Articles | Volume 16, issue 7
https://doi.org/10.5194/bg-16-1543-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-1543-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Partitioning net ecosystem exchange of CO2 on the pedon scale in the Lena River Delta, Siberia
Tim Eckhardt
CORRESPONDING AUTHOR
Institute of Soil Science, Universität Hamburg, Allende-Platz
2, 20146 Hamburg, Germany
Center for Earth System Research and
Sustainability, Universität Hamburg, Allende-Platz 2, 20146 Hamburg,
Germany
Christian Knoblauch
Institute of Soil Science, Universität Hamburg, Allende-Platz
2, 20146 Hamburg, Germany
Center for Earth System Research and
Sustainability, Universität Hamburg, Allende-Platz 2, 20146 Hamburg,
Germany
Lars Kutzbach
Institute of Soil Science, Universität Hamburg, Allende-Platz
2, 20146 Hamburg, Germany
Center for Earth System Research and
Sustainability, Universität Hamburg, Allende-Platz 2, 20146 Hamburg,
Germany
David Holl
Institute of Soil Science, Universität Hamburg, Allende-Platz
2, 20146 Hamburg, Germany
Center for Earth System Research and
Sustainability, Universität Hamburg, Allende-Platz 2, 20146 Hamburg,
Germany
Gillian Simpson
School of GeoSciences, University of Edinburgh, West Mains
Road, Edinburgh, EH9 3JN, Scotland, UK
Evgeny Abakumov
Department of Applied
Ecology, Saint-Petersburg State University, 199178, 16-line 2, Vasilyevskiy
Island, Russia
Eva-Maria Pfeiffer
Institute of Soil Science, Universität Hamburg, Allende-Platz
2, 20146 Hamburg, Germany
Center for Earth System Research and
Sustainability, Universität Hamburg, Allende-Platz 2, 20146 Hamburg,
Germany
Related authors
No articles found.
Maren Jenrich, Juliane Wolter, Susanne Liebner, Christian Knoblauch, Guido Grosse, Fiona Giebeler, Dustin Whalen, and Jens Strauss
EGUsphere, https://doi.org/10.5194/egusphere-2024-2891, https://doi.org/10.5194/egusphere-2024-2891, 2024
Short summary
Short summary
Climate warming in the Arctic is causing the erosion of permafrost coasts and the transformation of permafrost lakes into lagoons. To understand how this affects greenhouse gas (GHG) emissions, we studied carbon dioxide (CO₂) and methane (CH₄) production in lagoons with varying sea connections. Younger lagoons produce more CH₄, while CO₂ increases in more marine conditions. Flooding of permafrost lowlands due to rising sea levels may lead to higher GHG emissions from Arctic coasts in the future.
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
Biogeosciences, 21, 3761–3788, https://doi.org/10.5194/bg-21-3761-2024, https://doi.org/10.5194/bg-21-3761-2024, 2024
Short summary
Short summary
During cold seasons, methane release from northern wetlands is important but often underestimated. We studied a boreal bog to understand methane emissions in spring and fall. At cold temperatures, methane release decreases due to lower production rates, but efficient methane transport through plant structures, decaying plants, and the release of methane stored in the pore water keep emissions ongoing. Understanding these seasonal processes can improve models for methane release in cold climates.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Lutz Beckebanze, Zoé Rehder, David Holl, Christian Wille, Charlotta Mirbach, and Lars Kutzbach
Biogeosciences, 19, 1225–1244, https://doi.org/10.5194/bg-19-1225-2022, https://doi.org/10.5194/bg-19-1225-2022, 2022
Short summary
Short summary
Arctic permafrost landscapes feature many water bodies. In contrast to the terrestrial parts of the landscape, the water bodies release carbon to the atmosphere. We compare carbon dioxide and methane fluxes from small water bodies to the surrounding tundra and find not accounting for the carbon dioxide emissions leads to an overestimation of the tundra uptake by 11 %. Consequently, changes in hydrology and water body distribution may substantially impact the overall carbon budget of the Arctic.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Verónica Pancotto, David Holl, Julio Escobar, María Florencia Castagnani, and Lars Kutzbach
Biogeosciences, 18, 4817–4839, https://doi.org/10.5194/bg-18-4817-2021, https://doi.org/10.5194/bg-18-4817-2021, 2021
Short summary
Short summary
We investigated the response of a wetland plant community to elevated temperature conditions in a cushion bog on Tierra del Fuego, Argentina. We measured carbon dioxide fluxes at experimentally warmed plots and at control plots. Warmed plant communities sequestered between 55 % and 85 % less carbon dioxide than untreated control cushions over the main growing season. Our results suggest that even moderate future warming could decrease the carbon sink function of austral cushion bogs.
Zoé Rehder, Anne Laura Niederdrenk, Lars Kaleschke, and Lars Kutzbach
The Cryosphere, 14, 4201–4215, https://doi.org/10.5194/tc-14-4201-2020, https://doi.org/10.5194/tc-14-4201-2020, 2020
Short summary
Short summary
To better understand the connection between sea ice and permafrost, we investigate how sea ice interacts with the atmosphere over the adjacent landmass in the Laptev Sea region using a climate model. Melt of sea ice in spring is mainly controlled by the atmosphere; in fall, feedback mechanisms are important. Throughout summer, lower-than-usual sea ice leads to more southward transport of heat and moisture, but these links from sea ice to the atmosphere over land are weak.
