Articles | Volume 14, issue 3
https://doi.org/10.5194/bg-14-631-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-631-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Quantifying nutrient fluxes with a new hyporheic passive flux meter (HPFM)
Julia Vanessa Kunz
CORRESPONDING AUTHOR
Helmholtz Centre for Environmental Research UFZ, Magdeburg, Germany
Michael D. Annable
University of Florida, Gainesville, Florida, USA
Jaehyun Cho
University of Florida, Gainesville, Florida, USA
Wolf von Tümpling
Helmholtz Centre for Environmental Research UFZ, Magdeburg, Germany
Kirk Hatfield
University of Florida, Gainesville, Florida, USA
Suresh Rao
Purdue University, Lafayette, Indiana, USA
Dietrich Borchardt
Helmholtz Centre for Environmental Research UFZ, Magdeburg, Germany
Michael Rode
Helmholtz Centre for Environmental Research UFZ, Magdeburg, Germany
Related authors
No articles found.
Michael Rode, Jörg Tittel, Frido Reinstorf, Michael Schubert, Kay Knöller, Benjamin Gilfedder, Florian Merensky-Pöhlein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 27, 1261–1277, https://doi.org/10.5194/hess-27-1261-2023, https://doi.org/10.5194/hess-27-1261-2023, 2023
Short summary
Short summary
Agricultural catchments show elevated phosphorus (P) concentrations during summer low flow. In an agricultural stream, we found that phosphorus in groundwater was a major source of stream water phosphorus during low flow, and stream sediments derived from farmland are unlikely to have increased stream phosphorus concentrations during low water. We found no evidence that riparian wetlands contributed to soluble reactive (SR) P loads. Agricultural phosphorus was largely buffered in the soil zone.
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Jingshui Huang, Dietrich Borchardt, and Michael Rode
Hydrol. Earth Syst. Sci., 26, 5817–5833, https://doi.org/10.5194/hess-26-5817-2022, https://doi.org/10.5194/hess-26-5817-2022, 2022
Short summary
Short summary
In this study, we set up a water quality model using a 5-year paired high-frequency water quality dataset from a large agricultural stream. The simulations were compared with the 15 min interval measurements and showed very good fits. Based on these, we quantified the N uptake pathway rates and efficiencies at daily, seasonal, and yearly scales. This study offers an overarching understanding of N processing in large agricultural streams across different temporal scales.
Xiaoqiang Yang, Doerthe Tetzlaff, Chris Soulsby, and Dietrich Borchardt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-239, https://doi.org/10.5194/gmd-2022-239, 2022
Preprint retracted
Short summary
Short summary
We develop the catchment water quality assessment platform HiWaQ v1.0, which is compatible with multiple hydrological model structures. The nitrogen module (HiWaQ-N) and its coupling tests with two contrasting grid-based hydrological models demonstrate the robustness of the platform in estimating catchment N dynamics. With the unique design of the coupling flexibility, HiWaQ can leverage advancements in hydrological modelling and advance integrated catchment water quantity-quality assessments.
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020, https://doi.org/10.5194/acp-20-6921-2020, 2020
Short summary
Short summary
An introduction to a comprehensive field campaign performed at the Cape Verde Atmospheric Observatory regarding ocean–atmosphere interactions is given. Chemical, physical, biological and meteorological techniques were applied, and measurements of bulk water, the sea surface microlayer, cloud water and ambient aerosol particles took place. Oceanic compounds were found to be transferred to atmospheric aerosol and to the cloud level; however, sea spray contributions to CCN and INPs were limited.
Bertram Boehrer, Wolf von Tümpling, Ange Mugisha, Christophe Rogemont, and Augusta Umutoni
Hydrol. Earth Syst. Sci., 23, 4707–4716, https://doi.org/10.5194/hess-23-4707-2019, https://doi.org/10.5194/hess-23-4707-2019, 2019
Short summary
Short summary
Dissolved methane in Lake Kivu (East Africa) represents a precious energy deposit, but the high gas loads have also been perceived as a threat by the local population. Our measurements confirm the huge amount of methane and carbon dioxide present, but do not support the current theory of a significant recharge. Direct measurements of gas pressure indicate no imminent danger due to limnic eruptions. A continuous survey is mandatory to support responsible action during industrial exploitation.
Rémi Dupas, Andreas Musolff, James W. Jawitz, P. Suresh C. Rao, Christoph G. Jäger, Jan H. Fleckenstein, Michael Rode, and Dietrich Borchardt
Biogeosciences, 14, 4391–4407, https://doi.org/10.5194/bg-14-4391-2017, https://doi.org/10.5194/bg-14-4391-2017, 2017
Short summary
Short summary
Carbon and nutrient export regimes were analyzed from archetypal headwater catchments to
downstream reaches. In headwater catchments, land use and lithology determine
land-to-stream C, N and P transfer processes. The crucial role of riparian
zones in C, N and P coupling was investigated. In downstream reaches,
point-source contributions and in-stream processes alter C, N and P export
regimes.
Related subject area
Biogeochemistry: Rivers & Streams
Particulate organic matter in the Lena River and its delta: from the permafrost catchment to the Arctic Ocean
Stable isotopic evidence for the excess leaching of unprocessed atmospheric nitrate from forested catchments under high nitrogen saturation
Nitrogen isotopes reveal a particulate-matter-driven biogeochemical reactor in a temperate estuary
High-resolution vertical biogeochemical profiles in the hyporheic zone reveal insights into microbial methane cycling
Organic matter transformations are disconnected between surface water and the hyporheic zone
CO2 emissions from peat-draining rivers regulated by water pH
Effects of peatland management on aquatic carbon concentrations and fluxes
Resistance and resilience of stream metabolism to high flow disturbances
Enhanced bioavailability of dissolved organic matter (DOM) in human-disturbed streams in Alpine fluvial networks
Spatial and temporal variability of pCO2 and CO2 emissions from the Dong River in south China
Fluvial carbon dioxide emission from the Lena River basin during the spring flood
Diel patterns in stream nitrate concentration produced by in-stream processes
Complex interactions of in-stream dissolved organic matter and nutrient spiralling unravelled by Bayesian regression analysis
Spatial–temporal variations in riverine carbon strongly influenced by local hydrological events in an alpine catchment
Rapid soil organic carbon decomposition in river systems: effects of the aquatic microbial community and hydrodynamical disturbance
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition
Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada
Temporary and net sinks of atmospheric CO2 due to chemical weathering in subtropical catchment with mixing carbonate and silicate lithology
From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia
Distribution and flux of dissolved iron in the peatland-draining rivers and estuaries of Sarawak, Malaysian Borneo
Comparisons of dissolved organic matter and its optical characteristics in small low and high Arctic catchments
High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment
Dissolved inorganic nitrogen in a tropical estuary in Malaysia: transport and transformation
Behaviour of Dissolved Phosphorus with the associated nutrients in relation to phytoplankton biomass of the Rajang River-South China Sea continuum
Synchrony in catchment stream colour levels is driven by both local and regional climate
The post-monsoon carbon biogeochemistry of the Hooghly–Sundarbans estuarine system under different levels of anthropogenic impacts
Riverine particulate C and N generated at the permafrost thaw front: case study of western Siberian rivers across a 1700 km latitudinal transect
Geochemistry of the dissolved loads during high-flow season of rivers in the southeastern coastal region of China: anthropogenic impact on chemical weathering and carbon sequestration
CO2 partial pressure and CO2 emission along the lower Red River (Vietnam)
Stable isotopes of nitrate reveal different nitrogen processing mechanisms in streams across a land use gradient during wet and dry periods
Riverine carbon export in the arid to semiarid Wuding River catchment on the Chinese Loess Plateau
Use of argon to measure gas exchange in turbulent mountain streams
Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges
Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation
QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks
Diel fluctuations of viscosity-driven riparian inflow affect streamflow DOC concentration
A comprehensive biogeochemical record and annual flux estimates for the Sabaki River (Kenya)
Hydro-ecological controls on dissolved carbon dynamics in groundwater and export to streams in a temperate pine forest
Regional-scale lateral carbon transport and CO2 evasion in temperate stream catchments
Carbon and nutrient export regimes from headwater catchments to downstream reaches
Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams
Hydromorphological restoration stimulates river ecosystem metabolism
Sources, cycling and export of nitrogen on the Greenland Ice Sheet
Variability in runoff fluxes of dissolved and particulate carbon and nitrogen from two watersheds of different tree species during intense storm events
Shift in the chemical composition of dissolved organic matter in the Congo River network
Technical note: Assessing gas equilibration systems for continuous pCO2 measurements in inland waters
Source and flux of POC in a karstic area in the Changjiang River watershed: impacts of reservoirs and extreme drought
Sediment trap efficiency of paddy fields at the watershed scale in a mountainous catchment in northwest Vietnam
Along-stream transport and transformation of dissolved organic matter in a large tropical river
Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Masaaki Chiwa, Tamao Kasahara, and Ken'ichi Shinozuka
Biogeosciences, 20, 753–766, https://doi.org/10.5194/bg-20-753-2023, https://doi.org/10.5194/bg-20-753-2023, 2023
Short summary
Short summary
By monitoring the concentration and Δ17O of stream nitrate in three forested streams, the new nitrogen saturation index of forested catchments (Matm/Datm ratio) was estimated. We found that (1) the unprocessed atmospheric nitrate in our studied forested stream (FK1 catchment) was the highest ever reported in forested streams; (2) the Matm/Datm ratio can be used as a robust index for evaluating nitrogen saturation in forested catchments as the Matm/Datm ratio is independent of the precipitation.
