Articles | Volume 15, issue 4
Biogeosciences, 15, 1123–1147, 2018
https://doi.org/10.5194/bg-15-1123-2018
Biogeosciences, 15, 1123–1147, 2018
https://doi.org/10.5194/bg-15-1123-2018

Research article 23 Feb 2018

Research article | 23 Feb 2018

Modelling potential production of macroalgae farms in UK and Dutch coastal waters

Johan van der Molen et al.

Related authors

Effects of large-scale floating (solar photovoltaic) platforms on hydrodynamics and primary production in a coastal sea from a water column model
Thodoris Karpouzoglou, Brigitte Vlaswinkel, and Johan van der Molen
Ocean Sci., 16, 195–208, https://doi.org/10.5194/os-16-195-2020,https://doi.org/10.5194/os-16-195-2020, 2020
Short summary
Observing and modelling phytoplankton community structure in the North Sea
David A. Ford, Johan van der Molen, Kieran Hyder, John Bacon, Rosa Barciela, Veronique Creach, Robert McEwan, Piet Ruardij, and Rodney Forster
Biogeosciences, 14, 1419–1444, https://doi.org/10.5194/bg-14-1419-2017,https://doi.org/10.5194/bg-14-1419-2017, 2017
Short summary
Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: results of a biogeochemical model
Johan van der Molen, Piet Ruardij, and Naomi Greenwood
Biogeosciences, 13, 2593–2609, https://doi.org/10.5194/bg-13-2593-2016,https://doi.org/10.5194/bg-13-2593-2016, 2016
Short summary
ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels
Momme Butenschön, James Clark, John N. Aldridge, Julian Icarus Allen, Yuri Artioli, Jeremy Blackford, Jorn Bruggeman, Pierre Cazenave, Stefano Ciavatta, Susan Kay, Gennadi Lessin, Sonja van Leeuwen, Johan van der Molen, Lee de Mora, Luca Polimene, Sevrine Sailley, Nicholas Stephens, and Ricardo Torres
Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016,https://doi.org/10.5194/gmd-9-1293-2016, 2016
Short summary
Modelling survival and connectivity of Mnemiopsis leidyi in the south-western North Sea and Scheldt estuaries
J. van der Molen, J. van Beek, S. Augustine, L. Vansteenbrugge, L. van Walraven, V. Langenberg, H. W. van der Veer, K. Hostens, S. Pitois, and J. Robbens
Ocean Sci., 11, 405–424, https://doi.org/10.5194/os-11-405-2015,https://doi.org/10.5194/os-11-405-2015, 2015
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Extreme event waves in marine ecosystems: an application to Mediterranean Sea surface chlorophyll
Valeria Di Biagio, Gianpiero Cossarini, Stefano Salon, and Cosimo Solidoro
Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020,https://doi.org/10.5194/bg-17-5967-2020, 2020
Short summary
Use of optical absorption indices to assess seasonal variability of dissolved organic matter in Amazon floodplain lakes
Maria Paula da Silva, Lino A. Sander de Carvalho, Evlyn Novo, Daniel S. F. Jorge, and Claudio C. F. Barbosa
Biogeosciences, 17, 5355–5364, https://doi.org/10.5194/bg-17-5355-2020,https://doi.org/10.5194/bg-17-5355-2020, 2020
Short summary
The role of sediment-induced light attenuation on primary production during Hurricane Gustav (2008)
Zhengchen Zang, Z. George Xue, Kehui Xu, Samuel J. Bentley, Qin Chen, Eurico J. D'Sa, Le Zhang, and Yanda Ou
Biogeosciences, 17, 5043–5055, https://doi.org/10.5194/bg-17-5043-2020,https://doi.org/10.5194/bg-17-5043-2020, 2020
Modelling Silicate – Nitrate - Ammonium co-limitation of algal growth and the importance of bacterial remineralisation based on an experimental Arctic coastal spring bloom culture study
Tobias R. Vonnahme, Martial Leroy, Silke Thoms, Dick van Oevelen, H. Rodger Harvey, Svein Kristiansen, Rolf Gradinger, Ulrike Dietrich, and Christoph Voelker
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-314,https://doi.org/10.5194/bg-2020-314, 2020
Revised manuscript accepted for BG
Short summary
Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model
Taylor A. Shropshire, Steven L. Morey, Eric P. Chassignet, Alexandra Bozec, Victoria J. Coles, Michael R. Landry, Rasmus Swalethorp, Glenn Zapfe, and Michael R. Stukel
Biogeosciences, 17, 3385–3407, https://doi.org/10.5194/bg-17-3385-2020,https://doi.org/10.5194/bg-17-3385-2020, 2020
Short summary

Cited articles

Aldridge, J., van der Molen, J., and Forster, R.: Wider ecological implications of macroalgae cultivation, The Crown Estate, Edinburgh, London, 95 pp., 2012.
Atkinson, M. J. and Smith, S. V.: C : N  P ratios of benthic marine plants, Limnol. Oceanogr., 28, 568–574, 1983.
Balmaseda, M. A., Mogensen, K., and Weaver, A.: Evaluation of the ECMWF Ocean Reanalysis ORAS4, Q. J. Roy. Meteor. Soc., 139, 1132–1161, https://doi.org/10.1002/qj.2063, 2013.
Baretta, J. W., Ebenhöh, W., and Ruardij, P.: The European Regional Seas Ecosystem Model, a complex marine ecosystem model, Neth. J. Sea Res., 33, 233–246, 1995.
Baretta-Bekker, J. G., Baretta, J. W., and Ebenhöh, W.: Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake, J. Sea Res., 38, 195–211, 1997.
Download
Short summary
Macroalgae farming may provide biofuel. Modelled macroalgae production is given for four sites in UK and Dutch waters. Macroalgae growth depended on nutrient concentrations and light levels. Macroalgae carbohydrate content, important for biofuel use, was lower for high nutrient concentrations. The hypothetical large-scale farm off the UK north Norfolk coast gave high, stable yields of macroalgae from year to year with substantial carbohydrate content.
Altmetrics
Final-revised paper
Preprint