Articles | Volume 15, issue 1
https://doi.org/10.5194/bg-15-73-2018
https://doi.org/10.5194/bg-15-73-2018
Research article
 | 
04 Jan 2018
Research article |  | 04 Jan 2018

Assimilating bio-optical glider data during a phytoplankton bloom in the southern Ross Sea

Daniel E. Kaufman, Marjorie A. M. Friedrichs, John C. P. Hemmings, and Walker O. Smith Jr.

Related authors

Brief Communication: Breeding vectors in the phase space reconstructed from time series data
Erin Lynch, Daniel Kaufman, A. Surjalal Sharma, Eugenia Kalnay, and Kayo Ide
Nonlin. Processes Geophys., 23, 137–141, https://doi.org/10.5194/npg-23-137-2016,https://doi.org/10.5194/npg-23-137-2016, 2016
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Changes in Arctic Ocean plankton community structure and trophic dynamics on seasonal to interannual timescales
Gabriela Negrete-García, Jessica Y. Luo, Colleen M. Petrik, Manfredi Manizza, and Andrew D. Barton
Biogeosciences, 21, 4951–4973, https://doi.org/10.5194/bg-21-4951-2024,https://doi.org/10.5194/bg-21-4951-2024, 2024
Short summary
Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024,https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary
Efficiency metrics for ocean alkalinity enhancement under responsive and prescribed atmosphere conditions
Michael Dominik Tyka
EGUsphere, https://doi.org/10.5194/egusphere-2024-2150,https://doi.org/10.5194/egusphere-2024-2150, 2024
Short summary
Killing the predator: impacts of highest-predator mortality on the global-ocean ecosystem structure
David Talmy, Eric Carr, Harshana Rajakaruna, Selina Våge, and Anne Willem Omta
Biogeosciences, 21, 2493–2507, https://doi.org/10.5194/bg-21-2493-2024,https://doi.org/10.5194/bg-21-2493-2024, 2024
Short summary
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 1: roles of nutrient limitation and plankton community
Yanda Ou and Z. George Xue
Biogeosciences, 21, 2385–2424, https://doi.org/10.5194/bg-21-2385-2024,https://doi.org/10.5194/bg-21-2385-2024, 2024
Short summary

Cited articles

Arrigo, K. R. and McClain, C. R.: Spring phytoplankton production in the western Ross Sea, Science, 266, 261–263, https://doi.org/10.1126/science.266.5183.261, 1994.
Arrigo, K. R. and van Dijken, G. L.: Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica, Deep-Sea Res. Pt. II, 51, 117–138, https://doi.org/10.1016/j.dsr2.2003.04.003, 2004.
Arrigo, K. R., Robinson, D. H., Worthen, D. L., Schieber, B., and Lizotte, M. P.: Bio-optical properties of the southwestern Ross Sea, J. Geophys. Res.-Oceans, 103, 21683–21695, https://doi.org/10.1029/98JC02157, 1998.
Arrigo, K. R., van Dijken, G. L., and Bushinsky, S.: Primary production in the Southern Ocean, 1997–2006, J. Geophys. Res., 113, 1–27, https://doi.org/10.1029/2007JC004551, 2008.
Asper, V. L. and Smith, W. O.: Particle fluxes during austral spring and summer in the southern Ross Sea, Antarctica, J. Geophys. Res., 104, 5345–5359, https://doi.org/10.1029/1998JC900067, 1999.
Download
Short summary
Computer simulations of the highly variable phytoplankton in the Ross Sea demonstrated how incorporating data from different sources (satellite, ship, or glider) results in different system interpretations. For example, simulations assimilating satellite-based data produced lower carbon export estimates. Combining observations with models in this remote, harsh, and biologically variable environment should include consideration of the potential impacts of data frequency, duration, and coverage.
Altmetrics
Final-revised paper
Preprint