Oleg Sizov, Anna Volvakh, Anatoly Molodkov, Andrey Vishnevskiy, Andrey Soromotin, and Evgeny Abakumov
Solid Earth, 11, 2047–2074, https://doi.org/10.5194/se-11-2047-2020, https://doi.org/10.5194/se-11-2047-2020, 2020
Short summary
Short summary
Analysing the genesis of Quaternary sediments is important for understanding the glaciation history and development of marine sediments in the northern part of Western Siberia. The key features of sedimentation and landform formation have been characterised for the first time in an example of a lithological column from the lower sources of the Nadym River. A comprehensive analysis was performed on the lithological, petrographic and geomorphological data from the upper Quaternary stratum.
David Holl, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences, 17, 2853–2874, https://doi.org/10.5194/bg-17-2853-2020, https://doi.org/10.5194/bg-17-2853-2020, 2020
Short summary
Short summary
We measured greenhouse gas (GHG) fluxes at a bog site in northwestern Germany that has been heavily degraded by peat mining. During the 2-year investigation period, half of the area was still being mined, whereas the remaining half had been rewetted shortly before. We could therefore estimate the impact of rewetting on GHG flux dynamics. Rewetting had a considerable effect on the annual GHG balance and led to increased (up to 84 %) methane and decreased (up to 40 %) carbon dioxide release.
Xiaowen Ji, Evgeny Abakumov, and Xianchuan Xie
Atmos. Chem. Phys., 19, 13789–13807, https://doi.org/10.5194/acp-19-13789-2019, https://doi.org/10.5194/acp-19-13789-2019, 2019
Short summary
Short summary
High-resolution data on environmental contaminants are not available for many areas of the Arctic; thus, the results from this study are important for rectifying these data gaps. The results showed that along the track of the research vessel in the Russian Arctic, the islands close to industrial and urban areas in the Barents Sea and the Kara Sea had more significant levels of PAHs and metals than other areas. Sources of contaminants likely included both natural and anthropogenic sources.
David Holl, Verónica Pancotto, Adrian Heger, Sergio Jose Camargo, and Lars Kutzbach
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019, https://doi.org/10.5194/bg-16-3397-2019, 2019
Short summary
Short summary
We present 2 years of eddy covariance carbon dioxide flux data from two Southern Hemisphere peatlands on Tierra del Fuego. One of the investigated sites is a type of bog exclusive to the Southern Hemisphere, which is dominated by vascular, cushion-forming plants and is particularly understudied. One result of this study is that these cushion bogs apparently are highly productive in comparison to Northern and Southern Hemisphere moss-dominated bogs.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Norman Rößger, Christian Wille, David Holl, Mathias Göckede, and Lars Kutzbach
Biogeosciences, 16, 2591–2615, https://doi.org/10.5194/bg-16-2591-2019, https://doi.org/10.5194/bg-16-2591-2019, 2019
Julia Boike, Jan Nitzbon, Katharina Anders, Mikhail Grigoriev, Dmitry Bolshiyanov, Moritz Langer, Stephan Lange, Niko Bornemann, Anne Morgenstern, Peter Schreiber, Christian Wille, Sarah Chadburn, Isabelle Gouttevin, Eleanor Burke, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 261–299, https://doi.org/10.5194/essd-11-261-2019, https://doi.org/10.5194/essd-11-261-2019, 2019
Short summary
Short summary
Long-term observational data are available from the Samoylov research site in northern Siberia, where meteorological parameters, energy balance, and subsurface observations have been recorded since 1998. This paper presents the temporal data set produced between 2002 and 2017, explaining the instrumentation, calibration, processing, and data quality control. Furthermore, we present a merged dataset of the parameters, which were measured from 1998 onwards.
David Holl, Christian Wille, Torsten Sachs, Peter Schreiber, Benjamin R. K. Runkle, Lutz Beckebanze, Moritz Langer, Julia Boike, Eva-Maria Pfeiffer, Irina Fedorova, Dimitry Y. Bolshianov, Mikhail N. Grigoriev, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 221–240, https://doi.org/10.5194/essd-11-221-2019, https://doi.org/10.5194/essd-11-221-2019, 2019
Short summary
Short summary
We present a multi-annual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. Up to now, the available database of in situ measurements from the Arctic was biased towards Alaska and records from the Eurasian Arctic were scarce.
Thomas Schneider von Deimling, Thomas Kleinen, Gustaf Hugelius, Christian Knoblauch, Christian Beer, and Victor Brovkin
Clim. Past, 14, 2011–2036, https://doi.org/10.5194/cp-14-2011-2018, https://doi.org/10.5194/cp-14-2011-2018, 2018
Short summary
Short summary
Past cold ice age temperatures and the subsequent warming towards the Holocene had large consequences for soil organic carbon (SOC) stored in perennially frozen grounds. Using an Earth system model we show how the spread in areas affected by permafrost have changed under deglacial warming, along with changes in SOC accumulation. Our model simulations suggest phases of circum-Arctic permafrost SOC gain and losses, with a net increase in SOC between the last glacial maximum and the pre-industrial.
Evgeny Abakumov and Ivan Alekseev
Solid Earth, 9, 1329–1339, https://doi.org/10.5194/se-9-1329-2018, https://doi.org/10.5194/se-9-1329-2018, 2018
Josefine Walz, Christian Knoblauch, Ronja Tigges, Thomas Opel, Lutz Schirrmeister, and Eva-Maria Pfeiffer
Biogeosciences, 15, 5423–5436, https://doi.org/10.5194/bg-15-5423-2018, https://doi.org/10.5194/bg-15-5423-2018, 2018
Short summary
Short summary
We investigate potential CO2 and CH4 production in degrading ice-rich permafrost in northeastern Siberia, deposited under different climatic conditions. With laboratory incubations, it could be shown that Late Pleistocene yedoma deposits generally produced more CO2 than Holocene deposits. Thus, OM decomposability needs to be interpreted against the paleoenvironmental background. However, OM decomposability cannot be generalized solely based on the stratigraphic position.
