Articles | Volume 14, issue 23
https://doi.org/10.5194/bg-14-5281-2017
https://doi.org/10.5194/bg-14-5281-2017
Research article
 | 
29 Nov 2017
Research article |  | 29 Nov 2017

Individual and interactive effects of warming and CO2 on Pseudo-nitzschia subcurvata and Phaeocystis antarctica, two dominant phytoplankton from the Ross Sea, Antarctica

Zhi Zhu, Pingping Qu, Jasmine Gale, Feixue Fu, and David A. Hutchins

Related authors

Responses of globally important phytoplankton species to olivine dissolution products and implications for carbon dioxide removal via ocean alkalinity enhancement
David A. Hutchins, Fei-Xue Fu, Shun-Chung Yang, Seth G. John, Stephen J. Romaniello, M. Grace Andrews, and Nathan G. Walworth
Biogeosciences, 20, 4669–4682, https://doi.org/10.5194/bg-20-4669-2023,https://doi.org/10.5194/bg-20-4669-2023, 2023
Short summary
Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium
Noelle A. Held, Eric A. Webb, Matthew M. McIlvin, David A. Hutchins, Natalie R. Cohen, Dawn M. Moran, Korinna Kunde, Maeve C. Lohan, Claire Mahaffey, E. Malcolm S. Woodward, and Mak A. Saito
Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020,https://doi.org/10.5194/bg-17-2537-2020, 2020
Short summary
Light availability modulates the effects of warming in a marine N2 fixer
Xiangqi Yi, Fei-Xue Fu, David A. Hutchins, and Kunshan Gao
Biogeosciences, 17, 1169–1180, https://doi.org/10.5194/bg-17-1169-2020,https://doi.org/10.5194/bg-17-1169-2020, 2020
Short summary
How will the key marine calcifier Emiliania huxleyi respond to a warmer and more thermally variable ocean?
Xinwei Wang, Feixue Fu, Pingping Qu, Joshua D. Kling, Haibo Jiang, Yahui Gao, and David A. Hutchins
Biogeosciences, 16, 4393–4409, https://doi.org/10.5194/bg-16-4393-2019,https://doi.org/10.5194/bg-16-4393-2019, 2019
Short summary
Physiological and biochemical responses of Emiliania huxleyi to ocean acidification and warming are modulated by UV radiation
Shanying Tong, David A. Hutchins, and Kunshan Gao
Biogeosciences, 16, 561–572, https://doi.org/10.5194/bg-16-561-2019,https://doi.org/10.5194/bg-16-561-2019, 2019
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024,https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Estimates of carbon sequestration potential in an expanding Arctic fjord (Hornsund, Svalbard) affected by dark plumes of glacial meltwater
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024,https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary
An assessment of ocean alkalinity enhancement using aqueous hydroxides: kinetics, efficiency, and precipitation thresholds
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024,https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Dissolved nitric oxide in the lower Elbe Estuary and the Port of Hamburg area
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024,https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Variable contribution of wastewater treatment plant effluents to downstream nitrous oxide concentrations and emissions
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024,https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary

Cited articles

Arrigo, K. R., Robinson, D. H., Worthen, D. L., Dunbar, R. B., DiTullio, G. R., Van Woert, M., and Lizotte, M. P.: Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean, Science, 283, 365–367, 1999.
Arrigo K. R., DiTullio G. R., Dunbar R. B., Robinson D. H., Van Woert M., Worthen D. L., and Lizotte, M. P.: Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea, J. Geophys. Res.-Oceans, 105, 8827–8846, 2000.
Arrigo, K. R., van Dijken, G. L., and Bushinsky, S.: Primary production in the Southern Ocean, 1997–2006, J. Geophys. Res., 113, C08004, https://doi.org/10.1029/2007JC004551, 2008.
Arrigo, K. R., Mills, M. M., Kropuenske, L. R., van Dijken, G. L., Alderkamp, A. C., and Robinson, D. H.: Photophysiology in two major Southern Ocean phytoplankton taxa: photosynthesis and growth of Phaeocystis antarctica and Fragilariopsis cylindrus under different irradiance levels, Integr. Comp. Biol., 50, 950–966, 2010.
Bertrand, E. M., McCrow, J. P., Zheng, H., Moustafa, A., McQuaid, J., Delmont, T., Post, A., Sipler, R., Spackeen, J., Xu, K., Bronk, D., Hutchins, D. A., and Allen, A. E.: Phytoplankton- bacterial interactions mediate micronutrient colimitation in the Southern Ocean, P. Natl. Acad. Sci. USA, 112, 9938–9943, https://doi.org/10.1073/pnas.1501615112, 2015.
Download
Short summary
This study focused on the individual and interactive effects of warming and CO2 variations on the diatom Pseudo-nitzschia subcurvata and the prymnesiophyte Phaeocystis antarctica. The results showed that both optimum and maximum growth temperatures of P. subcurvata were significantly higher than those of P. antarctica. CO2 functional response curves at two temperatures showed a significant interactive effect between warming and CO2. This study can help us to predict what will happen in future.
Altmetrics
Final-revised paper
Preprint