Kirstin Dähnke, Tina Sanders, Yoana Voynova, and Scott D. Wankel
Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-19-5879-2022, https://doi.org/10.5194/bg-19-5879-2022, 2022
Short summary
Short summary
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal regions. We investigated the production and removal of nitrogen-bearing compounds in the freshwater section of the tidal Elbe Estuary and found that particles in the water column are key for the production and removal of water column nitrate. Using a stable isotope approach, we pinpointed regions where additional removal of nitrate or input from sediments plays an important role in estuarine biogeochemistry.
Tamara Michaelis, Anja Wunderlich, Ömer K. Coskun, William Orsi, Thomas Baumann, and Florian Einsiedl
Biogeosciences, 19, 4551–4569, https://doi.org/10.5194/bg-19-4551-2022, https://doi.org/10.5194/bg-19-4551-2022, 2022
Short summary
Short summary
The greenhouse gas methane (CH4) drives climate change. Microorganisms in river sediments produce CH4 when degrading organic matter, but the contribution of rivers to atmospheric CH4 concentrations is uncertain. To better understand riverine CH4 cycling, we measured concentration profiles of CH4 and relevant reactants that might influence the CH4 cycle. We found substantial CH4 production, especially in fine, organic-rich sediments during summer and signs of microbial CH4 consumption.
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Amy E. Pickard, Marcella Branagan, Mike F. Billett, Roxane Andersen, and Kerry J. Dinsmore
Biogeosciences, 19, 1321–1334, https://doi.org/10.5194/bg-19-1321-2022, https://doi.org/10.5194/bg-19-1321-2022, 2022
Short summary
Short summary
Peatlands have been subject to a range of land management regimes over the past century. This has affected the amount of carbon that drains into surrounding streams and rivers. In our study, we measured carbon concentrations in streams draining from drained, non-drained, and restored areas of the Flow Country blanket bog in N Scotland. We found that drained peatland had higher concentrations and fluxes of carbon relative to non-drained areas. Restored peatland areas were highly variable.
Brynn O'Donnell and Erin R. Hotchkiss
Biogeosciences, 19, 1111–1134, https://doi.org/10.5194/bg-19-1111-2022, https://doi.org/10.5194/bg-19-1111-2022, 2022
Short summary
Short summary
A stream is defined by flowing water, but higher flow from storms is also a frequent disturbance. This paper tests how higher flow changes stream metabolism (respiration and photosynthesis, R and P). P was less resistant to changes in flow compared to R, and P took longer to recover from storms than R (2.2 versus 0.6 d). Further work on metabolic responses to flow disturbance is critical given projected increases in storms and the influence of higher flows on ecosystem health and functioning.
Thibault Lambert, Pascal Perolo, Nicolas Escoffier, and Marie-Elodie Perga
Biogeosciences, 19, 187–200, https://doi.org/10.5194/bg-19-187-2022, https://doi.org/10.5194/bg-19-187-2022, 2022
Short summary
Short summary
The bacterial mineralization of dissolved organic matter (DOM) in inland waters contributes to CO2 emissions to the atmosphere. Human activities affect DOM sources. However, the implications on DOM mineralization are poorly known. Combining sampling and incubations, we showed that higher bacterial respiration in agro-urban streams related to a labile pool from aquatic origin. Therefore, human activities may have a limited impact on the net carbon exchanges between inland waters and atmosphere.
Boyi Liu, Mingyang Tian, Kaimin Shih, Chun Ngai Chan, Xiankun Yang, and Lishan Ran
Biogeosciences, 18, 5231–5245, https://doi.org/10.5194/bg-18-5231-2021, https://doi.org/10.5194/bg-18-5231-2021, 2021
Short summary
Short summary
Spatial and temporal patterns of pCO2 in the subtropical Dong River basin were mainly affected by C inputs and in-stream metabolism, both of which varied due to differential catchment settings, land cover, and hydrological conditions. CO2 fluxes in the wet season were 2-fold larger than in the dry season due to high pCO2 and turbulence caused by high flow velocity. The absence of high CO2 fluxes in small rivers could be associated with the depletion effect caused by abundant precipitation.
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Matthias Pucher, Peter Flödl, Daniel Graeber, Klaus Felsenstein, Thomas Hein, and Gabriele Weigelhofer
Biogeosciences, 18, 3103–3122, https://doi.org/10.5194/bg-18-3103-2021, https://doi.org/10.5194/bg-18-3103-2021, 2021
Short summary
Short summary
Dissolved organic matter is an important carbon source in aquatic ecosystems, yet the uptake processes are not totally understood. We found evidence for the release of degradation products, efficiency loss in the uptake with higher concentrations, stimulating effects, and quality-dependent influences from the benthic zone. To conduct this analysis, we included interactions in the equations of the nutrient spiralling concept and solve it with a Bayesian non-linear fitting algorithm.
Xin Wang, Ting Liu, Liang Wang, Zongguang Liu, Erxiong Zhu, Simin Wang, Yue Cai, Shanshan Zhu, and Xiaojuan Feng
Biogeosciences, 18, 3015–3028, https://doi.org/10.5194/bg-18-3015-2021, https://doi.org/10.5194/bg-18-3015-2021, 2021
Short summary
Short summary
We show a comprehensive monitoring dataset on the discharge and carbon transport in a small alpine river on the Qinghai–Tibetan Plateau, where riverine carbon increased downstream in the pre-monsoon season due to an increasing contribution of organic matter derived from seasonal permafrost thaw while it fluctuated in the monsoon season induced by sporadic precipitation. These results indicate a high sensitivity of riverine carbon in alpine headwater catchments to local hydrological events.
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences, 18, 1511–1523, https://doi.org/10.5194/bg-18-1511-2021, https://doi.org/10.5194/bg-18-1511-2021, 2021
Short summary
Short summary
We investigate the relative importance of two individual factors (hydrodynamical disturbance and aquatic microbial community) that possibly control SOC decomposition rates in river systems. We found aquatic microbial organisms led to rapid SOC decomposition, while effect of mechanical disturbance is relative minor. We propose a simple conceptual model: hydrodynamic disturbance is only important when soil aggregates are strong enough to withstand the disruptive forces imposed by water immersions.
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021, https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Short summary
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy involving soil amendments with silicate rock dust. Over 15 years, a small silicate application led to net CDR of 8.5–11.5 t CO2/ha in an acid-rain-impacted New Hampshire forest. We accounted for the total carbon cost of treatment and compared effects with an adjacent, untreated forest. Our results suggest ERW can improve the greenhouse gas balance of similar forests in addition to mitigating acid rain effects.