George Shamilishvily, Evgeny Abakumov, and Dmitriy Gabov
Solid Earth, 9, 669–682, https://doi.org/10.5194/se-9-669-2018, https://doi.org/10.5194/se-9-669-2018, 2018
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R. Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, and Klaudia Ziemblinska
Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, https://doi.org/10.5194/gmd-11-497-2018, 2018
Short summary
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Sarah E. Chadburn, Gerhard Krinner, Philipp Porada, Annett Bartsch, Christian Beer, Luca Belelli Marchesini, Julia Boike, Altug Ekici, Bo Elberling, Thomas Friborg, Gustaf Hugelius, Margareta Johansson, Peter Kuhry, Lars Kutzbach, Moritz Langer, Magnus Lund, Frans-Jan W. Parmentier, Shushi Peng, Ko Van Huissteden, Tao Wang, Sebastian Westermann, Dan Zhu, and Eleanor J. Burke
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017, https://doi.org/10.5194/bg-14-5143-2017, 2017
Short summary
Short summary
Earth system models (ESMs) are our main tools for understanding future climate. The Arctic is important for the future carbon cycle, particularly due to the large carbon stocks in permafrost. We evaluated the performance of the land component of three major ESMs at Arctic tundra sites, focusing on the fluxes and stocks of carbon.
We show that the next steps for model improvement are to better represent vegetation dynamics, to include mosses and to improve below-ground carbon cycle processes.
Ekaterina Maksimova and Evgeny Abakumov
Solid Earth, 8, 553–560, https://doi.org/10.5194/se-8-553-2017, https://doi.org/10.5194/se-8-553-2017, 2017
Short summary
Short summary
Two fire-affected soils have been studied using micromorphological methods. The objective of the paper is to assess and compare fire effects on the micropedological organisation of soils in a forest-steppe zone of central Russia. The burnt soils differ from the control on a macromorphological level only in the upper part of the profile where the litter is transformed to ash identified as a dim grey organomineral mixture. Processes of soil erosion are clearly manifested 1 year after the fire.
Sonja Kaiser, Mathias Göckede, Karel Castro-Morales, Christian Knoblauch, Altug Ekici, Thomas Kleinen, Sebastian Zubrzycki, Torsten Sachs, Christian Wille, and Christian Beer
Geosci. Model Dev., 10, 333–358, https://doi.org/10.5194/gmd-10-333-2017, https://doi.org/10.5194/gmd-10-333-2017, 2017
Short summary
Short summary
A new consistent, process-based methane module that is integrated with permafrost processes is presented. It was developed within a global land surface scheme and evaluated at a polygonal tundra site in Samoylov, Russia. The calculated methane emissions show fair agreement with field data and capture detailed differences between the explicitly modelled gas transport processes and in the gas dynamics under varying soil water and temperature conditions during seasons and on different microsites.
Fabian Beermann, Moritz Langer, Sebastian Wetterich, Jens Strauss, Julia Boike, Claudia Fiencke, Lutz Schirrmeister, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-117, https://doi.org/10.5194/bg-2016-117, 2016
Revised manuscript not accepted
Short summary
Short summary
This paper aims to quantify pools of inorganic nitrogen in permafrost soils of arctic Siberia and to estimate annual release rates of this nitrogen due to permafrost thaw. We report for the first time stores of inorganic nitrogen in Siberian permafrost soils. These nitrogen stores are important as permafrost thaw can mobilize substantial amounts of nitrogen, potentially changing the nutrient balance of these soils and representing a significant non-carbon permafrost climate feedback.
E. Ejarque and E. Abakumov
Solid Earth, 7, 153–165, https://doi.org/10.5194/se-7-153-2016, https://doi.org/10.5194/se-7-153-2016, 2016
Short summary
Short summary
This study presents, for the first time, a characterisation of soil organic matter from the Gydan Peninsula in the Yamal Region, Western Siberia, Russia. We provide evidences that soils in this region accumulate lowly decomposed organic matter with a high mineralisation potential. This emphasises the vulnerability of this soil carbon pool to be remobilised as CO2 to the atmosphere under climate warming effects.
F. Cresto Aleina, B. R. K. Runkle, T. Kleinen, L. Kutzbach, J. Schneider, and V. Brovkin
Biogeosciences, 12, 5689–5704, https://doi.org/10.5194/bg-12-5689-2015, https://doi.org/10.5194/bg-12-5689-2015, 2015
Short summary
Short summary
We developed a process-based model for peatland micro-topography and hydrology, the Hummock-Hollow (HH) model, which explicitly represents small-scale surface elevation changes. By coupling the HH model with a model for soil methane processes, we are able to model the effects of micro-topography on hydrology and methane emissions in a typical boreal peatland. We also identify potential biases that models without a micro-topographic representation can introduce in large-scale models.
