in a high-resolution regional coupled model
Oscar Vergara, Boris Dewitte, Ivonne Montes, Veronique Garçon, Marcel Ramos, Aurélien Paulmier, and Oscar Pizarro
Biogeosciences, 13, 4389–4410, https://doi.org/10.5194/bg-13-4389-2016,https://doi.org/10.5194/bg-13-4389-2016, 2016
Short summary
Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatán, Mexico
Pei-Chuan Chuang, Megan B. Young, Andrew W. Dale, Laurence G. Miller, Jorge A. Herrera-Silveira, and Adina Paytan
Biogeosciences, 13, 2981–3001, https://doi.org/10.5194/bg-13-2981-2016,https://doi.org/10.5194/bg-13-2981-2016, 2016
Short summary
Transfer of radiocaesium from contaminated bottom sediments to marine organisms through benthic food chains in post-Fukushima and post-Chernobyl periods
Roman Bezhenar, Kyung Tae Jung, Vladimir Maderich, Stefan Willemsen, Govert de With, and Fangli Qiao
Biogeosciences, 13, 3021–3034, https://doi.org/10.5194/bg-13-3021-2016,https://doi.org/10.5194/bg-13-3021-2016, 2016
Short summary
The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble
P. R. Halloran, B. B. B. Booth, C. D. Jones, F. H. Lambert, D. J. McNeall, I. J. Totterdell, and C. Völker
Biogeosciences, 12, 4497–4508, https://doi.org/10.5194/bg-12-4497-2015,https://doi.org/10.5194/bg-12-4497-2015, 2015
Short summary
Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model
S. Dutkiewicz, A. E. Hickman, O. Jahn, W. W. Gregg, C. B. Mouw, and M. J. Follows
Biogeosciences, 12, 4447–4481, https://doi.org/10.5194/bg-12-4447-2015,https://doi.org/10.5194/bg-12-4447-2015, 2015
Short summary
Cited articles
Adamson, M. and Morozov, A.: Defining and detecting structural sensitivity in biological models: developing a new framework, J. Math. Biol., 69, 1815–1848, https://doi.org/10.1007/s00285-014-0753-3, 2014.
Antia, N. J., MacAllistel, C. D., Parsons, T. R., Stephens, K., and Strickland, J. D. H.: Further measurements of primary production using a large-volume plastic sphere, Limnol. Oceanogr., 8, 166–173, https://doi.org/10.4319/lo.1963.8.2.0166, 1963.
Artioli, Y., Blackford, J. C., Nondal, G., Bellerby, R. G. J., Wakelin, S. L., Holt, J. T., Butenschön, M., and Allen, J. I.: Heterogeneity of impacts of high CO
2 on the North Western European Shelf, Biogeosciences, 11, 601–612, https://doi.org/10.5194/bg-11-601-2014, 2014.
Biddanda, B. and Benner, R.: Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton, Limnol. Oceanogr., 42, 506–518, https://doi.org/10.4319/lo.1997.42.3.0506, 1997.
Brennan, A.: Necessary and Sufficient Conditions, in: The Stanford Encyclopedia of Philosophy, edited by: Zalta, E. N., spring 2012 edn., 2012.
Broadgate, W., Riebesell, U., Armstrong, C., Brewer, P., Denman, K., Feely, R., Gao, K., Gatusso, J. P., Isensee, K., Kleypas, J., Laffoley, D., Orr, J., Pöetner, H. O., de Rezende, C. E., Schimdt, D., Urban, E., Waite, A., and Valdés, L.: Ocean acidification summary for policymakers – Third Symposium on the ocean in a high-CO
2 world, International Geosphere-Biosphere Programme, Sweden, p. 26, 2013.
Brush, M., Brawley, J., Nixon, S., and Kremer, J.: Modeling phytoplankton production: problems with the Eppley curve and an empirical alternative, Mar. Ecol. Prog. Ser., 238, 31–45, https://doi.org/10.3354/meps238031, 2002.
Chantrasmi, T. and Iaccarino, G.: Forward and backward uncertainty propagation for discontinuous system response using the Pade-Legendre method, International Journal for Uncertainty Quantification, 2, 125–143, 2012.
