Articles | Volume 15, issue 4
https://doi.org/10.5194/bg-15-1123-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-15-1123-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modelling potential production of macroalgae farms in UK and Dutch coastal waters
Johan van der Molen
CORRESPONDING AUTHOR
The Centre for Environment, Fisheries and Aquaculture Science (Cefas),
Lowestoft, NR33 0HT, UK
NIOZ Royal Netherlands Institute for Sea Research, Dept. of Coastal
Systems and Utrecht University, Den Burg, 1797 SZ, the Netherlands
Piet Ruardij
NIOZ Royal Netherlands Institute for Sea Research, Dept. of Coastal
Systems and Utrecht University, Den Burg, 1797 SZ, the Netherlands
Karen Mooney
Queen's University, Belfast, BT7 1NN, UK
Philip Kerrison
The Scottish Association for Marine Science (SAMS), Oban, PA37 1QA, UK
Nessa E. O'Connor
Queen's University, Belfast, BT7 1NN, UK
Emma Gorman
Queen's University, Belfast, BT7 1NN, UK
Klaas Timmermans
NIOZ Royal Netherlands Institute for Sea Research, Dept. of Estuarine
and Delta Systems and Utrecht University, Yerseke, 4401 NT, the Netherlands
Serena Wright
The Centre for Environment, Fisheries and Aquaculture Science (Cefas),
Lowestoft, NR33 0HT, UK
Maeve Kelly
The Scottish Association for Marine Science (SAMS), Oban, PA37 1QA, UK
Adam D. Hughes
The Scottish Association for Marine Science (SAMS), Oban, PA37 1QA, UK
Elisa Capuzzo
The Centre for Environment, Fisheries and Aquaculture Science (Cefas),
Lowestoft, NR33 0HT, UK
now at: The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, DT4 8UB,
UK
Related authors
Johan van der Molen, Sjoerd Groeskamp, and Leo R. M. Maas
Ocean Sci., 18, 1805–1816, https://doi.org/10.5194/os-18-1805-2022, https://doi.org/10.5194/os-18-1805-2022, 2022
Short summary
Short summary
We studied the long-term mean flow through the Marsdiep tidal inlet in the Dutch Wadden Sea. We found that this flow, which is important for sediment, salt and nutrient balances, is reversing from net outflow to inflow. We hypothesise changes in tides in the North Sea caused this, due to increased stratification in response to global warming. Hence, we expect permanent inflow conditions within 1 decade, with potential effects on the sediment balance and the ecosystem of this World Heritage Site.
Thodoris Karpouzoglou, Brigitte Vlaswinkel, and Johan van der Molen
Ocean Sci., 16, 195–208, https://doi.org/10.5194/os-16-195-2020, https://doi.org/10.5194/os-16-195-2020, 2020
Short summary
Short summary
Sustainable operation of floating solar platforms requires knowledge of effects on the marine ecosystem. We modelled effects on water flow and algae growth in a coastal sea. Algae growth was reduced depending on the local currents and on the density of coverage with platforms. The model represented platforms distributed evenly over areas of hundreds of square kilometres. For smaller-scale cases, effects may be smaller, and for more detailed understanding, three-dimensional models are needed.
David A. Ford, Johan van der Molen, Kieran Hyder, John Bacon, Rosa Barciela, Veronique Creach, Robert McEwan, Piet Ruardij, and Rodney Forster
Biogeosciences, 14, 1419–1444, https://doi.org/10.5194/bg-14-1419-2017, https://doi.org/10.5194/bg-14-1419-2017, 2017
Short summary
Short summary
This study presents a novel set of in situ observations of phytoplankton community structure for the North Sea. These observations were used to validate two physical–biogeochemical ocean model simulations, each of which used different variants of the widely used European Regional Seas Ecosystem Model (ERSEM). The results suggest the ability of the models to reproduce the observed phytoplankton community structure was dependent on the details of the biogeochemical model parameterizations used.
Johan van der Molen, Piet Ruardij, and Naomi Greenwood
Biogeosciences, 13, 2593–2609, https://doi.org/10.5194/bg-13-2593-2016, https://doi.org/10.5194/bg-13-2593-2016, 2016
Short summary
Short summary
The potential large-scale (> 100 km) effects of marine renewable tidal energy generation in the Pentland Firth were studied using a 3-D hydrodynamics–biogeochemistry model. A realistic 800 MW scenario suggested minor effects on tides and biogeochemistry. A massive-expansion 8 GW scenario suggested effects over hundreds of kilometres away with changes of up to 10 % in tidal and ecosystem variables, the latter through clearer waters and increased primary production with associated increases in fauna.
Momme Butenschön, James Clark, John N. Aldridge, Julian Icarus Allen, Yuri Artioli, Jeremy Blackford, Jorn Bruggeman, Pierre Cazenave, Stefano Ciavatta, Susan Kay, Gennadi Lessin, Sonja van Leeuwen, Johan van der Molen, Lee de Mora, Luca Polimene, Sevrine Sailley, Nicholas Stephens, and Ricardo Torres
Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016, https://doi.org/10.5194/gmd-9-1293-2016, 2016
Short summary
Short summary
ERSEM 15.06 is a model for marine biogeochemistry and the lower trophic levels of the marine food web. It comprises a pelagic and benthic sub-model including the microbial food web and the major biogeochemical cycles of carbon, nitrogen, phosphorus, silicate, and iron using dynamic stochiometry. Further features include modules for the carbonate system and calcification. We present full mathematical descriptions of all elements along with examples at various scales up to 3-D applications.
J. van der Molen, J. van Beek, S. Augustine, L. Vansteenbrugge, L. van Walraven, V. Langenberg, H. W. van der Veer, K. Hostens, S. Pitois, and J. Robbens
Ocean Sci., 11, 405–424, https://doi.org/10.5194/os-11-405-2015, https://doi.org/10.5194/os-11-405-2015, 2015
Short summary
Short summary
The reproduction, survival, and transport of the comb jelly Mnemiopsis leidyi was studied with three models in the Scheldt estuaries and the southern North Sea. The results suggest that (a) the estuaries can retain an overwintering population and seed offshore populations; (b) M. leidyi can survive in the North Sea, and be transported between coastal inlets; and (c) M. leidyi cannot reproduce well in the North Sea, but this might change with global warming. The models need further improvement.
M. C. H. Tiessen, L. Fernard, T. Gerkema, J. van der Molen, P. Ruardij, and H. W. van der Veer
Ocean Sci., 10, 357–376, https://doi.org/10.5194/os-10-357-2014, https://doi.org/10.5194/os-10-357-2014, 2014
Johan van der Molen, Sjoerd Groeskamp, and Leo R. M. Maas
Ocean Sci., 18, 1805–1816, https://doi.org/10.5194/os-18-1805-2022, https://doi.org/10.5194/os-18-1805-2022, 2022
Short summary
Short summary
We studied the long-term mean flow through the Marsdiep tidal inlet in the Dutch Wadden Sea. We found that this flow, which is important for sediment, salt and nutrient balances, is reversing from net outflow to inflow. We hypothesise changes in tides in the North Sea caused this, due to increased stratification in response to global warming. Hence, we expect permanent inflow conditions within 1 decade, with potential effects on the sediment balance and the ecosystem of this World Heritage Site.
Thodoris Karpouzoglou, Brigitte Vlaswinkel, and Johan van der Molen
Ocean Sci., 16, 195–208, https://doi.org/10.5194/os-16-195-2020, https://doi.org/10.5194/os-16-195-2020, 2020
Short summary
Short summary
Sustainable operation of floating solar platforms requires knowledge of effects on the marine ecosystem. We modelled effects on water flow and algae growth in a coastal sea. Algae growth was reduced depending on the local currents and on the density of coverage with platforms. The model represented platforms distributed evenly over areas of hundreds of square kilometres. For smaller-scale cases, effects may be smaller, and for more detailed understanding, three-dimensional models are needed.
David A. Ford, Johan van der Molen, Kieran Hyder, John Bacon, Rosa Barciela, Veronique Creach, Robert McEwan, Piet Ruardij, and Rodney Forster
Biogeosciences, 14, 1419–1444, https://doi.org/10.5194/bg-14-1419-2017, https://doi.org/10.5194/bg-14-1419-2017, 2017
Short summary
Short summary
This study presents a novel set of in situ observations of phytoplankton community structure for the North Sea. These observations were used to validate two physical–biogeochemical ocean model simulations, each of which used different variants of the widely used European Regional Seas Ecosystem Model (ERSEM). The results suggest the ability of the models to reproduce the observed phytoplankton community structure was dependent on the details of the biogeochemical model parameterizations used.
