Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
BG | Articles | Volume 15, issue 11
Biogeosciences, 15, 3561–3576, 2018
https://doi.org/10.5194/bg-15-3561-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 15, 3561–3576, 2018
https://doi.org/10.5194/bg-15-3561-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 15 Jun 2018

Research article | 15 Jun 2018

Seasonal patterns in phytoplankton biomass across the northern and deep Gulf of Mexico: a numerical model study

Fabian A. Gomez et al.

Related authors

Seasonal patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from a regional high-resolution ocean biogeochemical model
Fabian A. Gomez, Rik Wanninkhof, Leticia Barbero, Sang-Ki Lee, and Frank J. Hernandez Jr.
Biogeosciences, 17, 1685–1700, https://doi.org/10.5194/bg-17-1685-2020,https://doi.org/10.5194/bg-17-1685-2020, 2020
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Extreme event waves in marine ecosystems: an application to Mediterranean Sea surface chlorophyll
Valeria Di Biagio, Gianpiero Cossarini, Stefano Salon, and Cosimo Solidoro
Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020,https://doi.org/10.5194/bg-17-5967-2020, 2020
Short summary
Use of optical absorption indices to assess seasonal variability of dissolved organic matter in Amazon floodplain lakes
Maria Paula da Silva, Lino A. Sander de Carvalho, Evlyn Novo, Daniel S. F. Jorge, and Claudio C. F. Barbosa
Biogeosciences, 17, 5355–5364, https://doi.org/10.5194/bg-17-5355-2020,https://doi.org/10.5194/bg-17-5355-2020, 2020
Short summary
The role of sediment-induced light attenuation on primary production during Hurricane Gustav (2008)
Zhengchen Zang, Z. George Xue, Kehui Xu, Samuel J. Bentley, Qin Chen, Eurico J. D'Sa, Le Zhang, and Yanda Ou
Biogeosciences, 17, 5043–5055, https://doi.org/10.5194/bg-17-5043-2020,https://doi.org/10.5194/bg-17-5043-2020, 2020
Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model
Taylor A. Shropshire, Steven L. Morey, Eric P. Chassignet, Alexandra Bozec, Victoria J. Coles, Michael R. Landry, Rasmus Swalethorp, Glenn Zapfe, and Michael R. Stukel
Biogeosciences, 17, 3385–3407, https://doi.org/10.5194/bg-17-3385-2020,https://doi.org/10.5194/bg-17-3385-2020, 2020
Short summary
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020,https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary

Cited articles

Aulenbach, B. T., Buxton, H. T., Battaglin, W. T., and Coupe, R. H.: Streamflow and nutrient fluxes of the Mississippi-Atchafalaya River Basin and subbasins for the period of record through 2005, US Geological Survey Open-File Report, 2007–1080, 2007. 
Behrenfeld, M.: Abandoning Sverdrup's critical depth hypothesis on phytoplankton blooms, Ecology 91, 977–989, 2010. 
Biggs, D. C.: Nutrients, plankton and productivity in a warm-core ring in the western Gulf of Mexico, J. Geophys. Res., 97, 2143–2154, 1992. 
Chapman, D. C.: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model, J. Phys. Ocean., 15, 1060–1075, 1985. 
Craig, J. K.: Aggregation on the edge: Effects of hypoxia avoidance on the spatial distribution of brown shrimp and demersal fishes in the northern Gulf of Mexico, Mar. Ecol. Prog. Ser., 445, 75–95, 2012. 
Publications Copernicus
Download
Short summary
Seasonal patterns in nanophytoplankton and diatom biomass in the Gulf of Mexico were examined with an ocean–biogeochemical model. We found silica limitation of model diatom growth in the deep GoM and Mississippi delta. Zooplankton grazing and both transport and vertical mixing of biomass substantially influence the model phytoplankton biomass seasonality. We stress the need for integrated analyses of biologically and physically driven biomass fluxes to describe phytoplankton seasonal changes.
Seasonal patterns in nanophytoplankton and diatom biomass in the Gulf of Mexico were examined...
Citation
Altmetrics
Final-revised paper
Preprint