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020, https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Short summary
High-latitude warming thaws permafrost, exposing minerals to weathering and fluvial transport. We studied the effects of abrupt thaw and associated weathering on carbon cycling in western Canada. Permafrost collapse affected < 1 % of the landscape yet enabled carbonate weathering associated with CO2 degassing in headwaters and increased bicarbonate export across watershed scales. Weathering may become a driver of carbon cycling in ice- and mineral-rich permafrost terrain across the Arctic.
Yingjie Cao, Yingxue Xuan, Changyuan Tang, Shuai Guan, and Yisheng Peng
Biogeosciences, 17, 3875–3890, https://doi.org/10.5194/bg-17-3875-2020, https://doi.org/10.5194/bg-17-3875-2020, 2020
Short summary
Short summary
About half of the global CO2 sequestration due to chemical weathering occurs in warm and high-runoff regions. To evaluate the temporary and net sinks of atmospheric CO2 due to chemical weathering, we selected a typical subtropical catchment as our study area and did fieldwork to sample surface water along the main channel and major tributaries in 1 hydrological year. The result of mass balance calculation showed that human activities dramatically decreased the CO2 net sink.
Laure Gandois, Alison M. Hoyt, Stéphane Mounier, Gaël Le Roux, Charles F. Harvey, Adrien Claustres, Mohammed Nuriman, and Gusti Anshari
Biogeosciences, 17, 1897–1909, https://doi.org/10.5194/bg-17-1897-2020, https://doi.org/10.5194/bg-17-1897-2020, 2020
Short summary
Short summary
Worldwide, peatlands are important sources of dissolved organic matter (DOM) and trace metals (TMs) to surface waters, and these fluxes may increase with peatland degradation. In Southeast Asia, tropical peatlands are being rapidly deforested and drained. This work aims to address the fate of organic carbon and its role as a trace metal carrier in drained peatlands of Indonesia.
Xiaohui Zhang, Moritz Müller, Shan Jiang, Ying Wu, Xunchi Zhu, Aazani Mujahid, Zhuoyi Zhu, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 17, 1805–1819, https://doi.org/10.5194/bg-17-1805-2020, https://doi.org/10.5194/bg-17-1805-2020, 2020
Short summary
Short summary
This study offered detailed information on dFe concentrations, distribution and the magnitude of yield in the Rajang River, the largest river in Malaysia. Three blackwater rivers, draining from peatlands, were also included in our study. Compared with the Rajang River, the dFe concentrations and yield from three blackwater rivers were much higher. The precipitation and agricultural activities, such as palm oil plantations, may markedly increase the concentration dFe in these tropical rivers.
Caroline Coch, Bennet Juhls, Scott F. Lamoureux, Melissa J. Lafrenière, Michael Fritz, Birgit Heim, and Hugues Lantuit
Biogeosciences, 16, 4535–4553, https://doi.org/10.5194/bg-16-4535-2019, https://doi.org/10.5194/bg-16-4535-2019, 2019
Short summary
Short summary
Climate change affects Arctic ecosystems. This includes thawing of permafrost (ground below 0 °C) and an increase in rainfall. Both have substantial impacts on the chemical composition of river water. We compared the composition of small rivers in the low and high Arctic with the large Arctic rivers. In comparison, dissolved organic matter in the small rivers is more susceptible to degradation; thus, it could potentially increase carbon dioxide emissions. Rainfall events have a similar effect.
Benedikt J. Werner, Andreas Musolff, Oliver J. Lechtenfeld, Gerrit H. de Rooij, Marieke R. Oosterwoud, and Jan H. Fleckenstein
Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, https://doi.org/10.5194/bg-16-4497-2019, 2019
Short summary
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Shan Jiang, Moritz Müller, Jie Jin, Ying Wu, Kun Zhu, Guosen Zhang, Aazani Mujahid, Tim Rixen, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 16, 2821–2836, https://doi.org/10.5194/bg-16-2821-2019, https://doi.org/10.5194/bg-16-2821-2019, 2019
Short summary
Short summary
Three cruises were conducted in the Rajang River estuary, Malaysia. The results revealed that the decomposition of terrestrial organic matter and the subsequent soil leaching were the main sources of dissolved inorganic nitrogen (DIN) in the fresh river water. Porewater exchange and ammonification enhanced DIN concentrations in the estuary water, while intensities of DIN addition varied between seasons. The riverine DIN flux could reach 101.5 ton(N) / d, supporting the coastal primary producers.
Edwin Sien Aun Sia, Jing Zhang, Shan Jiang, Zhuoyi Zhu, Gonzalo Carrasco, Faddrine Holt Jang, Aazani Mujahid, and Moritz Müller
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-219, https://doi.org/10.5194/bg-2019-219, 2019
Revised manuscript not accepted
Short summary
Short summary
Nutrient loads carried by large rivers and discharged into the continental shelf and coastal waters are vital to support primary production. Our knowledge of tropical river systems is fragmented with very few seasonal studies available for Southeast Asia (SEA). We present data from three sampling campaigns on the longest river in Malaysia, the Rajang river. Our results show the generalization of SEA as a nutrient hotspot might not hold true for all regions and requires further investigation.
Brian C. Doyle, Elvira de Eyto, Mary Dillane, Russell Poole, Valerie McCarthy, Elizabeth Ryder, and Eleanor Jennings
Biogeosciences, 16, 1053–1071, https://doi.org/10.5194/bg-16-1053-2019, https://doi.org/10.5194/bg-16-1053-2019, 2019
Short summary
Short summary
This study explores the drivers of variation in the water colour of rivers, and hence organic carbon export, in a blanket peatland catchment. We used 6 years of weekly river water colour data (2011 to 2016) from three proximate river sub-catchments in western Ireland. in tandem with a range of topographical, hydrological and climate data, to discover the principle environmental drivers controlling changes in colour concentration in the rivers.
Manab Kumar Dutta, Sanjeev Kumar, Rupa Mukherjee, Prasun Sanyal, and Sandip Kumar Mukhopadhyay
Biogeosciences, 16, 289–307, https://doi.org/10.5194/bg-16-289-2019, https://doi.org/10.5194/bg-16-289-2019, 2019
Short summary
Short summary
The study focused on understanding C biogeochemistry of two adjacently located estuaries undergoing different levels of anthropogenic stresses. Different parameters related to C cycling were measured in an anthropogenically influenced and a mangrove-dominated estuary. Although the entire estuarine system acted as a source of carbon dioxide to the regional atmosphere, emission approximately 17 times higher was noticed from the anthropogenically affected estuary compared to mangrove-dominated one.
Ivan V. Krickov, Artem G. Lim, Rinat M. Manasypov, Sergey V. Loiko, Liudmila S. Shirokova, Sergey N. Kirpotin, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, https://doi.org/10.5194/bg-15-6867-2018, 2018
Short summary
Short summary
We tested the effect of climate, permafrost and physio-geographical landscape parameters on particulate C, N and P concentrations in small- and medium- sized rivers in the Western Siberian Lowland (WSL). We discovered a maximum of particulate C and N concentrations at the beginning of the permafrost appearance. A northward shift of permafrost boundaries may increase the particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2.
Wenjing Liu, Zhifang Xu, Huiguo Sun, Tong Zhao, Chao Shi, and Taoze Liu
Biogeosciences, 15, 4955–4971, https://doi.org/10.5194/bg-15-4955-2018, https://doi.org/10.5194/bg-15-4955-2018, 2018
Short summary
Short summary
The southeastern coastal region is the top acid-rain-impacted area in China. It is worth evaluating the acid deposition impacts on chemical weathering and CO2 consumption there. River water geochemistry evidenced an overestimation of CO2 sequestration if H2SO4/HNO3 involvement was ignored, which accounted for 33.6 % of the total flux by silicate weathering in this area. This study quantitatively highlights the anthropogenic acid effects on chemical weathering and associated CO2 consumption.
Thi Phuong Quynh Le, Cyril Marchand, Cuong Tu Ho, Nhu Da Le, Thi Thuy Duong, XiXi Lu, Phuong Kieu Doan, Trung Kien Nguyen, Thi Mai Huong Nguyen, and Duy An Vu
Biogeosciences, 15, 4799–4814, https://doi.org/10.5194/bg-15-4799-2018, https://doi.org/10.5194/bg-15-4799-2018, 2018
Short summary
Short summary
The Red River is a typical south-east Asian river, strongly affected by climate and human activity. This study showed the spatial and seasonal variability of CO2 emissions at the water–air interface of the lower part of this river due to natural conditions (meteo-hydrological-geomorphological characteristics) and human activities (dam impoundment, population, land use). The Red River water was supersaturated with CO2, providing a mean water–air CO2 flux of 530 ± 17 mmol m−2 d−1.