Johan van der Molen, Piet Ruardij, and Naomi Greenwood
Biogeosciences, 13, 2593–2609, https://doi.org/10.5194/bg-13-2593-2016, https://doi.org/10.5194/bg-13-2593-2016, 2016
Short summary
Short summary
The potential large-scale (> 100 km) effects of marine renewable tidal energy generation in the Pentland Firth were studied using a 3-D hydrodynamics–biogeochemistry model. A realistic 800 MW scenario suggested minor effects on tides and biogeochemistry. A massive-expansion 8 GW scenario suggested effects over hundreds of kilometres away with changes of up to 10 % in tidal and ecosystem variables, the latter through clearer waters and increased primary production with associated increases in fauna.
Momme Butenschön, James Clark, John N. Aldridge, Julian Icarus Allen, Yuri Artioli, Jeremy Blackford, Jorn Bruggeman, Pierre Cazenave, Stefano Ciavatta, Susan Kay, Gennadi Lessin, Sonja van Leeuwen, Johan van der Molen, Lee de Mora, Luca Polimene, Sevrine Sailley, Nicholas Stephens, and Ricardo Torres
Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016, https://doi.org/10.5194/gmd-9-1293-2016, 2016
Short summary
Short summary
ERSEM 15.06 is a model for marine biogeochemistry and the lower trophic levels of the marine food web. It comprises a pelagic and benthic sub-model including the microbial food web and the major biogeochemical cycles of carbon, nitrogen, phosphorus, silicate, and iron using dynamic stochiometry. Further features include modules for the carbonate system and calcification. We present full mathematical descriptions of all elements along with examples at various scales up to 3-D applications.
J. van der Molen, J. van Beek, S. Augustine, L. Vansteenbrugge, L. van Walraven, V. Langenberg, H. W. van der Veer, K. Hostens, S. Pitois, and J. Robbens
Ocean Sci., 11, 405–424, https://doi.org/10.5194/os-11-405-2015, https://doi.org/10.5194/os-11-405-2015, 2015
Short summary
Short summary
The reproduction, survival, and transport of the comb jelly Mnemiopsis leidyi was studied with three models in the Scheldt estuaries and the southern North Sea. The results suggest that (a) the estuaries can retain an overwintering population and seed offshore populations; (b) M. leidyi can survive in the North Sea, and be transported between coastal inlets; and (c) M. leidyi cannot reproduce well in the North Sea, but this might change with global warming. The models need further improvement.
M. C. H. Tiessen, L. Fernard, T. Gerkema, J. van der Molen, P. Ruardij, and H. W. van der Veer
Ocean Sci., 10, 357–376, https://doi.org/10.5194/os-10-357-2014, https://doi.org/10.5194/os-10-357-2014, 2014
Related subject area
Biogeochemistry: Modelling, Aquatic
Killing the predator: impacts of highest-predator mortality on the global-ocean ecosystem structure
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 1: roles of nutrient limitation and plankton community
Validation of the coupled physical–biogeochemical ocean model NEMO–SCOBI for the North Sea–Baltic Sea system
Investigating ecosystem connections in the shelf sea environment using complex networks
Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model
Seasonal and interannual variability of the pelagic ecosystem and of the organic carbon budget in the Rhodes Gyre (eastern Mediterranean): influence of winter mixing
How much do bacterial growth properties and biodegradable dissolved organic matter control water quality at low flow?
Methane emissions from Arctic landscapes during 2000–2015: an analysis with land and lake biogeochemistry models
Including filter-feeding gelatinous macrozooplankton in a global marine biogeochemical model: model–data comparison and impact on the ocean carbon cycle
Riverine impact on future projections of marine primary production and carbon uptake
Subsurface oxygen maximum in oligotrophic marine ecosystems: mapping the interaction between physical and biogeochemical processes
Quantifying biological carbon pump pathways with a data-constrained mechanistic model ensemble approach
Assessing the spatial and temporal variability of methylmercury biogeochemistry and bioaccumulation in the Mediterranean Sea with a coupled 3D model
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 2: statistical modeling and hypoxia prediction
Modelling the effects of benthic fauna on carbon, nitrogen and phosphorus dynamics in the Baltic Sea
Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms
Nutrient transport and transformation in macrotidal estuaries of the French Atlantic coast: a modeling approach using the Carbon-Generic Estuarine Model
A modelling study of temporal and spatial pCO2 variability on the biologically active and temperature-dominated Scotian Shelf
Modeling the marine chromium cycle: new constraints on global-scale processes
New insights into large-scale trends of apparent organic matter reactivity in marine sediments and patterns of benthic carbon transformation
Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models
Zooplankton mortality effects on the plankton community of the northern Humboldt Current System: sensitivity of a regional biogeochemical model
Multi-compartment kinetic–allometric (MCKA) model of radionuclide bioaccumulation in marine fish
Impact of bottom trawling on sediment biogeochemistry: a modelling approach
Cyanobacteria blooms in the Baltic Sea: a review of models and facts
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble
Modeling silicate–nitrate–ammonium co-limitation of algal growth and the importance of bacterial remineralization based on an experimental Arctic coastal spring bloom culture study
Role of jellyfish in the plankton ecosystem revealed using a global ocean biogeochemical model
Extreme event waves in marine ecosystems: an application to Mediterranean Sea surface chlorophyll
Use of optical absorption indices to assess seasonal variability of dissolved organic matter in Amazon floodplain lakes
The role of sediment-induced light attenuation on primary production during Hurricane Gustav (2008)
Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry
Seasonal patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from a regional high-resolution ocean biogeochemical model
Oxygen dynamics and evaluation of the single-station diel oxygen model across contrasting geologies
Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modeling approach
Global trends in marine nitrate N isotopes from observations and a neural network-based climatology
Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry
Model constraints on the anthropogenic carbon budget of the Arctic Ocean
Modeling oceanic nitrate and nitrite concentrations and isotopes using a 3-D inverse N cycle model
Biogeochemical response of the Mediterranean Sea to the transient SRES-A2 climate change scenario
Modelling the biogeochemical effects of heterotrophic and autotrophic N2 fixation in the Gulf of Aqaba (Israel), Red Sea
A perturbed biogeochemistry model ensemble evaluated against in situ and satellite observations
Diazotrophy as the main driver of the oligotrophy gradient in the western tropical South Pacific Ocean: results from a one-dimensional biogeochemical–physical coupled model
Causes of simulated long-term changes in phytoplankton biomass in the Baltic proper: a wavelet analysis
Modelling N2 fixation related to Trichodesmium sp.: driving processes and impacts on primary production in the tropical Pacific Ocean
Long-term response of oceanic carbon uptake to global warming via physical and biological pumps
Seasonal patterns in phytoplankton biomass across the northern and deep Gulf of Mexico: a numerical model study
Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales
David Talmy, Eric Carr, Harshana Rajakaruna, Selina Våge, and Anne Willem Omta
Biogeosciences, 21, 2493–2507, https://doi.org/10.5194/bg-21-2493-2024, https://doi.org/10.5194/bg-21-2493-2024, 2024
Short summary
Short summary
The structure of plankton communities is central to global cycles of carbon, nitrogen, and other elements. This study explored the sensitivity of different assumptions about highest-predator mortality in ecosystem models with contrasting food web structures. In the context of environmental data, we find support for models assuming a density-dependent mortality of the highest predator, irrespective of assumed food web structure.
Yanda Ou and Z. George Xue
Biogeosciences, 21, 2385–2424, https://doi.org/10.5194/bg-21-2385-2024, https://doi.org/10.5194/bg-21-2385-2024, 2024
Short summary
Short summary
Developed for the Gulf of Mexico (2006–2020), a 3D hydrodynamic–biogeochemical model validated against in situ data reveals the impact of nutrients and plankton diversity on dissolved oxygen dynamics. It highlights the role of physical processes, sediment oxygen consumption, and nutrient distribution in shaping bottom oxygen levels and hypoxia. The model underscores the importance of complex plankton interactions for understanding primary production and hypoxia evolution.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Ieuan Higgs, Jozef Skákala, Ross Bannister, Alberto Carrassi, and Stefano Ciavatta
Biogeosciences, 21, 731–746, https://doi.org/10.5194/bg-21-731-2024, https://doi.org/10.5194/bg-21-731-2024, 2024
Short summary
Short summary
A complex network is a way of representing which parts of a system are connected to other parts. We have constructed a complex network based on an ecosystem–ocean model. From this, we can identify patterns in the structure and areas of similar behaviour. This can help to understand how natural, or human-made, changes will affect the shelf sea ecosystem, and it can be used in multiple future applications such as improving modelling, data assimilation, or machine learning.