M. Vanselow-Algan, S. R. Schmidt, M. Greven, C. Fiencke, L. Kutzbach, and E.-M. Pfeiffer
Biogeosciences, 12, 4361–4371, https://doi.org/10.5194/bg-12-4361-2015, https://doi.org/10.5194/bg-12-4361-2015, 2015
E. Abakumov and N. Mukhametova
Solid Earth, 5, 705–712, https://doi.org/10.5194/se-5-705-2014, https://doi.org/10.5194/se-5-705-2014, 2014
E. Maksimova and E. Abakumov
Solid Earth Discuss., https://doi.org/10.5194/sed-6-71-2014, https://doi.org/10.5194/sed-6-71-2014, 2014
Revised manuscript not accepted
I. Preuss, C. Knoblauch, J. Gebert, and E.-M. Pfeiffer
Biogeosciences, 10, 2539–2552, https://doi.org/10.5194/bg-10-2539-2013, https://doi.org/10.5194/bg-10-2539-2013, 2013
Related subject area
Biogeochemistry: Greenhouse Gases
Interannual and seasonal variability of the air–sea CO2 exchange at Utö in the coastal region of the Baltic Sea
CO2 emissions of drained coastal peatlands in the Netherlands and potential emission reduction by water infiltration systems
Influence of wind strength and direction on diffusive methane fluxes and atmospheric methane concentrations above the North Sea
Using eddy covariance observations to determine the carbon sequestration characteristics of subalpine forests in the Qinghai–Tibet Plateau
Isotopomer labeling and oxygen dependence of hybrid nitrous oxide production
The emission of CO from tropical rainforest soils
Drought disrupts atmospheric carbon uptake in a Mediterranean saline lake
Modelling CO2 and N2O emissions from soils in silvopastoral systems of the West African Sahelian band
A case study on topsoil removal and rewetting for paludiculture: effect on biogeochemistry and greenhouse gas emissions from Typha latifolia, Typha angustifolia, and Azolla filiculoides
Assessing improvements in global ocean pCO2 machine learning reconstructions with Southern Ocean autonomous sampling
Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models
Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples
Exploring temporal and spatial variation of nitrous oxide flux using several years of peatland forest automatic chamber data
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Regional assessment and uncertainty analysis of carbon and nitrogen balances at cropland scale using the ecosystem model LandscapeDNDC
Physicochemical Perturbation Increases Nitrous Oxide Production in Soils and Sediments
Resolving heterogeneous fluxes from tundra halves the growing season carbon budget
Seasonal dynamics and regional distribution patterns of CO2 and CH4 in the north-eastern Baltic Sea
Carbon degradation and mobilisation potentials of thawing permafrost peatlands in Northern Norway
Tidal influence on carbon dioxide and methane fluxes from tree stems and soils in mangrove forests
Lawns and meadows in urban green space – a comparison from perspectives of greenhouse gases, drought resilience and plant functional types
Large contribution of soil N2O emission to the global warming potential of a large-scale oil palm plantation despite changing from conventional to reduced management practices
Identifying landscape hot and cold spots of soil greenhouse gas fluxes by combining field measurements and remote sensing data
Enhanced Southern Ocean CO2 outgassing as a result of stronger and poleward shifted southern hemispheric westerlies
Spatial and temporal variability of methane emissions and environmental conditions in a hyper-eutrophic fishpond
Optical and radar Earth observation data for upscaling methane emissions linked to permafrost degradation in sub-Arctic peatlands in northern Sweden
Herbivore–shrub interactions influence ecosystem respiration and biogenic volatile organic compound composition in the subarctic
Methane emissions due to reservoir flushing: a significant emission pathway?
Carbon dioxide and methane fluxes from mounds of African fungus-growing termites
Diel and seasonal methane dynamics in the shallow and turbulent Wadden Sea
Technical note: Skirt chamber – an open dynamic method for the rapid and minimally intrusive measurement of greenhouse gas emissions from peatlands
Seasonal variability of nitrous oxide concentrations and emissions in a temperate estuary
Reviews and syntheses: Recent advances in microwave remote sensing in support of terrestrial carbon cycle science in Arctic–boreal regions
Simulated methane emissions from Arctic ponds are highly sensitive to warming
Water-table-driven greenhouse gas emission estimates guide peatland restoration at national scale
Relationships between greenhouse gas production and landscape position during short-term permafrost thaw under anaerobic conditions in the Lena Delta
Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska
Carbon monoxide (CO) cycling in the Fram Strait, Arctic Ocean
Post-flooding disturbance recovery promotes carbon capture in riparian zones
Meteorological responses of carbon dioxide and methane fluxes in the terrestrial and aquatic ecosystems of a subarctic landscape
Carbon emission and export from the Ket River, western Siberia
Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations
Greenhouse gas fluxes in mangrove forest soil in an Amazon estuary
Temporal patterns and drivers of CO2 emission from dry sediments in a groyne field of a large river
Effects of water table level and nitrogen deposition on methane and nitrous oxide emissions in an alpine peatland
Highest methane concentrations in an Arctic river linked to local terrestrial inputs
Seasonal study of the small-scale variability in dissolved methane in the western Kiel Bight (Baltic Sea) during the European heatwave in 2018
Trace gas fluxes from tidal salt marsh soils: implications for carbon–sulfur biogeochemistry
Spatial and temporal variation in δ13C values of methane emitted from a hemiboreal mire: methanogenesis, methanotrophy, and hysteresis
Intercomparison of methods to estimate gross primary production based on CO2 and COS flux measurements
Martti Honkanen, Mika Aurela, Juha Hatakka, Lumi Haraguchi, Sami Kielosto, Timo Mäkelä, Jukka Seppälä, Simo-Matti Siiriä, Ken Stenbäck, Juha-Pekka Tuovinen, Pasi Ylöstalo, and Lauri Laakso
Biogeosciences, 21, 4341–4359, https://doi.org/10.5194/bg-21-4341-2024, https://doi.org/10.5194/bg-21-4341-2024, 2024
Short summary
Short summary
The exchange of CO2 between the sea and the atmosphere was studied in the Archipelago Sea, Baltic Sea, in 2017–2021, using an eddy covariance technique. The sea acted as a net source of CO2 with an average yearly emission of 27.1 gC m-2 yr-1, indicating that the marine ecosystem respired carbon that originated elsewhere. The yearly CO2 emission varied between 18.2–39.2 gC m-2 yr-1, mostly due to the yearly variation of ecosystem carbon uptake.