Wei Wen Wong, Jesse Pottage, Fiona Y. Warry, Paul Reich, Keryn L. Roberts, Michael R. Grace, and Perran L. M. Cook
Biogeosciences, 15, 3953–3965, https://doi.org/10.5194/bg-15-3953-2018, https://doi.org/10.5194/bg-15-3953-2018, 2018
Short summary
Short summary
Over-enrichment of nitrate can pose substantial risk to the quality of freshwater ecosystems. Hence, understanding the dynamics of nitrate is the key to better management of waterways. This study evaluates the relationship between the effects of land use and rainfall on the major sources and processing of nitrate within and between five streams in five catchments spanning an agricultural land use gradient. We found that rainfall exerted significant control over the fate of nitrate.
Lishan Ran, Mingyang Tian, Nufang Fang, Suiji Wang, Xixi Lu, Xiankun Yang, and Frankie Cho
Biogeosciences, 15, 3857–3871, https://doi.org/10.5194/bg-15-3857-2018, https://doi.org/10.5194/bg-15-3857-2018, 2018
Short summary
Short summary
We systematically assessed the transport and fate of riverine carbon in the moderate-sized Wuding catchment on the Chinese Loess Plateau by constructing a riverine carbon budget and further relating it to terrestrial ecosystem productivity. The riverine carbon export accounted for 16 % of the catchment's net ecosystem production (NEP). It seems that a significant fraction of terrestrial NEP in this catchment is laterally transported from the terrestrial biosphere to the drainage network.
Robert O. Hall Jr. and Hilary L. Madinger
Biogeosciences, 15, 3085–3092, https://doi.org/10.5194/bg-15-3085-2018, https://doi.org/10.5194/bg-15-3085-2018, 2018
Short summary
Short summary
Streams exchange oxygen with the atmosphere, but this rate is difficult to measure. We added argon to small mountain streams to estimate gas exchange. We compared these rates with sulfur hexafluoride, an intense greenhouse gas. Argon worked well to measure gas exchange, but had higher-than-predicted rates than sulfur hexafluoride. Argon exchange is more likely to represent that for oxygen because they share similar physical properties. We suggest argon to measure gas exchange in small streams.
Ji-Hyung Park, Omme K. Nayna, Most S. Begum, Eliyan Chea, Jens Hartmann, Richard G. Keil, Sanjeev Kumar, Xixi Lu, Lishan Ran, Jeffrey E. Richey, Vedula V. S. S. Sarma, Shafi M. Tareq, Do Thi Xuan, and Ruihong Yu
Biogeosciences, 15, 3049–3069, https://doi.org/10.5194/bg-15-3049-2018, https://doi.org/10.5194/bg-15-3049-2018, 2018
Short summary
Short summary
Human activities are drastically altering water and material flows in river systems across Asia. This review provides a conceptual framework for assessing the human impacts on Asian river C fluxes and an update on anthropogenic alterations of riverine C fluxes, focusing on the impacts of water pollution and river impoundments on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia.
Chung-Te Chang, Jr-Chuan Huang, Lixin Wang, Yu-Ting Shih, and Teng-Chiu Lin
Biogeosciences, 15, 2379–2391, https://doi.org/10.5194/bg-15-2379-2018, https://doi.org/10.5194/bg-15-2379-2018, 2018
Short summary
Short summary
Our analysis of ion input–output budget illustrates that hydrochemical responses to typhoon storms are distinctly different from those of regular storms. In addition, even mild land use change may have large impacts on nutrient exports/losses. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.
Camille Minaudo, Florence Curie, Yann Jullian, Nathalie Gassama, and Florentina Moatar
Biogeosciences, 15, 2251–2269, https://doi.org/10.5194/bg-15-2251-2018, https://doi.org/10.5194/bg-15-2251-2018, 2018
Short summary
Short summary
We developed the model QUALity-NETwork (QUAL-NET) to simulate water quality variations in large drainage networks. This model is accurate enough to represent processes occurring over short periods of time such as storm events and helps to fully understand water quality variations in stream networks in the context of climate change and varying human pressures. It was tested on the Loire River and provided good performances and a new understanding of the functioning of the river.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Biogeosciences, 15, 2177–2188, https://doi.org/10.5194/bg-15-2177-2018, https://doi.org/10.5194/bg-15-2177-2018, 2018
Short summary
Short summary
We studied the diel fluctuations of dissolved organic carbon (DOC) concentrations in a small stream in Luxembourg. We identified an increased proportion of DOC from terrestrial sources as responsible for the peaks in DOC in the afternoon. Warmer water temperatures in the riparian zone in the afternoon increased the amount of water flowing towards the stream. Consequently, an increased amount of DOC-rich water from the riparian zone was entering the stream.
Trent R. Marwick, Fredrick Tamooh, Bernard Ogwoka, Alberto V. Borges, François Darchambeau, and Steven Bouillon
Biogeosciences, 15, 1683–1700, https://doi.org/10.5194/bg-15-1683-2018, https://doi.org/10.5194/bg-15-1683-2018, 2018
Short summary
Short summary
A 2-year biogeochemical record provides annual sediment and element flux estimates for the non-dammed Sabaki River, Kenya, establishing a baseline for future research in light of impending construction of the first major upstream reservoir. Over 80 % of material fluxes occur across the wet season, with annual yields comparable to the adjacent, and dammed, Tana River. Observations at low-flow periods suggest large mammalian herbivores may be vectors of terrestrial subsidies to the water column.
Loris Deirmendjian, Denis Loustau, Laurent Augusto, Sébastien Lafont, Christophe Chipeaux, Dominique Poirier, and Gwenaël Abril
Biogeosciences, 15, 669–691, https://doi.org/10.5194/bg-15-669-2018, https://doi.org/10.5194/bg-15-669-2018, 2018
Short summary
Short summary
Carbon leaching to streams represents a very small (~ 2 %) fraction of forest net ecosystem exchange (NEE). Such weak export of carbon from forest ecosystems, at least in temperate regions, is at odds with recent studies that attempt to integrate the contribution of inland waters in the continent carbon budget. Understanding why local and global carbon mass balances strongly diverge on the proportion of land NEE exported to aquatic systems is a major challenge for research in this field.
Katrin Magin, Celia Somlai-Haase, Ralf B. Schäfer, and Andreas Lorke
Biogeosciences, 14, 5003–5014, https://doi.org/10.5194/bg-14-5003-2017, https://doi.org/10.5194/bg-14-5003-2017, 2017
Short summary
Short summary
We analyzed the relationship between terrestrial net primary production (NPP) and the rate at which carbon is exported from catchments in a temperate stream network. The carbon exported by streams and rivers corresponds to 2.7 % of the terrestrial NPP. CO2 evasion and downstream transport contribute about equally to this flux. A review of existing studies suggests that the catchment-specific carbon export varies in a relatively narrow range across different study regions and spatial scales.
Rémi Dupas, Andreas Musolff, James W. Jawitz, P. Suresh C. Rao, Christoph G. Jäger, Jan H. Fleckenstein, Michael Rode, and Dietrich Borchardt
Biogeosciences, 14, 4391–4407, https://doi.org/10.5194/bg-14-4391-2017, https://doi.org/10.5194/bg-14-4391-2017, 2017
Short summary
Short summary
Carbon and nutrient export regimes were analyzed from archetypal headwater catchments to
downstream reaches. In headwater catchments, land use and lithology determine
land-to-stream C, N and P transfer processes. The crucial role of riparian
zones in C, N and P coupling was investigated. In downstream reaches,
point-source contributions and in-stream processes alter C, N and P export
regimes.