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
EGUsphere, https://doi.org/10.5194/egusphere-2024-123, https://doi.org/10.5194/egusphere-2024-123, 2024
Short summary
Short summary
N is an important nutrient that limits phytoplankton growth in large parts of the ocean. The amount of oceanic N is governed by the balance of N2 fixation and denitrification. Here we incorporate benthic denitrification in an Earth system model with variable stoichiometry. Our model compares better to the observed surface nutrient distributions, marine N2 fixation and primary production. Benthic denitrification plays an important role in marine N and C cycling, and hence the global climate.
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023, https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Short summary
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation site. In this study, we use a 3D physical–biogeochemical model to investigate the seasonal and interannual variability of organic carbon dynamics in the gyre. Our results show its autotrophic nature and its high interannual variability, with enhanced primary production, downward exports, and onward exports to the surrounding regions during years marked by intense heat losses and deep mixed layers.
Masihullah Hasanyar, Thomas Romary, Shuaitao Wang, and Nicolas Flipo
Biogeosciences, 20, 1621–1633, https://doi.org/10.5194/bg-20-1621-2023, https://doi.org/10.5194/bg-20-1621-2023, 2023
Short summary
Short summary
The results of this study indicate that biodegradable dissolved organic matter is responsible for oxygen depletion at low flow during summer seasons when heterotrophic bacterial activity is so intense. Therefore, the dissolved organic matter must be well measured in the water monitoring networks in order to have more accurate water quality models. It also advocates for high-frequency data collection for better quantification of the uncertainties related to organic matter.
Xiangyu Liu and Qianlai Zhuang
Biogeosciences, 20, 1181–1193, https://doi.org/10.5194/bg-20-1181-2023, https://doi.org/10.5194/bg-20-1181-2023, 2023
Short summary
Short summary
We are among the first to quantify methane emissions from inland water system in the pan-Arctic. The total CH4 emissions are 36.46 Tg CH4 yr−1 during 2000–2015, of which wetlands and lakes were 21.69 Tg yr−1 and 14.76 Tg yr−1, respectively. By using two non-overlap area change datasets with land and lake models, our simulation avoids small lakes being counted twice as both lake and wetland, and it narrows the gap between two different methods used to quantify regional CH4 emissions.
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023, https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Short summary
Gelatinous zooplankton play a key role in the ocean carbon cycle. In particular, pelagic tunicates, which feed on a wide size range of prey, produce rapidly sinking detritus. Thus, they efficiently transfer carbon from the surface to the depths. Consequently, we added these organisms to a marine biogeochemical model (PISCES-v2) and evaluated their impact on the global carbon cycle. We found that they contribute significantly to carbon export and that this contribution increases with depth.
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023, https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary
Short summary
We assess the impact of riverine nutrients and carbon (C) on projected marine primary production (PP) and C uptake using a fully coupled Earth system model. Riverine inputs alleviate nutrient limitation and thus lessen the projected PP decline by up to 0.7 Pg C yr−1 globally. The effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projected ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver.
Valeria Di Biagio, Stefano Salon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 19, 5553–5574, https://doi.org/10.5194/bg-19-5553-2022, https://doi.org/10.5194/bg-19-5553-2022, 2022
Short summary
Short summary
The amount of dissolved oxygen in the ocean is the result of interacting physical and biological processes. Oxygen vertical profiles show a subsurface maximum in a large part of the ocean. We used a numerical model to map this subsurface maximum in the Mediterranean Sea and to link local differences in its properties to the driving processes. This emerging feature can help the marine ecosystem functioning to be better understood, also under the impacts of climate change.
Michael R. Stukel, Moira Décima, and Michael R. Landry
Biogeosciences, 19, 3595–3624, https://doi.org/10.5194/bg-19-3595-2022, https://doi.org/10.5194/bg-19-3595-2022, 2022
Short summary
Short summary
The biological carbon pump (BCP) transports carbon into the deep ocean, leading to long-term marine carbon sequestration. It is driven by many physical, chemical, and ecological processes. We developed a model of the BCP constrained using data from 11 cruises in 4 different ocean regions. Our results show that sinking particles and vertical mixing are more important than transport mediated by vertically migrating zooplankton. They also highlight the uncertainty in current estimates of the BCP.
Ginevra Rosati, Donata Canu, Paolo Lazzari, and Cosimo Solidoro
Biogeosciences, 19, 3663–3682, https://doi.org/10.5194/bg-19-3663-2022, https://doi.org/10.5194/bg-19-3663-2022, 2022
Short summary
Short summary
Methylmercury (MeHg) is produced and bioaccumulated in marine food webs, posing concerns for human exposure through seafood consumption. We modeled and analyzed the fate of MeHg in the lower food web of the Mediterranean Sea. The modeled spatial–temporal distribution of plankton bioaccumulation differs from the distribution of MeHg in surface water. We also show that MeHg exposure concentrations in temperate waters can be lowered by winter convection, which is declining due to climate change.
Yanda Ou, Bin Li, and Z. George Xue
Biogeosciences, 19, 3575–3593, https://doi.org/10.5194/bg-19-3575-2022, https://doi.org/10.5194/bg-19-3575-2022, 2022
Short summary
Short summary
Over the past decades, the Louisiana–Texas shelf has been suffering recurring hypoxia (dissolved oxygen < 2 mg L−1). We developed a novel prediction model using state-of-the-art statistical techniques based on physical and biogeochemical data provided by a numerical model. The model can capture both the magnitude and onset of the annual hypoxia events. This study also demonstrates that it is possible to use a global model forecast to predict regional ocean water quality.
Eva Ehrnsten, Oleg Pavlovitch Savchuk, and Bo Gustav Gustafsson
Biogeosciences, 19, 3337–3367, https://doi.org/10.5194/bg-19-3337-2022, https://doi.org/10.5194/bg-19-3337-2022, 2022
Short summary
Short summary
We studied the effects of benthic fauna, animals living on or in the seafloor, on the biogeochemical cycles of carbon, nitrogen and phosphorus using a model of the Baltic Sea ecosystem. By eating and excreting, the animals transform a large part of organic matter sinking to the seafloor into inorganic forms, which fuel plankton blooms. Simultaneously, when they move around (bioturbate), phosphorus is bound in the sediments. This reduces nitrogen-fixing plankton blooms and oxygen depletion.
Brandon J. McNabb and Philippe D. Tortell
Biogeosciences, 19, 1705–1721, https://doi.org/10.5194/bg-19-1705-2022, https://doi.org/10.5194/bg-19-1705-2022, 2022
Short summary
Short summary
The trace gas dimethyl sulfide (DMS) plays an important role in the ocean sulfur cycle and can also influence Earth’s climate. Our study used two statistical methods to predict surface ocean concentrations and rates of sea–air exchange of DMS in the northeast subarctic Pacific. Our results show improved predictive power over previous approaches and suggest that nutrient availability, light-dependent processes, and physical mixing may be important controls on DMS in this region.
Xi Wei, Josette Garnier, Vincent Thieu, Paul Passy, Romain Le Gendre, Gilles Billen, Maia Akopian, and Goulven Gildas Laruelle
Biogeosciences, 19, 931–955, https://doi.org/10.5194/bg-19-931-2022, https://doi.org/10.5194/bg-19-931-2022, 2022
Short summary
Short summary
Estuaries are key reactive ecosystems along the land–ocean aquatic continuum and are often strongly impacted by anthropogenic activities. We calculated nutrient in and out fluxes by using a 1-D transient model for seven estuaries along the French Atlantic coast. Among these, large estuaries with high residence times showed higher retention rates than medium and small ones. All reveal coastal eutrophication due to the excess of diffused nitrogen from intensive agricultural river basins.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Frerk Pöppelmeier, David J. Janssen, Samuel L. Jaccard, and Thomas F. Stocker
Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021, https://doi.org/10.5194/bg-18-5447-2021, 2021
Short summary
Short summary
Chromium (Cr) is a redox-sensitive element that holds promise as a tracer of ocean oxygenation and biological activity. We here implemented the oxidation states Cr(III) and Cr(VI) in the Bern3D model to investigate the processes that shape the global Cr distribution. We find a Cr ocean residence time of 5–8 kyr and that the benthic source dominates the tracer budget. Further, regional model–data mismatches suggest strong Cr removal in oxygen minimum zones and a spatially variable benthic source.