Ralf C. H. Aben, Daniël van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
Biogeosciences, 21, 4099–4118, https://doi.org/10.5194/bg-21-4099-2024, https://doi.org/10.5194/bg-21-4099-2024, 2024
Short summary
Short summary
Drained peatlands cause high CO2 emissions. We assessed the effectiveness of subsurface water infiltration systems (WISs) in reducing CO2 emissions related to increases in water table depth (WTD) on 12 sites for up to 4 years. Results show WISs markedly reduced emissions by 2.1 t CO2-C ha-1 yr-1. The relationship between the amount of carbon above the WTD and CO2 emission was stronger than the relationship between WTD and emission. Long-term monitoring is crucial for accurate emission estimates.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Niu Zhu, Jinniu Wang, Dongliang Luo, Xufeng Wang, Cheng Shen, and Ning Wu
Biogeosciences, 21, 3509–3522, https://doi.org/10.5194/bg-21-3509-2024, https://doi.org/10.5194/bg-21-3509-2024, 2024
Short summary
Short summary
Our study delves into the vital role of subalpine forests in the Qinghai–Tibet Plateau as carbon sinks in the context of climate change. Utilizing advanced eddy covariance systems, we uncover their significant carbon sequestration potential, observing distinct seasonal patterns influenced by temperature, humidity, and radiation. Notably, these forests exhibit robust carbon absorption, with potential implications for global carbon balance.
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Ihab Alfadhel, Ignacio Peralta-Maraver, Isabel Reche, Enrique P. Sánchez-Cañete, Sergio Aranda-Barranco, Eva Rodríguez-Velasco, Andrew S. Kowalski, and Penélope Serrano-Ortiz
EGUsphere, https://doi.org/10.5194/egusphere-2024-1562, https://doi.org/10.5194/egusphere-2024-1562, 2024
Short summary
Short summary
Inland saline lakes are crucial in the global carbon cycle, but increased droughts may alter their carbon exchange capacity. We measured CO2 and CH4 fluxes in a Mediterranean saline lake using the Eddy Covariance method under dry and wet conditions. We found the lake acts as a carbon sink during wet periods but not during droughts. These results highlight the importance of saline lakes in carbon sequestration and their vulnerability to climate change-induced droughts.
Yélognissè Agbohessou, Claire Delon, Manuela Grippa, Eric Mougin, Daouda Ngom, Espoir Koudjo Gaglo, Ousmane Ndiaye, Paulo Salgado, and Olivier Roupsard
Biogeosciences, 21, 2811–2837, https://doi.org/10.5194/bg-21-2811-2024, https://doi.org/10.5194/bg-21-2811-2024, 2024
Short summary
Short summary
Emissions of greenhouse gases in the Sahel are not well represented because they are considered weak compared to the rest of the world. However, natural areas in the Sahel emit carbon dioxide and nitrous oxides, which need to be assessed because of extended surfaces. We propose an assessment of such emissions in Sahelian silvopastoral systems and of how they are influenced by environmental characteristics. These results are essential to inform climate change strategies in the region.
Merit van den Berg, Thomas M. Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
Biogeosciences, 21, 2669–2690, https://doi.org/10.5194/bg-21-2669-2024, https://doi.org/10.5194/bg-21-2669-2024, 2024
Short summary
Short summary
Drained peatlands emit 3 % of the global greenhouse gas emissions. Paludiculture is a way to reduce CO2 emissions while at the same time generating an income for landowners. The side effect is the potentially high methane emissions. We found very high methane emissions for broadleaf cattail compared with narrowleaf cattail and water fern. The rewetting was, however, effective to stop CO2 emissions for all species. The highest potential to reduce greenhouse gas emissions had narrowleaf cattail.
Thea H. Heimdal, Galen A. McKinley, Adrienne J. Sutton, Amanda R. Fay, and Lucas Gloege
Biogeosciences, 21, 2159–2176, https://doi.org/10.5194/bg-21-2159-2024, https://doi.org/10.5194/bg-21-2159-2024, 2024
Short summary
Short summary
Measurements of ocean carbon are limited in time and space. Machine learning algorithms are therefore used to reconstruct ocean carbon where observations do not exist. Improving these reconstructions is important in order to accurately estimate how much carbon the ocean absorbs from the atmosphere. In this study, we find that a small addition of observations from the Southern Ocean, obtained by autonomous sampling platforms, could significantly improve the reconstructions.
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024, https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Short summary
We study the timescale dependence of airborne fraction and underlying feedbacks by a theory of the climate–carbon system. Using simulations we show the predictive power of this theory and find that (1) this fraction generally decreases for increasing timescales and (2) at all timescales the total feedback is negative and the model spread in a single feedback causes the spread in the airborne fraction. Our study indicates that those are properties of the system, independently of the scenario.