Rose M. Smith, Sujay S. Kaushal, Jake J. Beaulieu, Michael J. Pennino, and Claire Welty
Biogeosciences, 14, 2831–2849, https://doi.org/10.5194/bg-14-2831-2017, https://doi.org/10.5194/bg-14-2831-2017, 2017
Short summary
Short summary
Urban streams receive excess nitrogen from numerous sources. We hypothesized that variations in carbon availability and subsurface infrastructure influence emissions of N2O and other greenhouse gases (CH4 and CO2) as excess N is utilized by microbes. We sampled eight streams draining four categories of stormwater and sanitary infrastructure. Dissolved nitrogen concentration was the strongest predictor of CO2 and N2O concentrations, while C : N ratio was the strongest predictor of CH4 in streams.
Benjamin Kupilas, Daniel Hering, Armin W. Lorenz, Christoph Knuth, and Björn Gücker
Biogeosciences, 14, 1989–2002, https://doi.org/10.5194/bg-14-1989-2017, https://doi.org/10.5194/bg-14-1989-2017, 2017
Short summary
Short summary
Modern ecosystem restoration should consider a wide range of environmental characteristics, including functional ones, such as rates and patterns of ecosystem metabolism. We show that hydromorphological river restoration enhanced habitat availability and abundance of macrophytes, promoting river primary productivity and respiration. Incorporating ecosystem functioning into monitoring programs enables a more holistic assessment of river health and a better understanding of restoration effects.
Jemma Louise Wadham, Jonathan Hawkings, Jon Telling, Dave Chandler, Jon Alcock, Emily O'Donnell, Preeti Kaur, Elizabeth Bagshaw, Martyn Tranter, Andre Tedstone, and Peter Nienow
Biogeosciences, 13, 6339–6352, https://doi.org/10.5194/bg-13-6339-2016, https://doi.org/10.5194/bg-13-6339-2016, 2016
Short summary
Short summary
Fjord and continental shelf environments in the polar regions are host to some of the planet's most productive ecosystems and support economically important fisheries. A key limiting nutrient for many of these marine phytoplankton is nitrogen. Here we evaluate the potential for a melting Greenland Ice Sheet to supply nitrogen to Arctic coastal ecosystems. We show nitrogen fluxes of a similar order of magnitude to one large Arctic river but yields that are double those typical of Arctic rivers.
Mi-Hee Lee, Jean-Lionel Payeur-Poirier, Ji-Hyung Park, and Egbert Matzner
Biogeosciences, 13, 5421–5432, https://doi.org/10.5194/bg-13-5421-2016, https://doi.org/10.5194/bg-13-5421-2016, 2016
Short summary
Short summary
Heavy storm events may increase the organic matter fluxes from forested watersheds and deteriorate water quality. Our study in two forested watershed in Korea revealed, that a larger proportion of coniferous forests likely leads to less organic carbon and larger of inorganic nitrogen fluxes to the receiving surface water bodies. More severe monsoon storms in the future will increase the fluxes of dissolved organic matter.
Thibault Lambert, Steven Bouillon, François Darchambeau, Philippe Massicotte, and Alberto V. Borges
Biogeosciences, 13, 5405–5420, https://doi.org/10.5194/bg-13-5405-2016, https://doi.org/10.5194/bg-13-5405-2016, 2016
Short summary
Short summary
This paper aims to investigate the spatial variability in dissolved organic matter (DOM) in terms of both concentration and composition in the Congo River network. Stable carbon isotopes and absorption and fluorescent properties of DOM were used as proxies for DOM composition. This study shows that DOM degradation within the Congo Basin results in the transition from aromatic to aliphatic DOM as well as the role of landscape and water residence time on this transition.
Tae Kyung Yoon, Hyojin Jin, Neung-Hwan Oh, and Ji-Hyung Park
Biogeosciences, 13, 3915–3930, https://doi.org/10.5194/bg-13-3915-2016, https://doi.org/10.5194/bg-13-3915-2016, 2016
Short summary
Short summary
Spray- and marble-type equilibrators and a membrane-enclosed CO2 sensor were compared to assess their suitability for continuous pCO2 measurements in inland waters. The results suggest that the fast response of the equilibration systems facilitates capturing large spatial variations in pCO2 during short underway measurements. The membrane-enclosed sensor would be suitable for long-term continuous measurements if biofouling could be overcome by antifouling measures such as copper mesh coverings.
Hongbing Ji, Cai Li, Huaijian Ding, and Yang Gao
Biogeosciences, 13, 3687–3699, https://doi.org/10.5194/bg-13-3687-2016, https://doi.org/10.5194/bg-13-3687-2016, 2016
Short summary
Short summary
The mineral composition, C / N ratios as well as 13C and 15N, of POC was firstly analyzed in suspended and surface sediments in the Wujiang River after the Three Gorges Dam began impounding sediment in 2004. A comparison of POC yield was made between karstic rivers and non-karstic rivers to evaluate the influence of carbonate distribution on POC transport. Considering the cascade reservoir and climate in the Wujiang River, the impacts of reservoirs and extreme drought were estimated in this study.
Johanna I. F. Slaets, Petra Schmitter, Thomas Hilger, Tran Duc Vien, and Georg Cadisch
Biogeosciences, 13, 3267–3281, https://doi.org/10.5194/bg-13-3267-2016, https://doi.org/10.5194/bg-13-3267-2016, 2016
Short summary
Short summary
Maize production on steep slopes causes erosion. Where the eroded material ends up is not well understood. This study assessed transport of sediment in mountainous Vietnam, where maize is cultivated on slopes and rice is cultivated in valleys. Per year, 64 tons per hectare of sediments are brought into the rice fields and 28 tons of those are deposited there. The sediment fraction captured by the paddies is mostly sandy, while fertile silt and clay are exported. Upland erosion thus impacts rice production.
Thibault Lambert, Cristian R. Teodoru, Frank C. Nyoni, Steven Bouillon, François Darchambeau, Philippe Massicotte, and Alberto V. Borges
Biogeosciences, 13, 2727–2741, https://doi.org/10.5194/bg-13-2727-2016, https://doi.org/10.5194/bg-13-2727-2016, 2016
Short summary
Short summary
This manuscript presents a detailed analysis of transport and transformation of dissolved organic matter along the Zambezi River and its largest tributary. A particular focus is put on the effects of floodplains/wetlands and reservoirs as well as low-flow vs. high-flow conditions on the longitudinal patterns in DOM concentration and composition. It is the first study to present such a detailed analysis for a whole, large river system, and in particular for a tropical river other than the Amazon.
Arthur H. W. Beusen, Alexander F. Bouwman, Ludovicus P. H. Van Beek, José M. Mogollón, and Jack J. Middelburg
Biogeosciences, 13, 2441–2451, https://doi.org/10.5194/bg-13-2441-2016, https://doi.org/10.5194/bg-13-2441-2016, 2016
Short summary
Short summary
Intensifying anthropogenic activity over the 20th century including agriculture, water consumption, urbanization, and aquaculture has almost doubled the global nitrogen (N) and phosphorus (P) delivery to streams and steadily increased the N : P ratio in freshwater bodies. Concurrently, the cumulative number of reservoirs has driven a rise in freshwater nutrient retention and removal. Still, river nutrient transport to the ocean has also nearly doubled, potentially stressing coastal environments.
Cited articles
Abbott, B. W., Baranov, V., Mendoza-Lera, C., Nikolakopoulou, M., Harjung, A., Kolbe, T., Balasubramanian, M. N., Vaessen, T. N., Ciocca, F., Campeau, A., Wallin, M. B., Romeijn, P., Antonelli, M., Gonçalves, J., Datry, T., Laverman, A. M., De Dreuzy, J.-R., Hannah, D. M., Krause, S., Oldham, C., and Pinay, G.: Using multi-tracer inference to move beyond single-catchment ecohydrology, Earth-Sci. Rev., 160, 19–42, 2016.
Alexander, R. B., Böhlke, J. K., Boyer, E. W., David, M. B., Harvey, J. W., Mulholland, P. J., Seitzinger, S. P., Tobias, C. R., Tonitto, C., and Wollheim, W. M.: Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes, Biogeochemistry, 93, 91–116, https://doi.org/10.1007/s10533-008-9274-8, 2009.
Angermann, L., Krause, S., and Lewandowski, J.: Application of heat pulse injections for investigating shallow hyporheic flow in a lowland river, Water Resour. Res., 48, W00P02, https://doi.org/10.1029/2012WR012564, 2012.