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Short summary
In this study we analyse surface ocean dimethylsulfide (DMS) concentration and flux to the atmosphere from four CMIP6 Earth system models over the historical and ssp585 simulations.
Our analysis of contemporary (1980–2009) climatologies shows that models better reproduce observations in mid to high latitudes. The models disagree on the sign of the trend of the global DMS flux from 1980 onwards. The models agree on a positive trend of DMS over polar latitudes following sea-ice retreat dynamics.
Mariana Hill Cruz, Iris Kriest, Yonss Saranga José, Rainer Kiko, Helena Hauss, and Andreas Oschlies
Biogeosciences, 18, 2891–2916, https://doi.org/10.5194/bg-18-2891-2021, https://doi.org/10.5194/bg-18-2891-2021, 2021
Short summary
Short summary
In this study we use a regional biogeochemical model of the eastern tropical South Pacific Ocean to implicitly simulate the effect that fluctuations in populations of small pelagic fish, such as anchovy and sardine, may have on the biogeochemistry of the northern Humboldt Current System. To do so, we vary the zooplankton mortality in the model, under the assumption that these fishes eat zooplankton. We also evaluate the model for the first time against mesozooplankton observations.
Roman Bezhenar, Kyeong Ok Kim, Vladimir Maderich, Govert de With, and Kyung Tae Jung
Biogeosciences, 18, 2591–2607, https://doi.org/10.5194/bg-18-2591-2021, https://doi.org/10.5194/bg-18-2591-2021, 2021
Short summary
Short summary
A new approach to predicting the accumulation of radionuclides in fish was developed by taking into account heterogeneity of distribution of contamination in the organism and dependence of metabolic process rates on the fish mass. Predicted concentrations of radionuclides in fish agreed well with the laboratory and field measurements. The model with the defined generic parameters could be used in marine environments without local calibration, which is important for emergency decision support.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Adriaan D. Rijnsdorp, and Karline Soetaert
Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, https://doi.org/10.5194/bg-18-2539-2021, 2021
Short summary
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Britta Munkes, Ulrike Löptien, and Heiner Dietze
Biogeosciences, 18, 2347–2378, https://doi.org/10.5194/bg-18-2347-2021, https://doi.org/10.5194/bg-18-2347-2021, 2021
Short summary
Short summary
Cyanobacteria blooms can strongly aggravate eutrophication problems of water bodies. Their controls are, however, not comprehensively understood, which impedes effective management and protection plans. Here we review the current understanding of cyanobacteria blooms. Juxtaposition of respective field and laboratory studies with state-of-the-art mathematical models reveals substantial uncertainty associated with nutrient demands, grazing, and death of cyanobacteria.
Jens Terhaar, Olivier Torres, Timothée Bourgeois, and Lester Kwiatkowski
Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021, https://doi.org/10.5194/bg-18-2221-2021, 2021
Short summary
Short summary
The uptake of carbon, emitted as a result of human activities, results in ocean acidification. We analyse 21st-century projections of acidification in the Arctic Ocean, a region of particular vulnerability, using the latest generation of Earth system models. In this new generation of models there is a large decrease in the uncertainty associated with projections of Arctic Ocean acidification, with freshening playing a greater role in driving acidification than previously simulated.
Tobias R. Vonnahme, Martial Leroy, Silke Thoms, Dick van Oevelen, H. Rodger Harvey, Svein Kristiansen, Rolf Gradinger, Ulrike Dietrich, and Christoph Völker
Biogeosciences, 18, 1719–1747, https://doi.org/10.5194/bg-18-1719-2021, https://doi.org/10.5194/bg-18-1719-2021, 2021
Short summary
Short summary
Diatoms are crucial for Arctic coastal spring blooms, and their growth is controlled by nutrients and light. At the end of the bloom, inorganic nitrogen or silicon can be limiting, but nitrogen can be regenerated by bacteria, extending the algal growth phase. Modeling these multi-nutrient dynamics and the role of bacteria is challenging yet crucial for accurate modeling. We recreated spring bloom dynamics in a cultivation experiment and developed a representative dynamic model.
Rebecca M. Wright, Corinne Le Quéré, Erik Buitenhuis, Sophie Pitois, and Mark J. Gibbons
Biogeosciences, 18, 1291–1320, https://doi.org/10.5194/bg-18-1291-2021, https://doi.org/10.5194/bg-18-1291-2021, 2021
Short summary
Short summary
Jellyfish have been included in a global ocean biogeochemical model for the first time. The global mean jellyfish biomass in the model is within the observational range. Jellyfish are found to play an important role in the plankton ecosystem, influencing community structure, spatiotemporal dynamics and biomass. The model raises questions about the sensitivity of the zooplankton community to jellyfish mortality and the interactions between macrozooplankton and jellyfish.
Valeria Di Biagio, Gianpiero Cossarini, Stefano Salon, and Cosimo Solidoro
Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020, https://doi.org/10.5194/bg-17-5967-2020, 2020
Short summary
Short summary
Events that influence the functioning of the Earth’s ecosystems are of interest in relation to a changing climate. We propose a method to identify and characterise
wavesof extreme events affecting marine ecosystems for multi-week periods over wide areas. Our method can be applied to suitable ecosystem variables and has been used to describe different kinds of extreme event waves of phytoplankton chlorophyll in the Mediterranean Sea, by analysing the output from a high-resolution model.
Maria Paula da Silva, Lino A. Sander de Carvalho, Evlyn Novo, Daniel S. F. Jorge, and Claudio C. F. Barbosa
Biogeosciences, 17, 5355–5364, https://doi.org/10.5194/bg-17-5355-2020, https://doi.org/10.5194/bg-17-5355-2020, 2020
Short summary
Short summary
In this study, we analyze the seasonal changes in the dissolved organic matter (DOM) quality (based on its optical properties) in four Amazon floodplain lakes. DOM plays a fundamental role in surface water chemistry, controlling metal bioavailability and mobility, and nutrient cycling. The model proposed in our paper highlights the potential to study DOM quality at a wider spatial scale, which may help to better understand the persistence and fate of DOM in the ecosystem.
Zhengchen Zang, Z. George Xue, Kehui Xu, Samuel J. Bentley, Qin Chen, Eurico J. D'Sa, Le Zhang, and Yanda Ou
Biogeosciences, 17, 5043–5055, https://doi.org/10.5194/bg-17-5043-2020, https://doi.org/10.5194/bg-17-5043-2020, 2020
Taylor A. Shropshire, Steven L. Morey, Eric P. Chassignet, Alexandra Bozec, Victoria J. Coles, Michael R. Landry, Rasmus Swalethorp, Glenn Zapfe, and Michael R. Stukel
Biogeosciences, 17, 3385–3407, https://doi.org/10.5194/bg-17-3385-2020, https://doi.org/10.5194/bg-17-3385-2020, 2020
Short summary
Short summary
Zooplankton are the smallest animals in the ocean and important food for fish. Despite their importance, zooplankton have been relatively undersampled. To better understand the zooplankton community in the Gulf of Mexico (GoM), we developed a model to simulate their dynamics. We found that heterotrophic protists are important for supporting mesozooplankton, which are the primary prey of larval fish. The model developed in this study has the potential to improve fisheries management in the GoM.
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020, https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Short summary
Constants of global biogeochemical ocean models are often tuned
by handto match observations of nutrients or oxygen. We investigate the effect of this tuning by optimising six constants of a global biogeochemical model, simulated in five different offline circulations. Optimal values for three constants adjust to distinct features of the circulation applied and can afterwards be swapped among the circulations, without losing too much of the model's fit to observed quantities.
Laura Haffert, Matthias Haeckel, Henko de Stigter, and Felix Janssen
Biogeosciences, 17, 2767–2789, https://doi.org/10.5194/bg-17-2767-2020, https://doi.org/10.5194/bg-17-2767-2020, 2020
Short summary
Short summary
Deep-sea mining for polymetallic nodules is expected to have severe environmental impacts. Through prognostic modelling, this study aims to provide a holistic assessment of the biogeochemical recovery after a disturbance event. It was found that the recovery strongly depends on the impact type; e.g. complete removal of the surface sediment reduces seafloor nutrient fluxes over centuries.
Fabian A. Gomez, Rik Wanninkhof, Leticia Barbero, Sang-Ki Lee, and Frank J. Hernandez Jr.