François Clayer, Jan Erik Thrane, Kuria Ndungu, Andrew King, Peter Dörsch, and Thomas Rohrlack
Biogeosciences, 21, 1903–1921, https://doi.org/10.5194/bg-21-1903-2024, https://doi.org/10.5194/bg-21-1903-2024, 2024
Short summary
Short summary
Determination of dissolved greenhouse gas (GHG) in freshwater allows us to estimate GHG fluxes. Mercuric chloride (HgCl2) is used to preserve water samples prior to GHG analysis despite its environmental and health impacts and interferences with water chemistry in freshwater. Here, we tested the effects of HgCl2, two substitutes and storage time on GHG in water from two boreal lakes. Preservation with HgCl2 caused overestimation of CO2 concentration with consequences for GHG flux estimation.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024, https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Short summary
We measured the emission of carbon dioxide (CO2) and methane (CH4) from different sites at the river Elbe in Germany over 3 days to find out what is more important for quantification: small-scale spatial variability or diurnal temporal variability. We found that CO2 emissions were very different between day and night, while CH4 emissions were more different between sites. Dried out river sediments contributed to CO2 emissions, while the side areas of the river were important CH4 sources.
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, and Maria P. Papadopoulou
Biogeosciences, 21, 1563–1581, https://doi.org/10.5194/bg-21-1563-2024, https://doi.org/10.5194/bg-21-1563-2024, 2024
Short summary
Short summary
We performed a full assessment of the carbon and nitrogen cycles of a cropland ecosystem. An uncertainty analysis and quantification of all carbon and nitrogen fluxes were deployed. The inventory simulations include greenhouse gas emissions of N2O, NH3 volatilization and NO3 leaching from arable land cultivation in Greece. The inventory also reports changes in soil organic carbon and nitrogen stocks in arable soils.
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
EGUsphere, https://doi.org/10.5194/egusphere-2024-448, https://doi.org/10.5194/egusphere-2024-448, 2024
Short summary
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbance to soils and sediments. We demonstrate that the disturbance increases N2O production, the microbial community adapts to disturbance over time, an initial disturbance appears to confer resilience to subsequent disturbance.
Sarah M. Ludwig, Luke Schiferl, Jacqueline Hung, Susan M. Natali, and Roisin Commane
Biogeosciences, 21, 1301–1321, https://doi.org/10.5194/bg-21-1301-2024, https://doi.org/10.5194/bg-21-1301-2024, 2024
Short summary
Short summary
Landscapes are often assumed to be homogeneous when using eddy covariance fluxes, which can lead to biases when calculating carbon budgets. In this study we report eddy covariance carbon fluxes from heterogeneous tundra. We used the footprints of each flux observation to unmix the fluxes coming from components of the landscape. We identified and quantified hot spots of carbon emissions in the landscape. Accurately scaling with landscape heterogeneity yielded half as much regional carbon uptake.
Silvie Lainela, Erik Jacobs, Stella-Theresa Stoicescu, Gregor Rehder, and Urmas Lips
EGUsphere, https://doi.org/10.5194/egusphere-2024-598, https://doi.org/10.5194/egusphere-2024-598, 2024
Short summary
Short summary
We evaluate the variability of carbon dioxide and methane in the surface layer of the north-eastern basins of the Baltic Sea in 2018. We show that the shallower coastal areas have considerably higher spatial variability and seasonal amplitude of surface layer pCO2 and cCH4 than measured in the Baltic Sea offshore areas. Despite this high variability, caused mostly by coastal physical processes, the average annual air-sea CO2 fluxes differed only marginally between the sub-basins.
Sigrid Trier Kjær, Sebastian Westermann, Nora Nedkvitne, and Peter Dörsch
EGUsphere, https://doi.org/10.5194/egusphere-2024-562, https://doi.org/10.5194/egusphere-2024-562, 2024
Short summary
Short summary
Permafrost peatlands are thawing due to climate change, releasing large quantities of carbon that degrades upon thawing and is released as CO2, CH4, or dissolved organic carbon (DOC). We incubated thawed Norwegian permafrost peat plateaus and thermokarst pond sediment found next to permafrost for up to 350 days to measure carbon loss. CO2 production was largest initially, while CH4 production increased over time. The largest carbon loss was measured at the top of the peat plateau core as DOC.
Zhao-Jun Yong, Wei‐Jen Lin, Chiao-Wen Lin, and Hsing-Juh Lin Lin
EGUsphere, https://doi.org/10.5194/egusphere-2024-533, https://doi.org/10.5194/egusphere-2024-533, 2024
Short summary
Short summary
This study is the first to simultaneously measure mangrove CH4 emissions from both stems and soils throughout tidal cycles. The stems served as both net CO2 and CH4 sources. Compared to those of the soils, the stems exhibited markedly lower CH4 emissions, but no difference in CO2 emissions. Sampling only during low tides might overestimate the stem CO2 and CH4 emissions on a diurnal scale. This study also highlights species distinctness (with pneumatophores) in the emissions.
Justine Trémeau, Beñat Olascoaga, Leif Backman, Esko Karvinen, Henriikka Vekuri, and Liisa Kulmala
Biogeosciences, 21, 949–972, https://doi.org/10.5194/bg-21-949-2024, https://doi.org/10.5194/bg-21-949-2024, 2024
Short summary
Short summary
We studied urban lawns and meadows in the Helsinki metropolitan area, Finland. We found that meadows are more resistant to drought events but that they do not increase carbon sequestration compared with lawns. Moreover, the transformation from lawns to meadows did not demonstrate any negative climate effects in terms of greenhouse gas emissions. Even though social and economic aspects also steer urban development, these results can guide planning to consider carbon-smart options.