Annable, M. D., Hatfield, K., Cho, J., Klammler, H., Parker, B. L., Cherry, J. A., and Rao, P. S. C.: Field-Scale Evaluation of the Passive Flux Meter for Simultaneous Measurement of Groundwater and Contaminant Fluxes, Environ. Sci. Technol., 39, 7194–7201, https://doi.org/10.1021/es050074g, 2005.
Artioli, Y., Friedrich, J., Gilbert, A. J., McQuatters-Gollop, A., Mee, L. D., Vermaat, J. E., Wulff, F., Humborg, C., Palmeri, L., and Pollehne, F.: Nutrient budgets for European seas: A measure of the effectiveness of nutrient reduction policies, Mar. Pollut. Bull., 56, 1609–1617, https://doi.org/10.1016/j.marpolbul.2008.05.027, 2008.
Basu, N. B., Rao, P. S. C., Thompson, S. E., Loukinova, N. V., Donner, S. D., Ye, S., and Sivapalan, M.: Spatiotemporal averaging of in-stream solute removal dynamics, Water Resour. Res., 47, W00J06, https://doi.org/10.1029/2010WR010196, 2011.
Bernot, M. J. and Dodds, W. K.: Nitrogen retention, removal and saturation in lotic ecosystems, Ecosystems, 8, 442–453, https://doi.org/10.1007/s10021-003-0143-y, 2005.
Binley, A., Ullah, S., Heathwaite, A.L., Heppell, C., Byrne, P., Landsdown, K., Timmer, M., and Zhang, H.: Revealing the spatial variability of water fluxes at the groundwater-surface water interface, Water Resour. Res., 49, 3978–3992, 2013.
Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., and Worman, A.: Hyporheic flow and transport processes: Mechanisms, models and biogeochemical implications, Rev. Geophys., 52, 603–679, https://doi.org/10.1002/2012rg000417, 2014.
Böhlke, J. K., Antweiler, R. C., Harvey, J. W., Laursen, A. E., Smith, L. K., Smith, R. L., and Voytek, M. A.: Multi-scale measurements and modeling of denitrification in streams with varying flow and nitrate concentration in the upper Mississippi River basin, USA, Biochemistry, 93, 117–141, https://doi.org/10.1007/s10533-008-9282-8, 2009.
Borchardt, D. and Pusch, M. T.: An integrative, interdisciplinary research approach for the identification of patterns, processes and bottleneck functions of the hyporheic zone of running waters, Adv. Limnol., 61, 2009.
Boyer, E. W., Alexander, R. B., Parton, W. J., Li, C., Butterbach-Bahl, K., Donner, S. D., Skaggs, R. W., and Grosso, S. J. D.: Modeling denitrification in terrestrial and aquatic ecosystems at regional scales, Ecol. Appl., 16, 2123–2142, 2006.
Brookshire, E. N. J., Valett, H. M., and Gerber, S.: Maintenance of terrestrial nutrient loss signatures during in-stream transport, Ecology, 90, 293–299, https://doi.org/10.1890/08-0949.1, 2009.
Cho, J., Annable, M. D., Jawitz, J. W., and Hatfield, K.: Passive flux meter measurement of water and nutrient flux in saturated porous media: Bench-scale laboratory tests, J. Environ. Qual., 36, 1266–1272, https://doi.org/10.2134/jeq2006.0370, 2007.
Christensen, P. B., Nielsen, L. P., Sorensen, J., and Revsbech, N. P.: Denitrification in nitrate-rich streams – dirunal and seasonal variation related to benthic oxygen metabolism, Limnol. Oceanogr., 35, 640–651, 1990.
Clark, C. J., Hatfield, K., Annable, M. D., Gupta, P., and Chirenje, T.: Estimation of arsenic contamination in groundwater by the Passive flux meter, Environmental Forensics, 6, 77–82, https://doi.org/10.1080/15275920590913930, 2005.
Cook, P. L. M., Wenzhoefer, F., Rysgaard, S., Galaktionov, O. S., Meysman, F. J. R., Eyre, B. D., Cornwell, J., Huettel, M., and Glud, R. N.: Quantification of denitrification in permeable sediments: Insights from a two-dimensional simulation analysis and experimental data, Limnol. Oceanogr.-Meth., 4, 294–307, 2006.
Cooke, J. G. and White, R. E.: Spatial distribution of denitrifying activity in a stream draining an agricultural catchment, Freshwater Biol., 18, 509–519, 1987.
Covino, T., McGlynn, B., and Baker, M.: Separating physical and biological nutrient retention and quantifying uptake kinetics from ambient to saturation in successive mountain stream reaches, J. Geophys. Res.-Biogeo., 115, G04010, https://doi.org/10.1029/2009jg001263, 2010.
Duff, J. H. and Triska, F. J.: Denitrification in sediments from the hyporheic zone adjacent to a small forested stream, Can. J. Fish. Aquat. Sci., 47, 1140–1147, 1990.
Duff, J. H., Murphy, F., Fuller, C. C., and Triska, F. J.: A mini drivepoint sampler for measuring pore water solute concentrations in the hyporheic zone of sand-bottom streams, Limnol. Oceanogr., 43, 1378–1383, 1998
Ensign, S. H. and Doyle, M. W.: Nutrient spiraling in streams and river networks, J. Geophys. Res.-Biogeo., 111, G04009, https://doi.org/10.1029/2005jg000114, 2006.
Fellows, C. S., Valett, H. M., and Dahm, C. N.: Whole-stream metabolism in two mountain streams: Contribution of the hyporheic zone, Limnol. Oceanogr., 46, 523–531, 2001.
Fetter, C. W.: Applied Hydrogeology, 4th Edn., New Jersey: Prentice Hall, 2001.
Fleckenstein, J. H., Krause, S., Hannah, D. M., and Boano, F.: Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics, Adv. Water Resour., 33, 1291–1295, 2010.
Findlay, S. E. G., Mulholland, P. J., Hamilton, S. K., Tank, J. L., Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Dodds, W. K., Grimm, N. B., McDowell, W. H., Potter, J. D., and Sobota, D. J.: Cross-stream comparison of substrate-specific denitrification potential, Biogeochemistry, 104, 381–392, https://doi.org/10.1007/s10533-010-9512-8, 2011.
Fischer, H., Kloep, F., Wilzcek, S., and Pusch, M. T.: A river's liver – microbial processes within the hyporheic zone of a large lowland river, Biogeochemistry, 76, 349–371, https://doi.org/10.1007/s10533-005-6896-y, 2005.
Fischer, J., Borchardt, D., Ingendahl, D., Ibisch, R., Saenger, N., Wawra, B., and Lenk, M.: Vertical gradients of nutrients in the hyporheic zone of the River Lahn (Germany): Relevance of surface versus hyporheic conversion processes, Adv. Limnol., 01/2009, 105–118, 2009.
Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., and Cosby, B. J.: The nitrogen cascade, Bioscience, 53, 341–356, 2003.
Garcia-Ruiz, R., Pattinson, S. N., and Whitton, B. A.: Kinetic parameters of denitrification in a river continuum, Appl. Environ. Microbiol., 64, 2533–2538, 1998a.
Gonzalez-Pinzon, R., Ward, A. S., Hatch, C. E., Wlostowski, A. N., Singha, K., Gooseff, M. N., Haggerty, R., Harvey, J. W., Cirpka, O. A., and Brock, J. T.: A field comparison of multiple techniques to quantify groundwater-surface-water interactions, Freshwater Sci., 34, 139–160, https://doi.org/10.1086/679738, 2015.
Grant, S. B., Stolzenbach, K., Azizian, M., Stewardson, M. J., Boano, F., and Bardini, L.: First-order contaminant removal in the hyporheic zone of streams: Physical insights from a simple analytical model, Environ. Sci. Technol., 48, 11369–11378, https://doi.org/10.1021/es501694k, 2014.
Greenberg, A. E., Clesceri, L. S., and Eaton, A. D.: Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 18th Edn., Washington, D.C., 1992.