Biogeosciences, 17, 1685–1700, https://doi.org/10.5194/bg-17-1685-2020, https://doi.org/10.5194/bg-17-1685-2020, 2020
Short summary
Short summary
We use a numerical model to infer annual changes of surface carbon chemistry in the Gulf of Mexico (GoM). The main seasonality drivers of partial pressure of carbon dioxide and aragonite saturation state from the model are temperature and river runoff. The GoM basin is a carbon sink in winter–spring and carbon source in summer–fall, but uptake prevails near the Mississippi Delta year-round due to high biological production. Our model results show good correspondence with observational studies.
Simon J. Parker
Biogeosciences, 17, 305–315, https://doi.org/10.5194/bg-17-305-2020, https://doi.org/10.5194/bg-17-305-2020, 2020
Short summary
Short summary
Dissolved oxygen (DO) models typically assume constant ecosystem respiration over the course of a single day. Using a data-driven approach, this research examines this assumption in four streams across two (hydro-)geological types (Chalk and Greensand). Despite hydrogeological equivalence in terms of baseflow index for each hydrogeological pairing, model suitability differed within, rather than across, geology types. This corresponded with associated differences in timings of DO minima.
Fabrice Lacroix, Tatiana Ilyina, and Jens Hartmann
Biogeosciences, 17, 55–88, https://doi.org/10.5194/bg-17-55-2020, https://doi.org/10.5194/bg-17-55-2020, 2020
Short summary
Short summary
Contributions of rivers to the oceanic cycling of carbon have been poorly represented in global models until now. Here, we assess the long–term implications of preindustrial riverine loads in the ocean in a novel framework which estimates the loads through a hierarchy of weathering and land–ocean export models. We investigate their impacts for the oceanic biological production and air–sea carbon flux. Finally, we assess the potential incorporation of the framework in an Earth system model.
Patrick A. Rafter, Aaron Bagnell, Dario Marconi, and Timothy DeVries
Biogeosciences, 16, 2617–2633, https://doi.org/10.5194/bg-16-2617-2019, https://doi.org/10.5194/bg-16-2617-2019, 2019
Short summary
Short summary
The N isotopic composition of nitrate (
nitrate δ15N) is a useful tracer of ocean N cycling and many other ocean processes. Here, we use a global compilation of marine nitrate δ15N as an input, training, and validating dataset for an artificial neural network (a.k.a.,
machine learning) and examine basin-scale trends in marine nitrate δ15N from the surface to the seafloor.
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Short summary
Measuring ecosystem properties in the ocean is a hard business. Recent availability of data from Biogeochemical-Argo floats can help make this task easier. Numerical models can integrate these new data in a coherent picture and can be used to investigate the functioning of ecosystem processes. Our new approach merges experimental information and model capabilities to quantitatively demonstrate the importance of light and water vertical mixing for algae dynamics in the Mediterranean Sea.
Jens Terhaar, James C. Orr, Marion Gehlen, Christian Ethé, and Laurent Bopp
Biogeosciences, 16, 2343–2367, https://doi.org/10.5194/bg-16-2343-2019, https://doi.org/10.5194/bg-16-2343-2019, 2019
Short summary
Short summary
A budget of anthropogenic carbon in the Arctic Ocean, the main driver of open-ocean acidification, was constructed for the first time using a high-resolution ocean model. The budget reveals that anthropogenic carbon enters the Arctic Ocean mainly by lateral transport; the air–sea flux plays a minor role. Coarser-resolution versions of the same model, typical of earth system models, store less anthropogenic carbon in the Arctic Ocean and thus underestimate ocean acidification in the Arctic Ocean.
Taylor S. Martin, François Primeau, and Karen L. Casciotti
Biogeosciences, 16, 347–367, https://doi.org/10.5194/bg-16-347-2019, https://doi.org/10.5194/bg-16-347-2019, 2019
Short summary
Short summary
Nitrite is a key intermediate in many nitrogen (N) cycling processes in the ocean, particularly in areas with low oxygen that are hotspots for N loss. We have created a 3-D global N cycle model with nitrite as a tracer. Stable isotopes of N are also included in the model and we are able to model the isotope fractionation associated with each N cycling process. Our model accurately represents N concentrations and isotope distributions in the ocean.
Camille Richon, Jean-Claude Dutay, Laurent Bopp, Briac Le Vu, James C. Orr, Samuel Somot, and François Dulac
Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019, https://doi.org/10.5194/bg-16-135-2019, 2019
Short summary
Short summary
We evaluate the effects of climate change and biogeochemical forcing evolution on the nutrient and plankton cycles of the Mediterranean Sea for the first time. We use a high-resolution coupled physical and biogeochemical model and perform 120-year transient simulations. The results indicate that changes in external nutrient fluxes and climate change may have synergistic or antagonistic effects on nutrient concentrations, depending on the region and the scenario.
Angela M. Kuhn, Katja Fennel, and Ilana Berman-Frank
Biogeosciences, 15, 7379–7401, https://doi.org/10.5194/bg-15-7379-2018, https://doi.org/10.5194/bg-15-7379-2018, 2018
Short summary
Short summary
Recent studies demonstrate that marine N2 fixation can be carried out without light. However, direct measurements of N2 fixation in dark environments are relatively scarce. This study uses a model that represents biogeochemical cycles at a deep-ocean location in the Gulf of Aqaba (Red Sea). Different model versions are used to test assumptions about N2 fixers. Relaxing light limitation for marine N2 fixers improved the similarity between model results and observations of deep nitrate and oxygen.
Prima Anugerahanti, Shovonlal Roy, and Keith Haines
Biogeosciences, 15, 6685–6711, https://doi.org/10.5194/bg-15-6685-2018, https://doi.org/10.5194/bg-15-6685-2018, 2018
Short summary
Short summary
Minor changes in the biogeochemical model equations lead to major dynamical changes. We assessed this structural sensitivity for the MEDUSA biogeochemical model on chlorophyll and nitrogen concentrations at five oceanographic stations over 10 years, using 1-D ensembles generated by combining different process equations. The ensemble performed better than the default model in most of the stations, suggesting that our approach is useful for generating a probabilistic biogeochemical ensemble model.
Audrey Gimenez, Melika Baklouti, Thibaut Wagener, and Thierry Moutin
Biogeosciences, 15, 6573–6589, https://doi.org/10.5194/bg-15-6573-2018, https://doi.org/10.5194/bg-15-6573-2018, 2018
Short summary
Short summary
During the OUTPACE cruise conducted in the oligotrophic to ultra-oligotrophic region of the western tropical South Pacific, two contrasted regions were sampled in terms of N2 fixation rates, primary production rates and nutrient availability. The aim of this work was to investigate the role of N2 fixation in the differences observed between the two contrasted areas by comparing two simulations only differing by the presence or not of N2 fixers using a 1-D biogeochemical–physical coupled model.
Jenny Hieronymus, Kari Eilola, Magnus Hieronymus, H. E. Markus Meier, Sofia Saraiva, and Bengt Karlson
Biogeosciences, 15, 5113–5129, https://doi.org/10.5194/bg-15-5113-2018, https://doi.org/10.5194/bg-15-5113-2018, 2018
Short summary
Short summary
This paper investigates how phytoplankton concentrations in the Baltic Sea co-vary with nutrient concentrations and other key variables on inter-annual timescales in a model integration over the years 1850–2008. The study area is not only affected by climate change; it has also been subjected to greatly increased nutrient loads due to extensive use of agricultural fertilizers. The results indicate the largest inter-annual coherence of phytoplankton with the limiting nutrient.
Cyril Dutheil, Olivier Aumont, Thomas Gorguès, Anne Lorrain, Sophie Bonnet, Martine Rodier, Cécile Dupouy, Takuhei Shiozaki, and Christophe Menkes
Biogeosciences, 15, 4333–4352, https://doi.org/10.5194/bg-15-4333-2018, https://doi.org/10.5194/bg-15-4333-2018, 2018
Short summary
Short summary
N2 fixation is recognized as one of the major sources of nitrogen in the ocean. Thus, N2 fixation sustains a significant part of the primary production (PP) by supplying the most common limiting nutrient for phytoplankton growth. From numerical simulations, the local maximums of Trichodesmium biomass in the Pacific are found around islands, explained by the iron fluxes from island sediments. We assessed that 15 % of the PP may be due to Trichodesmium in the low-nutrient, low-chlorophyll areas.