Guantao Chen, Edzo Veldkamp, Muhammad Damris, Bambang Irawan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 21, 513–529, https://doi.org/10.5194/bg-21-513-2024, https://doi.org/10.5194/bg-21-513-2024, 2024
Short summary
Short summary
We established an oil palm management experiment in a large-scale oil palm plantation in Jambi, Indonesia. We recorded oil palm fruit yield and measured soil CO2, N2O, and CH4 fluxes. After 4 years of treatment, compared with conventional fertilization with herbicide weeding, reduced fertilization with mechanical weeding did not reduce yield and soil greenhouse gas emissions, which highlights the legacy effects of over a decade of conventional management prior to the start of the experiment.
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Tobias Houska, David Kraus, Gretchen Maria Gettel, Ralf Kiese, Lutz Breuer, and Klaus Butterbach-Bahl
Biogeosciences, 20, 5029–5067, https://doi.org/10.5194/bg-20-5029-2023, https://doi.org/10.5194/bg-20-5029-2023, 2023
Short summary
Short summary
Agricultural landscapes act as sinks or sources of the greenhouse gases (GHGs) CO2, CH4, or N2O. Various physicochemical and biological processes control the fluxes of these GHGs between ecosystems and the atmosphere. Therefore, fluxes depend on environmental conditions such as soil moisture, soil temperature, or soil parameters, which result in large spatial and temporal variations of GHG fluxes. Here, we describe an example of how this variation may be studied and analyzed.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Petr Znachor, Jiří Nedoma, Vojtech Kolar, and Anna Matoušů
Biogeosciences, 20, 4273–4288, https://doi.org/10.5194/bg-20-4273-2023, https://doi.org/10.5194/bg-20-4273-2023, 2023
Short summary
Short summary
We conducted intensive spatial sampling of the hypertrophic fishpond to better understand the spatial dynamics of methane fluxes and environmental heterogeneity in fishponds. The diffusive fluxes of methane accounted for only a minor fraction of the total fluxes and both varied pronouncedly within the pond and over the studied summer season. This could be explained only by the water depth. Wind substantially affected temperature, oxygen and chlorophyll a distribution in the pond.
Sofie Sjögersten, Martha Ledger, Matthias Siewert, Betsabé de la Barreda-Bautista, Andrew Sowter, David Gee, Giles Foody, and Doreen S. Boyd
Biogeosciences, 20, 4221–4239, https://doi.org/10.5194/bg-20-4221-2023, https://doi.org/10.5194/bg-20-4221-2023, 2023
Short summary
Short summary
Permafrost thaw in Arctic regions is increasing methane emissions, but quantification is difficult given the large and remote areas impacted. We show that UAV data together with satellite data can be used to extrapolate emissions across the wider landscape as well as detect areas at risk of higher emissions. A transition of currently degrading areas to fen type vegetation can increase emission by several orders of magnitude, highlighting the importance of quantifying areas at risk.
Cole G. Brachmann, Tage Vowles, Riikka Rinnan, Mats P. Björkman, Anna Ekberg, and Robert G. Björk
Biogeosciences, 20, 4069–4086, https://doi.org/10.5194/bg-20-4069-2023, https://doi.org/10.5194/bg-20-4069-2023, 2023
Short summary
Short summary
Herbivores change plant communities through grazing, altering the amount of CO2 and plant-specific chemicals (termed VOCs) emitted. We tested this effect by excluding herbivores and studying the CO2 and VOC emissions. Herbivores reduced CO2 emissions from a meadow community and altered VOC composition; however, community type had the strongest effect on the amount of CO2 and VOCs released. Herbivores can mediate greenhouse gas emissions, but the effect is marginal and community dependent.
Ole Lessmann, Jorge Encinas Fernández, Karla Martínez-Cruz, and Frank Peeters
Biogeosciences, 20, 4057–4068, https://doi.org/10.5194/bg-20-4057-2023, https://doi.org/10.5194/bg-20-4057-2023, 2023
Short summary
Short summary
Based on a large dataset of seasonally resolved methane (CH4) pore water concentrations in a reservoir's sediment, we assess the significance of CH4 emissions due to reservoir flushing. In the studied reservoir, CH4 emissions caused by one flushing operation can represent 7 %–14 % of the annual CH4 emissions and depend on the timing of the flushing operation. In reservoirs with high sediment loadings, regular flushing may substantially contribute to the overall CH4 emissions.
Matti Räsänen, Risto Vesala, Petri Rönnholm, Laura Arppe, Petra Manninen, Markus Jylhä, Jouko Rikkinen, Petri Pellikka, and Janne Rinne
Biogeosciences, 20, 4029–4042, https://doi.org/10.5194/bg-20-4029-2023, https://doi.org/10.5194/bg-20-4029-2023, 2023
Short summary
Short summary
Fungus-growing termites recycle large parts of dead plant material in African savannas and are significant sources of greenhouse gases. We measured CO2 and CH4 fluxes from their mounds and surrounding soils in open and closed habitats. The fluxes scale with mound volume. The results show that emissions from mounds of fungus-growing termites are more stable than those from other termites. The soil fluxes around the mound are affected by the termite colonies at up to 2 m distance from the mound.