Haggerty, R., Marti, E., Argerich, A., Von Schiller, D., and Grimm, N. B.: Resazurin as a “smart” tracer for quantifying metabolically active transient storage in stream ecosystems, J. Geophys. Res., 114, G03014, https://doi.org/10.1029/2008JG000942, 2009.
Harrison, J., Matson, P. A., and Fendorf, S. E.: Effects of a diel oxygen cycle on nitrogen transformations and greenhouse gas emissions in a eutrophied subtropical stream, Aquat. Sci., 67, 308–315, 2005.
Hartwig, M. and Borchardt, D.: Alteration of key hyporheic functions through biological and physical clogging along a nutrient and fine-sediment gradient, Ecohydrology, 8, 961–975, https://doi.org/10.1002/eco.1571, 2015.
Harvey, J. W., Böhlke, J. K., Voytek, M. A., Scott, D., and Tobias, C. R.: Hyporheic zone denitrification: Controls on effective reaction depth and contribution to whole-stream mass balance, Water Resour. Res., 49, 6298–6316, https://doi.org/10.1002/wrcr.20492, 2013.
Hatfield, K., Annable, M., Cho, J. H., Rao, P. S. C., and Klammler, H.: A direct passive method for measuring water and contaminant fluxes in porous media, J. Contam. Hydrol., 75, 155–181, https://doi.org/10.1016/j.jconhyd.2004.06.005, 2004.
Hensley, R. T., Cohen, M. J., and Korhnak, L. V.: Inferring nitrogen removal in large rivers from high-resolution longitudinal profiling, Limnol. Oceanogr., 59, 1152–1170, https://doi.org/10.4319/lo.2014.59.4.1152, 2014.
Hesslein, R. H.: An in situ sampler for close interval pore water studies, Limnol. Oceanogr., 21, 912–914, 1976.
Hill, A. R., Labadia, C. F., and Sanmugadas, K.: Hyporheic zone hydrology and nitrogen dynamics in relation to the streambed topography of a N-rich stream, Biogeochemistry, 42, 285–310, 1998.
Hochwasservorhersagezentrale: available at: http://www.hochwasservorhersage.sachsen-anhalt.de/wiskiwebpublic/stat_1024005777.htm (last access: 12 May 2016), 2015/2016.
Ingendahl, D., Haseborg, E. T., Van der Most, O., and Werner, D.: Influence of interstitial flow velocity on hyporheic oxygen consumption and nitrate production, Adv. Limnol., 61, 119–137, 2009.
Kalbus, E., Reinstorf, F., and Schirmer, M.: Measuring methods for groundwater – surface water interactions: a review, Hydrol. Earth Syst. Sci., 10, 873–887, https://doi.org/10.5194/hess-10-873-2006, 2006.
Kamjunke, N., Büttner, O., Jager, C. G., Marcus, H., von Tümpling, W., Halbedel, S., Norf, H., Brauns, M., Baborowski, M., Wild, R., Borchardt, D., and Weitere, M.: Biogeochemical patterns in a river network along a land use gradient, Environmental monitoring and assessment, 185, 9221–9236, https://doi.org/10.1007/s10661-013-3247-7, 2013.
Keery, J., Binley, A., Crook, N., and Smith, J. W. N.: Temporal and spatial variability of groundwater–surface water fluxes: Development and application of an analytical method using temperature time series, J. Hydrol., 336, 1–16, 2007.
Kessler, A. J., Glud, R. N., Cardenas, M. B., Larsen, M., Bourke, M. F., and Cook, P. L. M.: Quantifying denitrification in rippled permeable sands through combined flume experiments and modeling, Limnol. Oceanogr., 57, 1217–1232, https://doi.org/10.4319/lo.2012.57.4.1217, 2012.
Klammler, H., Hatfield, K., and Annable, M. D.: Concepts for measuring horizontal groundwater flow directions using the passive flux meter, Adv. Water Resour., 30, 984–997, 2007.
Kunz, J. V., Hensley, R. T., Brase, L., Borchardt, D., and Rode, M.: High frequency measurements of reach scale nitrogen uptake in a 4th order river with contrasting hydromorphology and variable water chemistry (Weiße Elster, Germany), Water Resour. Res., 53, https://doi.org/10.1002/2016WR019355, online first, 2017.
Krom, M. D., Davison, P., Zhang, H., and Davison, W.: High-resolution pore-water sampling with a gel sampler, Limnol. Oceanogr., 39, 1967–1972, 1994.
Landesbetrieb für Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt: Elbegebiet, Teil 1 – Von der Grenze zur CR bis zur Havelmündung, Magdeburg, 2009.
Lansdown, K., Trimmer, M., Heppell, C. M., Sgouridis, F., Ullah, S., Heathwaite, A. L., Binley, A., and Zhang, H.: Characterization of the key pathways of dissimilatory nitrate reduction and their response to complex organic substrates in hyporheic sediments, Limnol. Oceanogr., 57, 387–400, https://doi.org/10.4319/lo.2012.57.2.0387, 2012.
Laursen, A. E. and Seitzinger, S. P.: Measurement of denitrification in rivers: An integrated, whole reach approach, Hydrobiologia, 485, 67–81, https://doi.org/10.1023/a:1021398431995, 2002.
Laursen, A. E. and Seitzinger, S. P.: Diurnal patterns of denitrification, oxygen consumption and nitrous oxide production in rivers measured at the whole-reach scale, Freshwater Biol., 49, 1448–1458, https://doi.org/10.1111/j.1365-2427.2004.01280.x, 2004.
Layton, L.: Development of a passive sensor for measuring water and contaminant mass flux in lake sediments and streambeds, Dissertation, University of Florida, 153 pp., 2015.
Lemke, D., González-Pinzón, R., Liao, Z., Wöhling, T., Osenbrück, K., Haggerty, R., and Cirpka, O. A.: Sorption and transformation of the reactive tracers resazurin and resorufin in natural river sediments, Hydrol. Earth Syst. Sci., 18, 3151–3163, https://doi.org/10.5194/hess-18-3151-2014, 2014.
Lewandowski, J., Angermann, L., Nützmann, G., and Fleckenstein, J. H.: A heat pulses technique for the determination of small-scale flow directions and flow velocities in the streambed pof sand-bed streams, Hydrol. Process., 25, 3244–3255, https://doi.org/10.1002/hyp.8062, 2011.
McKnight, D. M., Runkel, R. L., Tate, C. M., Duff, J. H., and Moorhead, D. L.: Inorganic N and P dynamics of Antarctic glacial meltwater streams as controlled by hyporheic exchange and benthic autotrophic communities, J. N. Am. Benthol. Soc., 23, 171–188, 2004.
Mendoza-Lera, C. and Mutz, M.: Microbial activity and sediment disturbance modulate the vertical water flux in sandy sediments, Freshwater Sci., 32, 26–38, 2013.
Mortensen, J. G., González-Pinzón, R., Dahm, C. N., Wang, J., Zeglin, L. H., and Van Horn, D. J.: Advancing the Food-Energy–Water Nexus: Closing Nutrient Loops in Arid River Corridors, Environ. Sci. Technol., 50, 8485–8496, 2016.
Munz, M., Oswald, S. E., and Schmidt, C.: Analysis of riverbed temperatures to determine the geometry of subsurface water flow around in-stream geomorphological structures, J. Hydrol., 539, 74–87, 2016.
Mulholland, P. J., Marzolf, E. R., Webster, J. R., Hart, D. R., and Hendricks, S. P.: Evidence that hyporheic zones increase heterotrophic metabolism and phosphorus uptake in forest streams, Limnol. Oceanogr., 42, 443–451, https://doi.org/10.4319/lo.1997.42.3.0443, 1997.
Nimick, D. A., Gammons, C. H., and Parker, S. R.: Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review, Chem. Geol., 283, 3–17, 2011.
O'Connor, B. and Hondzo, M.: Enhancement and Inhibiton of Denitrification by Fluid-Flow and Dissolved Oxygen Flux to Stream Sediments, Environ. Sci. Technol., 42, 119–125, 2008.
O'Connor, B., Hondzo, M., and Harvey, J. W.: Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration, J. Hydraul. Eng.-ASCE, 136, 1018–1032, 2010.