Akitomo Yamamoto, Ayako Abe-Ouchi, and Yasuhiro Yamanaka
Biogeosciences, 15, 4163–4180, https://doi.org/10.5194/bg-15-4163-2018, https://doi.org/10.5194/bg-15-4163-2018, 2018
Short summary
Short summary
Millennial-scale changes in oceanic CO2 uptake due to global warming are simulated by a GCM and offline biogeochemical model. Sensitivity studies show that decreases in oceanic CO2 uptake are mainly caused by a weaker biological pump and seawater warming. Enhanced CO2 uptake due to weaker equatorial upwelling cancels out reduced CO2 uptake due to weaker AMOC and AABW formation. Thus, circulation change plays only a small direct role in reduction of CO2 uptake due to global warming.
Fabian A. Gomez, Sang-Ki Lee, Yanyun Liu, Frank J. Hernandez Jr., Frank E. Muller-Karger, and John T. Lamkin
Biogeosciences, 15, 3561–3576, https://doi.org/10.5194/bg-15-3561-2018, https://doi.org/10.5194/bg-15-3561-2018, 2018
Short summary
Short summary
Seasonal patterns in nanophytoplankton and diatom biomass in the Gulf of Mexico were examined with an ocean–biogeochemical model. We found silica limitation of model diatom growth in the deep GoM and Mississippi delta. Zooplankton grazing and both transport and vertical mixing of biomass substantially influence the model phytoplankton biomass seasonality. We stress the need for integrated analyses of biologically and physically driven biomass fluxes to describe phytoplankton seasonal changes.
Martí Galí, Maurice Levasseur, Emmanuel Devred, Rafel Simó, and Marcel Babin
Biogeosciences, 15, 3497–3519, https://doi.org/10.5194/bg-15-3497-2018, https://doi.org/10.5194/bg-15-3497-2018, 2018
Short summary
Short summary
We developed a new algorithm to estimate the sea-surface concentration of dimethylsulfide (DMS) using satellite data. DMS is a gas produced by marine plankton that, once emitted to the atmosphere, plays a key climatic role by seeding cloud formation. We used the algorithm to produce global DMS maps and also regional DMS time series. The latter suggest that DMS can vary largely from one year to another, which should be taken into account in atmospheric studies.
Cited articles
Aldridge, J., van der Molen, J., and Forster, R.: Wider ecological implications of macroalgae cultivation, The Crown Estate, Edinburgh, London, 95 pp., 2012.
Atkinson, M. J. and Smith, S. V.: C : N P ratios of benthic marine plants, Limnol. Oceanogr., 28, 568–574, 1983.
Balmaseda, M. A., Mogensen, K., and Weaver, A.: Evaluation of the ECMWF Ocean Reanalysis ORAS4, Q. J. Roy. Meteor. Soc., 139, 1132–1161, https://doi.org/10.1002/qj.2063, 2013.
Baretta, J. W., Ebenhöh, W., and Ruardij, P.: The European Regional Seas Ecosystem Model, a complex marine ecosystem model, Neth. J. Sea Res., 33, 233–246, 1995.
Baretta-Bekker, J. G., Baretta, J. W., and Ebenhöh, W.: Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake, J. Sea Res., 38, 195–211, 1997.
Bartsch, I., Wiencke, C., Bischof, K., Buchholz, C. M., Buck, B. H., Eggert, A., Feuerpfeil, P., Hanelt, D., Jacobsen, S., Karez, R., Karsten, U., Molis, M., Roleda, M. Y., Schubert, H., Schumann, R., Valentin, K., Weinberger, F., and Wiese, J.: The genus Laminaria sensu lato: recent insights and developments, Eur. J. Phycol., 43, 1–86, 2008.
Berrisford, P., Dee, D. P., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Kållberg, P. W., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-interim archive Version 2.0. ERA Report Series 1, ECMWF, Reading, 23 pp., 2011.
Birkett, D. A., Maggs, C. A., Dring, M. J., Boaden, P. J. S., and Seed, R.: Infralittoral reef biotopes with kelp species (volume VII), An overview of dynamic and sensitivity characteristics for conservation management of marine SACs, Scottish Association of Marine Science (UK Marine SACs Project), 174 pp., 1998.
Black, W. A. P.: The seasonal variation in weight and chemical composition of the common British Laminariaceae, J. Mar. Biol. Assoc. UK, 29, 45–72, 1950.
Bologna, P. A. X. and Steneck, R. S.: Kelp beds as habitat for American lobster Homarus americanus, Mar. Ecol.-Prog. Ser., 100, 127–134, 1993.
Bolton, J. J. and Lüning, K.: Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture, Mar. Biol., 66, 89–94, 1982.
Boyd, R. J.: The relation of the plankton to the physical, chemical and biological features of Strangford Lough, Co. Down, P. Roy. Irish. Acad. B, 73, 317–353, 1973.
Bristow, L. A., Jickells, T. D., Weston, K., Marca-Bell, A., Parker, R., and Andrews, J. E.: Tracing estuarine organic matter sources into the southern North Sea using C and N isotopic signatures, Biogeochemistry, 113, 9–22, 2013.
Broch, O. J. and Slagstad, D.: Modelling seasonal growth and composition of the kelp Saccharina latissima, J. Appl. Phycol., 24, 759–776, 2012.
Buck, B. H. and Buchholz, C. M.: The offshore-ring: a new system design for the open ocean aquaculture of macroalgae, J. Appl. Phycol., 16, 355–368, 2004.
Buck, B. H. and Buchholz, C. M.: Response of offshore cultivated Laminaria saccharina to hydrodynamic forcing in the North Sea, Aquaculture, 250, 674–691, 2005.
Burchard, H. and Bolding, K.: GETM – a general estuarine transport model, Scientific documentation, Tech. Rep. EUR 20253 EN, European Commission, Ispra, Italy, 2002.
Burchard, H., Bolding, K., and Villareal, M. R.: GOTM – a general ocean turbulence model, Theory, applications and test cases, Tech. Rep. EUR 18745 EN, European Commission, 1999.
Burrows, M. T.: Influences of wave fetch, tidal flow and ocean colour on subtidal rocky communities, Mar. Ecol.-Prog. Ser., 445, 193–207, 2012.
Capuzzo, E., Stephens, D., Aldridge, J., and Forster, R. M.: Feasibility study – Potential locations for macro-algae farming off the East Anglian coast, The Crown Estate, 37 pp., available at: www.thecrownestate.co.uk/media/389748/ei-potential-locations-for-macro-algae-farming-off-the-coast-of-east-anglia.pdf (last access: 19 February 2018), 2014.
Chapman, A. R. O., Markham, J. W., and Lüning, K.: Effects of nitrate concentration on the growth and physiology of Laminaria saccharina (Phaeophyta) in culture, J. Phycol., 14, 195–198, 1978.
Chopin, T., Buschmann, A. H., Halling, C., Troell, M., Kautsky, N., Neori, A., Kraemer, G. P., Zertuche-Gonzalez, J., Yarish, C., and Neefus, C.: Integrating seaweeds into marine aquaculture systems: a key toward sustainability, J. Phycol., 37, 975–986, 2001.
Connolly, N. J. and Drew, E. A.: Physiology of Laminaria III. Effect of a coastal eutrophication gradient on seasonal patterns of growth and tissue composition in L. digitata LAMOUR and L. saccharina (L.) LAMOUR, Mar. Ecol., 6, 181–195, 1985.
Daly, B. and Konar, B.: Effects of macroalgal structural complexity on nearshore larval and post-larval crab composition, Mar. Biol., 153, 1055–1064, 2008.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaken, L., Kållberg, P. W., Köhler, M., Matricardi, M., McNalli, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
De Ruyter, W. P. M., Visser, A. W., and Bos, W. G.: The Rhine outflow: a prototypical pulsed discharge plume in a high energy shallow sea, J. Marine Syst., 12, 263–276, 1997.
Devlin, M. J., Barry, J., Mills, D. K., Gowen, R. J., Foden, J., Sivyer, D., Greenwood, N., Pearce, D., and Tett, P.: Estimating the diffuse attenuation coefficient from optically active constituents in UK marine waters, Est. Coast. Shelf S., 82, 73–83, 2009.
Droop, M. R.: Some thoughts on nutrient limitation in algae, J. Phycol., 9, 264–272, 1973.
Droop, M. R.: The nutrient status of algal cells in continuous culture, J. Mar. Biol. Assoc. UK, 54, 825–855, 1974.
Duarte, C. M.: Nutrient Concentration in aquatic plants, Limnol. Oceangr., 37, 882–889, 1992.