Chen, C. Y.: Effect of pH on the growth and carbon uptake of marine phytoplankton, Mar. Ecol. Prog. Ser., 109, 83–94, 1994.
Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, Lawrence Erlbaum Associates, Hillsdale, NJ, 2nd edn., 1988.
Cornwall, C. and Hurd, C.: Experimental design in ocean acidification research: problems and solutions, ICES Journal of Marine Science, 73, 572–581, https://doi.org/10.1093/icesjms/fsv118, 2015.
Denman, K. L. and Gargett, A. E.: Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean, Limnol. Oceanogr., 28, 801–815, 1983.
Droop, M. R.: Some thoughts on nutrient limitation in algae, J. Phycol., 9, 264–272, https://doi.org/10.1111/j.1529-8817.1973.tb04092.x, 1973.
Egge, J. K., Thingstad, T. F., Larsen, A., Engel, A., Wohlers, J., Bellerby, R. G. J., and Riebesell, U.: Primary production during nutrient-induced blooms at elevated CO
2 concentrations, Biogeosciences, 6, 877–885, https://doi.org/10.5194/bg-6-877-2009, 2009.
Eggers, S. L., Lewandowska, A. M., Barcelos e Ramos, J., Blanco-Ameijeiras, S., Gallo, F., and Matthiessen, B.: Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification, Glob. Change Biol., 20, 713–723, https://doi.org/10.1111/gcb.12421, 2014.
Engel, A., Schulz, K. G., Riebesell, U., Bellerby, R., Delille, B., and Schartau, M.: Effects of CO
2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II), Biogeosciences, 5, 509–521, https://doi.org/10.5194/bg-5-509-2008, 2008.
Engel, A., Cisternas Novoa, C., Wurst, M., Endres, S., Tang, T., Schartau, M., and Lee, C.: No detectable effect of CO
2 on elemental stoichiometry of
Emiliania huxleyi in nutrient-limited, acclimated continuous cultures, Mar. Ecol. Prog. Ser., 507, 15–30, 2014.
Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Belille, B., Gattuso, J.-P., Harlay, J., Heemann, C., Hoffmann, L., Jacquet, s., Nejstgaard, J., Pizay, M. -D., Rochelle-Newall, E., Scheider, U., Terbrueggen, A., and Riebesell, U.: Testing the direct effect of CO
2 concentration on a bloom of the coccolithophorid
Emiliania huxleyi in mesocosm experiments, Limnol. Oceanogr., 50, 493–507, 2005.
Eppley, R. W.: Temperature and phytoplankton growth in the sea, Fishery Bulletin, 1972.
Fussmann, G. F. and Blasius, B.: Community response to enrichment is highly sensitive to model structure, Biol. Lett., 1, 9–12, https://doi.org/10.1098/rsbl.2004.0246, 2005.
Gao, K., Helbling, E. W., Häder, D. P., and Hutchins, D. A.: Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming, Mar. Ecol. Prog. Ser., 470, 167–189, https://doi.org/10.3354/meps10043, 2012.
Geider, R., Macintyre, Graziano, L., and McKay, R. M.: Responses of the photosynthetic apparatus of
Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation, European Journal of Phycology, 33, 315–332, https://doi.org/10.1080/09670269810001736813, 1998a.
Geider, R. J., Maclntyre, H. L., and Kana, T. M.: A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature, Limnol. Oceanogr., 43, 679–694, https://doi.org/10.4319/lo.1998.43.4.0679, 1998b.
JCGM: Guide to the Expression of Uncertainty in Measurement (GUM 1995 with minor corrections) by a Joint Committee for Guides in Metrology (JCGM 100:2008), available at: http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf, 2008a.
JCGM: Supplement 1 to the 'Guide to the Expression of Uncertainty in Measurement – Propagation of distributions using a Monte Carlo method (JCGM 101:2008), available at: http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf, 2008b.
Jones, B. M., Iglesias-Rodriguez, M. D., Skipp, P. J., Edwards, R. J., Greaves, M. J., Jeremy, R. Y, Elderfield, H., and O'Connor, D.: Responses of the
Emiliania huxleyi Proteome to Ocean Acidification, PLoS ONE, 8, 2857–2869, https://doi.org/10.1371/journal.pone.0061868, 2014.