Patsch, J. and Radach, G.: Long-term simulation of the eutrophication of the North Sea: temporal development of nutrients, chlorophyll and primary production in comparison to observations, J. Sea Res., 38, 275–310, 1997.
Pellerin, B. A., Downing, B. D., Kendall, C., Dahlgren, R. A., Kraus, T. E. C., Saraceno, J., Spencer, R. G. M., and Bergamaschi, B. A.: Assessing the sources and magnitude of diurnal nitrate variability in the San Joaquin River (California) with an in situ optical nitrate sensor and dual nitrate isotopes, Freshwater Biol., 54, 376–387, 2009.
Rode, M., Hartwig, M., Wagenstein, D., Kebede, T., and Borchardt, D.: The importance of hyporheic zone processes on ecological functioning and solute transport of streams and rivers, in: River Basin Ecohydrology, Springer Science&Business Media, Dordrecht, 2015.
Rode, M., Halbedel, S., Anis, M. R., Borchardt, D., and Weitere, M.: Continuous in-stream assimilatory nitrate uptake from high frequency sensor measurements, Environ. Sci. Technol., 50, 5685–5694, 2016a.
Rode, M., Wade, A. J., Cohen, M. J., Hensley, R. T., Bowes, M. J., Kirchner, J. W., Arhonditsis, G. B., Jordan, P., Kronvang, B., Halliday, S. J., Skeffington, R. A., Rozemeijer, J. C., Aubert, A. H., Rinke, K., and Jomaa, S.: Sensors in the stream: the high-frequency wave of the present, Environ. Sci. Technol. 50, 10297–10307, 2016b.
Ruehl, C. R., Fisher, A. T., Los Huertos, M., Wankel, S. D., Wheat, C. G., Kendall, C., Hatch, C. E., and Shennan, C.: Nitrate dynamics within the Pajaro River, a nutrient-rich, losing stream, J. N. Am. Benthol. Soc., 26, 191–206, 2007.
Runkel, R. L.: Toward a transport-based analysis of nutrient spiraling and uptake in streams, Limnol. Oceanogr.-Meth., 5, 50–62, 2007.
Saenger, N. and Zanke, U. C. E.: A depth-oriented view of hydraulic exchange patterns between surface water and the hyporheic zone: analysis of field experiments at the River Lahn, Germany, Adv. Limnol., 61, 9–27, 2009.
Schmidt, C., Buettner, O., Musolff, A., and Fleckenstein, J. H.: A method for automated, daily, temperature-based vertical streambed water-fluxes, Fundamental and Applied Limnology, 184, 173–181, https://doi.org/10.1127/1863-9135/2014/0548, 2014.
Seitzinger, S., Harrison, J. A., Bohlke, J. K., Bouwman, A. F., Lowrance, R., Peterson, B., Tobias, C., and Van Drecht, G.: Denitrification across landscapes and waterscapes: A synthesis, Ecol. Appl., 16, 2064–2090, 2006.
Seitzinger, S. P., Styles, R. V., Boyer, E. W., Alexander, R. B., Billen, G., Howarth, R. W., Mayer, B., and Van Breemen, N.: Nitrogen retention in rivers: model development and application to watersheds in the northeastern USA, Biogeochemistry, 57, 199–237, https://doi.org/10.1023/a:1015745629794, 2002.
Skogen, M. D., Eilola, K., Hansen, J. L. S., Meier, H. E. M., Molchanov, M. S., and Ryabchenko, V. A.: Eutrophication status of the North Sea, Skagerrak, Kattegat and the Baltic Sea in present and future climates: A model study, J. Marine Syst., 132, 174–184, 2014.
Smith, V. H., Joye, S. B., and Howarth, R. W.: Eutrophication of freshwater and marine ecosystems, Limnol. Oceanogr.-Meth., 51, 351–355, https://doi.org/10.4319/lo.2006.51.1_part_2.0351, 2006.
Smith, L., Watzin, M. C., and Druschel, G.: Relating sediment phosphorus mobility to seasonal and diel redox fluctuations at the sediment–water interface in a eutrophic freshwater lake, Limnol. Oceanogr., 56, 2251–2264, https://doi.org/10.4319/lo.2011.56.6.2251, 2011.
Stewart, R. J., Wollheim, W. M., Gooseff, M. N., Briggs, M. A., Jacobs, J. M., Peterson, B. J., and Hopkinson, C. S.: Separation of river network–scale nitrogen removal among the main channel and two transient storage compartments, Water Resour. Res., 47, W00J10, https://doi.org/10.1029/2010WR009896, 2011.
Strack, O. D. L. and Haitjema, H. M.: Modeling double aquifer flow using a comprehensive potential and distributed singularities: 2. Solution for inhomogeneous permeabilities, Water Resour. Res., 17, 1551–1560, 1981.
Teasdale, P. R., Batley, G. E., Apte, S. C., and Webster, I. T.: Pore water sampling with sediment peepers, Trend. Anal. Chem., 14, 250–256, 1995.
Trauth, N., Schmidt, C., Vieweg, M., Maier, U., and Fleckenstein, J. H.: Hyporheic transport and biogeochemical reactions in pool-riffle systems under varying ambient groundwater flow conditions, J. Geophys. Res.-Biogeo., 119, 910–928, https://doi.org/10.1002/2013jg002586, 2014.
Trauth, N., Schmidt, C., Vieweg, M., Oswald, S. E., and Fleckenstein, J. H.: Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions, Water Resour. Res., 51, 2243–2263, https://doi.org/10.1002/2014wr015857, 2015.
USEP: Technical Manual: Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses-Contaminated Sediments in Water, Chapter 6: Collection of Interstital water, in: United States Environmental Protection Agency, available at: https://nepis.epa.gov/Exe/ZyNET.exe/20003PLT.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2000+Thru+2005&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D:%5Czyfiles%5CIndex Data%5C00thru05%5CTxt%5C00000004%5C20003PLT.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h|-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL# (last access: October 2015), 2013.
Valett, H. M., Hakenkamp, C. C., and Boulton, A. J.: Perspectives on the Hyporheic Zone: Integrating Hydrology and Biology. Introduction, J. N. Am. Benthol. Soc., 12, 40–43, https://doi.org/10.2307/1467683, 1993.
Verreydt, G., Annable, M. D., Kaskassian, S., Van Keer, I., Bronders, J., Diels, L., and Vanderauwera, P.: Field demonstration and evaluation of the Passive Flux Meter on a CAH groundwater plume, Environ. Sci. Pollut. R., 20, 4621–4634, https://doi.org/10.1007/s11356-012-1417-8, 2013.
Wagenschein, D. and Rode, M.: Modelling the impact of river morphology on nitrogen retention – A case study of the Weisse Elster River (Germany), Ecol. Model., 211, 224–232, https://doi.org/10.1016/j.ecolmodel.2007.09.009, 2008.
Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W., and Bencala, K. E.: Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California: Hyporheic Processes, Ecology, 70, 1893–1905, 1989.
Ward, A. S., Gooseff, M. N., and Johnson, P. A.: How can subsurface modifications to hydraulic conductivity be designed as stream restoration structures? Analysis of Vaux's conceptual models to enhance hyporheic exchange, Water Resour. Res., 47, W08512, https://doi.org/10.1029/2010WR010028, 2011.
Zarnetske, J. P., Haggerty, R., Wondzell, S. M., and Baker, M. A.: Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone, J. Geophys. Res.-Biogeo., 116, G01025, https://doi.org/10.1029/2010jg001356, 2011b.
Zarnetske, J. P., Haggerty, R., Wondzell, S. M., Bokil, V. A., and Gonzalez-Pinzon, R.: Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones, Water Resour. Res., 48, W11508, https://doi.org/10.1029/2012wr011894, 2012.
Short summary
The hyporheic zone, the subsurface region of streams, is a key compartment for in-stream nutrient retention. Knowledge on actual hyporheic processing rates is still limited due to methodological restrictions which are mainly related to the high local and temporal variability of subsurface flow patterns and nutrient transformation processes. We present a new device which allows quantitative assessment of hyporheic nutrient fluxes and demonstrate its advantages in an exemplary field testing.
The hyporheic zone, the subsurface region of streams, is a key compartment for in-stream...
Altmetrics
Final-revised paper
Preprint