Articles | Volume 15, issue 1
https://doi.org/10.5194/bg-15-73-2018
https://doi.org/10.5194/bg-15-73-2018
Research article
 | 
04 Jan 2018
Research article |  | 04 Jan 2018

Assimilating bio-optical glider data during a phytoplankton bloom in the southern Ross Sea

Daniel E. Kaufman, Marjorie A. M. Friedrichs, John C. P. Hemmings, and Walker O. Smith Jr.

Related authors

Brief Communication: Breeding vectors in the phase space reconstructed from time series data
Erin Lynch, Daniel Kaufman, A. Surjalal Sharma, Eugenia Kalnay, and Kayo Ide
Nonlin. Processes Geophys., 23, 137–141, https://doi.org/10.5194/npg-23-137-2016,https://doi.org/10.5194/npg-23-137-2016, 2016
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Seasonal and interannual variability of the pelagic ecosystem and of the organic carbon budget in the Rhodes Gyre (eastern Mediterranean): influence of winter mixing
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023,https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
How much do bacterial growth properties and biodegradable dissolved organic matter control water quality at low flow?
Masihullah Hasanyar, Thomas Romary, Shuaitao Wang, and Nicolas Flipo
Biogeosciences, 20, 1621–1633, https://doi.org/10.5194/bg-20-1621-2023,https://doi.org/10.5194/bg-20-1621-2023, 2023
Short summary
Methane emissions from Arctic landscapes during 2000–2015: an analysis with land and lake biogeochemistry models
Xiangyu Liu and Qianlai Zhuang
Biogeosciences, 20, 1181–1193, https://doi.org/10.5194/bg-20-1181-2023,https://doi.org/10.5194/bg-20-1181-2023, 2023
Short summary
Including filter-feeding gelatinous macrozooplankton in a global marine biogeochemical model: model–data comparison and impact on the ocean carbon cycle
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023,https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Riverine impact on future projections of marine primary production and carbon uptake
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023,https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary

Cited articles

Arrigo, K. R. and McClain, C. R.: Spring phytoplankton production in the western Ross Sea, Science, 266, 261–263, https://doi.org/10.1126/science.266.5183.261, 1994.
Arrigo, K. R. and van Dijken, G. L.: Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica, Deep-Sea Res. Pt. II, 51, 117–138, https://doi.org/10.1016/j.dsr2.2003.04.003, 2004.
Arrigo, K. R., Robinson, D. H., Worthen, D. L., Schieber, B., and Lizotte, M. P.: Bio-optical properties of the southwestern Ross Sea, J. Geophys. Res.-Oceans, 103, 21683–21695, https://doi.org/10.1029/98JC02157, 1998.
Arrigo, K. R., van Dijken, G. L., and Bushinsky, S.: Primary production in the Southern Ocean, 1997–2006, J. Geophys. Res., 113, 1–27, https://doi.org/10.1029/2007JC004551, 2008.
Asper, V. L. and Smith, W. O.: Particle fluxes during austral spring and summer in the southern Ross Sea, Antarctica, J. Geophys. Res., 104, 5345–5359, https://doi.org/10.1029/1998JC900067, 1999.
Download
Short summary
Computer simulations of the highly variable phytoplankton in the Ross Sea demonstrated how incorporating data from different sources (satellite, ship, or glider) results in different system interpretations. For example, simulations assimilating satellite-based data produced lower carbon export estimates. Combining observations with models in this remote, harsh, and biologically variable environment should include consideration of the potential impacts of data frequency, duration, and coverage.
Altmetrics
Final-revised paper
Preprint