Duarte, C., Wu, J., Xiao, X., Bruhn, A., and Krause-Jensen, D.: Can seaweed farming play a role in climate change mitigation and adaptation?, Front. Mar. Sci., 4, 100, https://doi.org/10.3389/fmars.2017.00100, 2017.
Dyer, K. R. and Moffat, T. J.: Fluxes of suspended matter in the East Anglian plume Southern North Sea, Cont. Shelf Res., 18, 1311–1331, 1998.
Eckman, J. E., Duggins, D. O., and Sewell, A. T.: Ecology of under story kelp environments. I. Effects of kelps on flow and particle transport near the bottom, J. Exp. Mar. Biol. Ecol., 129, 173–187, 1989.
Engel, A.: The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom, J. Plankton Res., 22, 485–497, 2000.
FAO: The State of the World Fisheries and Aquaculture, Opportunities and challenges, Food and Agriculture Organization of the United Nations, Rome, 2014.
Fei, X.: Solving the coastal eutrophication problem by large scale seaweed cultivation, Hydrobiologia, 512, 145–151, 2004.
Fernand, F., Israel, A., Skjermo, J., Wickard, T., Timmermans, K. R., and Golberg, A.: Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges, Renew. Sust. Energ. Rev., 75, 35–45, https://doi.org/10.1016/j.rser.2016.10.046, 2017.
Foden, J., Devlin, M. J., Mills, D. K., and Malcolm, S. J.: Searching for undesirable disturbance: an application of the OSPAR eutrophication assessment method to marine waters of England and Wales, Biogeochemistry, 106, 157–175, https://doi.org/10.1007/s10533-010-9475-9, 2011.
Fredriksen, S.: Food web studies in a Norwegian kelp forest based on stable isotope (δ13C and δ15N) analysis, Mar. Ecol. Ser., 260, 71–81, 2003.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Zweng, M. M., Baranova, O. K., and Johnson, D. R.: World Ocean Atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate), edited by: Levitus, S., NOAA Atlas NESDIS 71, US Government Printing Office, Washington, D.C., 398 pp., 2010.
Gaylord, B. P., Rosman, J. H., Reed, D. C., Koseff, J. R., Fram, J., MacIntyre, S., Arkema, K., McDonald, C., Brzezinski, M. A., Largier, J. L., Monismith, S. G., Raimondi, P. T., and Mardian, B.: Spatial patterns of flow and their modification within and around a giant kelp forest, Limnol. Oceanogr., 52, 1838–1852, 2007.
Gévaert, F., Davoult, D., Creach, A., Kling, R., Janquin, M.-A., Seuront, L., and Lemoine, Y.: Carbon and nitrogen content of Laminaria saccharina in the eastern English Channel: biometrics and seasonal variations, J. Mar. Biol. Assoc. UK, 81, 727–734, 2001.
Gohin, F.: Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters, Ocean Sci., 7, 705–732, https://doi.org/10.5194/os-7-705-2011, 2011.
Gohin, F., Loyer, S., Lunven, M., Labry, C., Froidefond, J. M., Delmas, D., Huret, M., and Herbland, A.: Satellite-derived parameters for biological modelling in coastal waters: Illustration over the eastern continental shelf of the Bay of Biscay, Remote Sens. Environ., 95, 29–46, 2005.
Gowen, R. J., Tett, P., Kennington, K., Mills, D. K., Shammon, T. M., Stewart, B. M., Greenwood, N., Flanagan, C., Devlin, M., and Wither, A.: The Irish Sea: Is it eutrophic?, Estuar. Coast. Shelf S., 76, 239–254, 2008.
Greenwood, N., Parker, E. R., Fernand, L., Sivyer, D. B., Weston, K., Painting, S. J., Kröger, S., Forster, R. M., Lees, H. E., Mills, D. K., and Laane, R. W. P. M.: Detection of low bottom water oxygen concentrations in the North Sea; implications for monitoring and assessment of ecosystem health, Biogeosciences, 7, 1357–1373, https://doi.org/10.5194/bg-7-1357-2010, 2010.
Hartney, K. B.: Site fidelity and homing behaviour of some kelp-bed fishes, J. Fish Biol., 49, 1062–1069, 1996.
He, P., Xu, S., Zhang, H., Wen, S., Dai, Y., Lin, S., and Yarish, C.: Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea, Water Res., 42, 1281–1289, 2008.
Hughes, A., Kelly, M. S., Black, K. D., and Stanley, M. S.: Biogas from macroalgae: is it time to revisit the idea?, Biotechnol. Biofuels, 5, 86, https://doi.org/10.1186/1754-6834-5-86, 2012.
Hydes, D., Kelly-Gerreyn, B., Le Gall, A., and Proctor, R.: The balance of supply of nutrients and demands of biological production and denitrification in a temperate latitude shelf sea – a treatment of the southern North Sea as an extended estuary, Mar. Chem., 68, 117–131, 1999.
Jackson, G. A.: Currents in the high drag environment of a coastal kelp stand off California, Cont. Shelf Res., 17, 1913–1928, 1997.
Kain, J. M.: Aspects of the biology of Laminaria hyperborea II. Age, weight and lenght, J. Mar. Biol. Assoc. UK, 43, 129–151, 1963.
Kain, J. M.: A view of the genus Laminaria, Ann. Rev. Oceanogr. Mar. Biol., 17, 101–161, 1979.
Kang, C. K., Choy, E. J., Son, Y., Lee, J. Y., Kim, J. K., Kim, Y., and Lee, K. S. L.: Food web structure of a restored macroalgal bed in the eastern Korean peninsula determined by C and N stable isotope analyses, Mar. Biol., 153, 1181–1198, 2008.
Kerrison, P. D., Stanley, M. S., Edwards, M. D., Black, K. D., and Hughes, A. D.: The cultivation of European kelp for bioenergy: Site and species selection, Biomass Bioenerg., 80, 229–242, 2015.
Kraan, S.: Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production, Mitig. Adapt. Strat. Gl., 18, 27–46, https://doi.org/10.1007/s11027-010-9275-5, 2013.
Kregting, L. T. and Elsäßer, B.: A hydrodynamic modelling framework for Strangford Lough part 1: tidal model, J. Mar. Sci. Eng., 2, 46–65, https://doi.org/10.3390/jmse2010046, 2014.
Kregting, L. T., Blight, A., Elsäßer, B., and Savidge, G.: The influence of water motion on the growth rate of the kelp Laminaria hyperborea, J. Exp. Mar. Biol. Ecol., 448, 337–345, https://doi.org/10.1016/j.jembe.2013.07.017, 2014.
Kregting, L. T., Blight, A., Elsäßer, B., and Savidge, G.: The influence of water motion on the growth rate of the kelp Laminaria digitata, J. Exp. Mar. Biol. Ecol., 478, 86–95, https://doi.org/10.1016/j.jembe.2016.02.006, 2016.
Laane, R. W. P. M.: Applying the critical load concept to the nitrogen load of the river Rhine to the Dutch coastal zone, Estuar. Coast. Shelf S., 62, 487–493, 2005.
Le Provost, C., Lyard, F., Genco, M. L., and Rabilloud, F.: A hydrodynamic ocean tide model improved by assimilation of a satellite altimeter-derived data set, J. Geophys. Res., 103, 5513–5529, 1998.
Lenhart, H. J., Mills, D. K., Baretta-Bekker, H., van Leeuwen, S. M., van der Molen, J., Baretta, J. W., Blaas, M., Desmit, X., Kühn, W., Lacroix, G., Los, H. J., Ménesguen, A., Neves, R., Proctor, R., Ruardij, P., Skogen, M. D., Vanhoutte-Grunier, A., Villars, M. T., and Wakelin, S. L.: Predicting the consequences of nutrient reduction on the eutrophication status of the North Sea, J. Marine Syst., 81, 148–170, 2010.
Lobban, C. S. and Harrison, P. J.: Seaweed ecology and physiology, Cambridge University Press, Cambridge, 366 pp., 1997.
Lüning, K. and Pang, S.: Mass cultivation of seaweed: current aspects and approaches, J. App. Phycol., 15, 115–119, 2003.
Mills, D. K., Greenwood, N., Kröger, S., Devlin, M., Sivyer, D. B., Pearce, D., Cutchey, S., and Malcolm, S. J.: New approaches to improve the detection of eutrophication in UK coastal waters, Env. Res. Eng. Manag., 2, 36–42, 2005.
Mogensen, K., Alonso Balmaseda, M., and Weaver, A.: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System4, ECMWF Thechnical Memorandum 668, Toulouse, France, 59 pp., 2012.