Kim, J.-M., Lee, K., Shin, K., Kang, J.-H., Lee, H.-W., Kim, M., Jang, P.-G., and Jang, M.-C.: The effect of seawater CO
2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment, Limnol. Oceanogr., 51, 1629–1636, 2006.
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J.-P.: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, Glob. Change Biol., 19, 1884–1896, https://doi.org/10.1111/gcb.12179, 2013.
Larssen, T., Huseby, R. B., Cosby, B. J., Høst, G., Høgåsen, T., and Aldrin, M.: Forecasting acidification effects using a Bayesian calibration and uncertainty propagation approach, Environ. Sci. Technol., 40, 7841–7847, 2006.
Ley, A. C. and Mauzerall, D. C.: Absolute absorption cross-sections for photosystem II and the minmum quantum requirement for photosynthesis in chlorella vulgaris, Biochimica et Biophysica Acta, 680, 95–106, 1982.
Litchman, E., Klausmeier, C. A., Schofield, O., and Falkowski, P.: The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level, Ecol. Lett., 10, 1170–1181, 2007.
Miller, R. G. J.: Beyond ANOVA, Basics of Applied Statistics, Wiley, New York – Chichester – Brisbane – Toronto – Singapore, 1988.
Moreno de Castro, M.: Tolerance of mesocosm experiments to time-varying uncertainties, in preparation, 2017.
Nagelkerken, I. and Connell, S. D.: Global alteration of ocean ecosystem functioning due to increasing human CO
2 emissions, P. Natl. Acad. Sci., 112, 13272–13277, https://doi.org/10.1073/pnas.1510856112, 2015.
Pahlow, M.: Linking chlorophyll–nutrient dynamics to the Redfield N:C ratio with a model of optimal phytoplankton growth, Mar. Ecol. Prog. Ser., 287, 33–43, 2005.
PeECE II team: PeECE II – Pelagic Ecosystem CO
2 Enrichment Study, Raunefjord, Bergen, Norway, 2003, PANGAEA, available at: https://doi.org/10.1594/PANGAEA.723045, 2003.
PeECE III team: PeECE II – Pelagic Ecosystem CO
2 Enrichment Study, Raunefjord, Bergen, Norway, 2005, PANGAEA, available at: https://doi.org/https://doi.org/10.1594/PANGAEA.726955, 2005.
Paul, C., Matthiessen, B., and Sommer, U.: Warming, but not enhanced CO
2 concentration, quantitatively and qualitatively affects phytoplankton biomass, Mar. Ecol. Prog. Ser., 528, 39–51, https://doi.org/10.3354/meps11264, 2015.
Peterman, R. M.: The importance of reporting statistical power: the forest decline and acidic deposition example, Ecology, 71, 2024–2027, 1990.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 3 April 2017), 2016.
Raven, J. and Beardall, J.: Carbon Acquisition Mechanisms of Algae: Carbon Dioxide Diffusion and Carbon Dioxide Concentrating Mechanisms, in: Photosynthesis in Algae, edited by: Larkum, A., Douglas, S., and Raven, J., vol. 14 of Advances in Photosynthesis and Respiration, 225–244, Springer Netherlands, https://doi.org/10.1007/978-94-007-1038-2_11, 2003.
Raven, J. A.: Nutrient transport in microalgae, Adv. Microb. Physiol., 21, 47–226, 1980.
Riebesell, U. and Tortell, P. D.: Effects of Ocean Acidification on Pelagic Organisms and Ecosystems, in: Ocean Acidification, edited by: Gattuso, J.-P. and Hansson, L., 99–121, Oxford University Press, Oxford, UK, 2011.
Riebesell, U., Wolf-Gladrow, D. A., and Smetacek, V.: Carbon dioxide limitation of marine phytoplankton growth rates, Nature, 361, 249–251, https://doi.org/10.1038/361249a0, 1993.
Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., and Morel, F. M. M.: Reduced calcification of marine plankton in response to increased atmospheric, Nature, 407, 364–367, https://doi.org/10.1038/35030078, 2000.
Riebesell, U., Schulz, K. G., Bellerby, R. G. J., Botros, M., Fritsche, P., Meyerhofer, M., Neill, C., Nondal, G., Oschlies, A., Wohlers, J., and Zollner, E.: Enhanced biological carbon consumption in a high CO
2 ocean, Nature, 450, 545–548, https://doi.org/10.1038/nature06267, 2007.
