Articles | Volume 15, issue 3
https://doi.org/10.5194/bg-15-847-2018
https://doi.org/10.5194/bg-15-847-2018
Research article
 | 
09 Feb 2018
Research article |  | 09 Feb 2018

Explaining CO2 fluctuations observed in snowpacks

Laura Graham and David Risk

Related authors

Characterization of atmospheric methane release in the outer Mackenzie River delta from biogenic and thermogenic sources
Daniel Wesley, Scott Dallimore, Roger MacLeod, Torsten Sachs, and David Risk
The Cryosphere, 17, 5283–5297, https://doi.org/10.5194/tc-17-5283-2023,https://doi.org/10.5194/tc-17-5283-2023, 2023
Short summary
Sea–air methane flux estimates derived from marine surface observations and instantaneous atmospheric measurements in the northern Labrador Sea and Baffin Bay
Judith Vogt, David Risk, Evelise Bourlon, Kumiko Azetsu-Scott, Evan N. Edinger, and Owen A. Sherwood
Biogeosciences, 20, 1773–1787, https://doi.org/10.5194/bg-20-1773-2023,https://doi.org/10.5194/bg-20-1773-2023, 2023
Short summary
Using computational fluid dynamics and field experiments to improve vehicle-based wind measurements for environmental monitoring
Tara Hanlon and David Risk
Atmos. Meas. Tech., 13, 191–203, https://doi.org/10.5194/amt-13-191-2020,https://doi.org/10.5194/amt-13-191-2020, 2020
Short summary
Technical Note: Isotopic corrections for the radiocarbon composition of CO2 in the soil gas environment must account for diffusion and diffusive mixing
Jocelyn E. Egan, David R. Bowling, and David A. Risk
Biogeosciences, 16, 3197–3205, https://doi.org/10.5194/bg-16-3197-2019,https://doi.org/10.5194/bg-16-3197-2019, 2019
Short summary
Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada
Emmaline Atherton, David Risk, Chelsea Fougère, Martin Lavoie, Alex Marshall, John Werring, James P. Williams, and Christina Minions
Atmos. Chem. Phys., 17, 12405–12420, https://doi.org/10.5194/acp-17-12405-2017,https://doi.org/10.5194/acp-17-12405-2017, 2017
Short summary

Related subject area

Biogeochemistry: Soils
Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024,https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Technical note: An open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water
Sahiti Bulusu, Cristina Prieto García, Helen E. Dahlke, and Elad Levintal
Biogeosciences, 21, 3007–3013, https://doi.org/10.5194/bg-21-3007-2024,https://doi.org/10.5194/bg-21-3007-2024, 2024
Short summary
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grassland
Violeta Mendoza-Martinez, Scott L. Collins, and Jennie R. McLaren
Biogeosciences, 21, 2655–2667, https://doi.org/10.5194/bg-21-2655-2024,https://doi.org/10.5194/bg-21-2655-2024, 2024
Short summary
Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh
Sean Fettrow, Andrew Wozniak, Holly A. Michael, and Angelia L. Seyfferth
Biogeosciences, 21, 2367–2384, https://doi.org/10.5194/bg-21-2367-2024,https://doi.org/10.5194/bg-21-2367-2024, 2024
Short summary
Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024,https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary

Cited articles

Barry, R. G.: Climate-ice interactions, in: Encyclopedia of Earth System Science, edited by: Nierenberg, W. A., Academic Press, San Diego, CA, 517–524, 1992. a
Bowling, D. R. and Massman, W. J.: Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack, J. Geophys Res., 116, G04006, https://doi.org/10.1029/2011JG001722, 2011. a, b, c, d, e, f, g
Bowling, D. R., Massman, W. J., Schaeffer, S. M., Burns, S. P., Monson, R. K., and Williams, M. W.: Biological and physical influences on the carbon isotope content of CO2 in a subalpine forest snowpack, Niwot Ridge, Colorado, Biogeochemistry, 95, 37–59, https://doi.org/10.1007/s10533-008-9233-4, 2009. a
Brooks, P. D., Williams, M. W., and Schmidt, S. K.: Microbial activity under alpine snow packs, Niwot Ridge, Colorado, Biogeochemistry, 32, 93–113, 1996. a, b
Coxson, D. S. and Parkinson, D.: Winter respiratory activity in aspen woodland forest floor litter and soils, Soil Biol. Biochem., 19, 49–59, 1987. a, b
Download
Short summary
Winter carbon dioxide (CO2) respiration from soils is a significant and understudied component of the global carbon (C) cycle. In this study, we were able to show with a field campaign and a model how windy (advective) conditions can affect the usually slow (diffusive) transport of CO2 from soils and out of snowpacks. This research is important to help with understanding winter CO2 dynamics, especially for continued accurate accounting of the annual global C cycle.
Altmetrics
Final-revised paper
Preprint