Mooney-McAuley, K. M., Edwards, M. D., Champenois J., and Gorman, E.: Best Practice Guidelines for Seaweed Cultivation and Analysis, Public Output report of the EnAlgae project, Swansea, 2016.
Nellemann, C., Corcoran, E., Duarte, C. M., Valdes, L., De Young, C., Fonseca, L., and Grimsditch, G. (Eds.): Blue Carbon. A rapid response assessment, United Nations Environment Programme, GRID-Arendal, available at: www.grida.no, Birkeland Trykkeri AS, Norway, 90 pp., 2009.
Parke, P.: Studies on British Laminariaceae. I. Growth in Laminaria saccharina (L.) LAMOUR, J. Mar. Biol. Assoc. UK, 27, 651–709, 1948.
Peperzak, L., Colijn, F., Gieskes, W. W. C., and Peeters, J. C. H.: Development of the diatom-Phaeocystis spring bloom in the Dutch coastal zone of the North Sea: the silicon depletion versus the daily irradiance threshold hypothesis, J. Plankton Res., 20, 517–537, 1998.
Peteiro, C., Salinas, J. M., Freire, O., and Fuertes, C.: Cultivation of the autochtonous seaweed Laminaria saccharina off the Galician coast (NW Spain): production and features of the sporophytes for an annual and biennial harvest, Thalassas, 22, 45–53, 2006.
Pietrzak, J. D., de Boer, G. J., and Eleveld, M. A.: Mechanisms controlling the intra-annual mesoscale variability of SST and SPM in the southern North Sea, Cont. Shelf Res., 31, 594–610, 2011.
Proctor, R., Holt, J. T., Allen, J. I., and Blackford, J.: Nutrient fluxes and budgets for the North West European Shelf from a three-dimensional model, Sci. Total Environ., 314–316, 769–785, 2003.
Ruardij, P. and van Raaphorst, W.: Benthic nutrient regeneration in the ERSEM-BFM ecosystem model of the North Sea, Neth. J. Sea Res., 33, 453–483, 1995.
Ruardij, P., van Haren, H., and Ridderinkhof, H.: The impact of thermal stratification on phytoplankton and nutrient dynamics in shelf seas: a model study, J. Sea Res., 38, 311–331, 1997.
Ruardij, P., Veldhuis, M. J. W., and Brussaard, C. P. D.: Modeling the bloom dynamics of the polymorphic phytoplankter Phaeocystis globosa: impact of grazers and viruses, Harmful Algae, 4, 941–963, 2005.
Sanderson, J. C., Dring, M. J., Davidson, K., and Kelly, M. S.: Culture, yield and bioremediation potential of Palmaria palmata (Linnaeus) Weber & Mohr and Saccharina latissima (Linnaeus) C.E. Lane, C. Mayes, Druehl & G.W. Saunders adjacent to fish farm cages in northwest Scotland, Aquaculture, 354–355, 128–135, 2012.
Schiener, P., Zhao, S., Theodoridou, K., Carey, M., Mooney-McAuley, K., and Greenwell, Chr.: The nutritional aspects of biorefined Saccharina latissima, Ascophyllum nodosum and Palmaria palmata, Biomass Conv. Bior., 7, 221–235, https://doi.org/10.1007/s13399-016-0227-5, 2017.
Sjøtun, K.: Seasonal lamina growth in two age groups of Laminaria saccharina (L.) Lamour in Western Norway, Bot. Mar., 36, 433–441, 1993.
Smale, D. A., Burrows, M. T., Moore, P., O'Connor, N., and Hawkins, S. J.: Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective, Ecol. Evol., 11, 4016–4038, https://doi.org/10.1002/ece3.774, 2013.
Smith, F.: An Assessment of the Water Balance of the Strangford Lough Catchment (Belfast Thesis Master in Science) School of Planning, Architecture & Civil Engineering, Queen's University Belfast, 2010.
Smyth, D., Kregting, L., Elsäßer, B., Kennedy, R., and Roberts, D.: Using particle dispersal models to assist in the conservation and recovery of the overexploited native oyster (Ostrea edulis) in an enclosed sea lough, J. Sea Res., 108, 50–59, 2016.
Taylor, J. and Service, M.: The Trophic Status of Strangford Lough, Department of Agriculture of Northern Ireland, Belfast, 1997.
Troost, T. A., de Kluijver, A., and Los, F. J.: Evaluation of eutrophication variables and thresholds in the Dutch North Sea in a historical context – A model analysis, J. Marine Syst., 134, 45–56, 2014.
Van der Burg, S. W. K., van Duijn, A. P., Bartelings, H., van Krimpen, M. M., and Poelman, M.: The economic feasibility of seaweed production in the North Sea, Aquacult. Econ. Manag., 203, 235–252, 2016.
Van der Hout, C. M., Gerkema, Th., Nauw, J. J., and Ridderinkhof, H.: Observations of a narrow zone of high suspended particulate matter (SPM) concentrations along the Dutch coast, Cont. Shelf Res., 95, 27–38, 2015.
Van der Molen, J., Aldridge, J. N., Coughlan, C., Parker, E. R., Stephens, D., and Ruardij, P.: Modelling marine ecosystem response to climate change and trawling in the North Sea, Biogeochemistry, 113, 213–236, https://doi.org/10.1007/s10533-012-9763-7, 2013.
Van der Molen, J., Smith, H. C. M., Lepper, P., Limpenny, S., and Rees, J.: Predicting the large-scale consequences of offshore wind array development on a North Sea ecosystem, Cont. Shelf Res., 85, 60–72, https://doi.org/10.1016/j.csr.2014.05.018, 2014.
Van der Molen, J., Ruardij, P., and Greenwood, N.: Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: results of a biogeochemical model, Biogeosciences, 13, 2593–2609, https://doi.org/10.5194/bg-13-2593-2016, 2016.
Van der Molen, J., Ruardij, P., and Greenwood, N.: A 3D SPM model for biogeochemical modelling, with application to the northwest European continental shelf, J. Sea Res., 127, 63–81, https://doi.org/10.1016/j.seares.2016.12.003, 2017.
Vichi, M., Oddo, P., Zavatarelli, M., Coluccelli, A., Coppini, G., Celio, M., Fonda Umani, S., and Pinardi, N.: Calibration and validation of a one-dimensional complex marine biogeochemical flux model in different areas of the northern Adriatic shelf, Ann. Geophys., 21, 413–436, https://doi.org/10.5194/angeo-21-413-2003, 2003.
Vichi, M., Ruardij, P., and Baretta, J. W.: Link or sink: a modelling interpretation of the open Baltic biogeochemistry, Biogeosciences, 1, 79–100, https://doi.org/10.5194/bg-1-79-2004, 2004.
Vichi, M., Pinardi, N., and Masina, S.: A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory, J. Marine. Syst., 64, 89–109, 2007.
Walls, A. M., Edwards, M. D., Firth, L. B., and Johnson, M. P.: Successional changes of epibiont fouling communities of the cultivated kelp Alaria esculenta: predictability and influences, Aquacult. Env. Interac., 9, 57–71, https://doi.org/10.3354/aei00215, 2017.
West, J., Calumpong, H. P., and Martin, G.: Seaweeds. Chapter 14 in The First Global Integrated Marine Assessment, World Ocean Assessment I, United Nations, available at: www.un.org/Depts/los/global_reporting/WOA_RegProcess.htm (last access: 19 February 2018), 2016.
White, N. and Marshall, C.: Saccharina latissima. Sugar kelp. Marine Life Information Network: Biology and Sensitivity Key Information Sub-programme, Plymouth: Marine Biological Association of the United Kingdom, available at: www.marlin.ac.uk/species/detail/1375 (last access: 19 February 2018), 2007.
Wood, D., Capuzzo, E., Kirby, D., Mooney-McAuley, K., and Kerrison, P.: UK macroalgae aquaculture: What are the key environmental and licensing considerations?, Mar. Policy, 83, 29–39, 2017.
Short summary
Macroalgae farming may provide biofuel. Modelled macroalgae production is given for four sites in UK and Dutch waters. Macroalgae growth depended on nutrient concentrations and light levels. Macroalgae carbohydrate content, important for biofuel use, was lower for high nutrient concentrations. The hypothetical large-scale farm off the UK north Norfolk coast gave high, stable yields of macroalgae from year to year with substantial carbohydrate content.
Macroalgae farming may provide biofuel. Modelled macroalgae production is given for four sites...
Altmetrics
Final-revised paper
Preprint