Riebesell, U., Bellerby, R. G. J., Grossart, H.-P., and Thingstad, F.: Mesocosm CO
2 perturbation studies: from organism to community level, Biogeosciences, 5, 1157–1164, https://doi.org/10.5194/bg-5-1157-2008, 2008.
Rost, B., Riebesell, U., Burkhardt, S., and Sueltemeyer, D.: Carbon acquisition of bloom-forming marine phytoplankton, Limnol. Oceanogr., 48, 55–67, 2003.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The Oceanic Sink for Anthropogenic CO
2, Science, 305, 367–371, https://doi.org/10.1126/science.1097403, 2004.
Scalley, M. L. and Baker, D.: Protein folding kinetics exhibit an Arrhenius temperature dependence when corrected for the temperature dependence of protein stability, P. Natl. Acad. Sci., 94, 10636–10640, https://doi.org/10.1073/pnas.94.20.10636, 1997.
Schartau, M., Engel, A., Schröter, J., Thoms, S., Völker, C., and Wolf-Gladrow, D.: Modelling carbon overconsumption and the formation of extracellular particulate organic carbon, Biogeosciences, 4, 433–454, https://doi.org/10.5194/bg-4-433-2007, 2007.
Scheinin, M., Riebesell, U., Rynearson, T. A., Lohnbeck, K. T., and Collins, S.: Experimental evolution gone wild, J. R. Soc. Interface, 12, https://doi.org/10.1098/rsif.2015.0056, 2015.
Schluter, L., Lohbeck, K. T., Gutowska, M. A., Groger, J. A., Riebesell, U., and Reusch, T. B. H.: Adaptation of a globally important coccolithophore to ocean warming and acidification, Nature Climate Change, 4, 1024–1030, https://doi.org/10.1038/nclimate2379, 2014.
Schulz, K. G., Riebesell, U., Bellerby, R. G. J., Biswas, H., Meyerhöfer, M., Müller, M. N., Egge, J. K., Nejstgaard, J. C., Neill, C., Wohlers, J., and Zöllner, E.: Build-up and decline of organic matter during PeECE III, Biogeosciences, 5, 707–718, https://doi.org/10.5194/bg-5-707-2008, 2008.
Sommer, U., Paul, C., and Moustaka-Gouni, M.: Warming and Ocean Acidification Effects on Phytoplankton – From Species Shifts to Size Shifts within Species in a Mesocosm Experiment, PLOS ONE, 10, 39–51, https://doi.org/10.1371/journal.pone.0125239, 2015.
Tanaka, T., Thingstad, T. F., Løvdal, T., Grossart, H.-P., Larsen, A., Allgaier, M., Meyerhöfer, M., Schulz, K. G., Wohlers, J., Zöllner, E., and Riebesell, U.: Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different
pCO
2 levels in a mesocosm study, Biogeosciences, 5, 669–678, https://doi.org/10.5194/bg-5-669-2008, 2008.
Tortell, P. D., Payne, C. D., Li, Y., Trimborn, S., Rost, B., Smith, W. O., Riesselman, C., Dunbar, R. B., Sedwick, P., and DiTullio, G. R.: CO
2 sensitivity of Southern Ocean phytoplankton, Geophys. Res. Lett., 35, l04605, https://doi.org/10.1029/2007GL032583, 2008.
Wirtz, K. W.: Non-uniform scaling in phytoplankton growth rate due to intracellular light and
CO2 decline, J. Plankton Res., 33, 1325–1341, 2011.
Wirtz, K. W.: Mechanistic origins of variability in phytoplankton dynamics: Part I: Niche formation revealed by a Size-Based Model, Mar. Biol., 160, 2319–2335, 2013.
Wirtz, K. W. and Pahlow, M.: Dynamic chlorophyll and nitrogen:carbon regulation in algae optimizes instantaneous growth rate, Mar. Ecol. Prog. Ser., 402, 81–96, 2010.
Zondervan, I., Zeebe, R. E., Rost, B., and Riebesell, U.: Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO
2, Global Biogeochem. Cy., 15, 507–516, https://doi.org/10.1029/2000GB001321, 2001.