Tim René de Groot, Anne Margriet Mol, Katherine Mesdag, Pierre Ramond, Rachel Ndhlovu, Julia Catherine Engelmann, Thomas Röckmann, and Helge Niemann
Biogeosciences, 20, 3857–3872, https://doi.org/10.5194/bg-20-3857-2023, https://doi.org/10.5194/bg-20-3857-2023, 2023
Short summary
Short summary
This study investigates methane dynamics in the Wadden Sea. Our measurements revealed distinct variations triggered by seasonality and tidal forcing. The methane budget was higher in warmer seasons but surprisingly high in colder seasons. Methane dynamics were amplified during low tides, flushing the majority of methane into the North Sea or releasing it to the atmosphere. Methanotrophic activity was also elevated during low tide but mitigated only a small fraction of the methane efflux.
Frederic Thalasso, Brenda Riquelme, Andrés Gómez, Roy Mackenzie, Francisco Javier Aguirre, Jorge Hoyos-Santillan, Ricardo Rozzi, and Armando Sepulveda-Jauregui
Biogeosciences, 20, 3737–3749, https://doi.org/10.5194/bg-20-3737-2023, https://doi.org/10.5194/bg-20-3737-2023, 2023
Short summary
Short summary
A robust skirt-chamber design to capture and quantify greenhouse gas emissions from peatlands is presented. Compared to standard methods, this design improves the spatial resolution of field studies in remote locations while minimizing intrusion.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Jennifer L. Baltzer, Christophe Kinnard, and Alexandre Roy
Biogeosciences, 20, 2941–2970, https://doi.org/10.5194/bg-20-2941-2023, https://doi.org/10.5194/bg-20-2941-2023, 2023
Short summary
Short summary
This review supports the integration of microwave spaceborne information into carbon cycle science for Arctic–boreal regions. The microwave data record spans multiple decades with frequent global observations of soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties, and land cover. This record holds substantial unexploited potential to better understand carbon cycle processes.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Julian Koch, Lars Elsgaard, Mogens H. Greve, Steen Gyldenkærne, Cecilie Hermansen, Gregor Levin, Shubiao Wu, and Simon Stisen
Biogeosciences, 20, 2387–2403, https://doi.org/10.5194/bg-20-2387-2023, https://doi.org/10.5194/bg-20-2387-2023, 2023
Short summary
Short summary
Utilizing peatlands for agriculture leads to large emissions of greenhouse gases worldwide. The emissions are triggered by lowering the water table, which is a necessary step in order to make peatlands arable. Many countries aim at reducing their emissions by restoring peatlands, which can be achieved by stopping agricultural activities and thereby raising the water table. We estimate a total emission of 2.6 Mt CO2-eq for organic-rich peatlands in Denmark and a potential reduction of 77 %.
Mélissa Laurent, Matthias Fuchs, Tanja Herbst, Alexandra Runge, Susanne Liebner, and Claire C. Treat
Biogeosciences, 20, 2049–2064, https://doi.org/10.5194/bg-20-2049-2023, https://doi.org/10.5194/bg-20-2049-2023, 2023
Short summary
Short summary
In this study we investigated the effect of different parameters (temperature, landscape position) on the production of greenhouse gases during a 1-year permafrost thaw experiment. For very similar carbon and nitrogen contents, our results show a strong heterogeneity in CH4 production, as well as in microbial abundance. According to our study, these differences are mainly due to the landscape position and the hydrological conditions established as a result of the topography.
Michael Moubarak, Seeta Sistla, Stefano Potter, Susan M. Natali, and Brendan M. Rogers
Biogeosciences, 20, 1537–1557, https://doi.org/10.5194/bg-20-1537-2023, https://doi.org/10.5194/bg-20-1537-2023, 2023
Short summary
Short summary
Tundra wildfires are increasing in frequency and severity with climate change. We show using a combination of field measurements and computational modeling that tundra wildfires result in a positive feedback to climate change by emitting significant amounts of long-lived greenhouse gasses. With these effects, attention to tundra fires is necessary for mitigating climate change.
Hanna I. Campen, Damian L. Arévalo-Martínez, and Hermann W. Bange
Biogeosciences, 20, 1371–1379, https://doi.org/10.5194/bg-20-1371-2023, https://doi.org/10.5194/bg-20-1371-2023, 2023
Short summary
Short summary
Carbon monoxide (CO) is a climate-relevant trace gas emitted from the ocean. However, oceanic CO cycling is understudied. Results from incubation experiments conducted in the Fram Strait (Arctic Ocean) indicated that (i) pH did not affect CO cycling and (ii) enhanced CO production and consumption were positively correlated with coloured dissolved organic matter and nitrate concentrations. This suggests microbial CO uptake to be the driving factor for CO cycling in the Arctic Ocean.
Yihong Zhu, Ruihua Liu, Huai Zhang, Shaoda Liu, Zhengfeng Zhang, Fei-Hai Yu, and Timothy G. Gregoire
Biogeosciences, 20, 1357–1370, https://doi.org/10.5194/bg-20-1357-2023, https://doi.org/10.5194/bg-20-1357-2023, 2023
Short summary
Short summary
With global warming, the risk of flooding is rising, but the response of the carbon cycle of aquatic and associated riparian systems
to flooding is still unclear. Based on the data collected in the Lijiang, we found that flooding would lead to significant carbon emissions of fluvial areas and riparian areas during flooding, but carbon capture may happen after flooding. In the riparian areas, the surviving vegetation, especially clonal plants, played a vital role in this transformation.
Lauri Heiskanen, Juha-Pekka Tuovinen, Henriikka Vekuri, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Juha Mikola, and Mika Aurela
Biogeosciences, 20, 545–572, https://doi.org/10.5194/bg-20-545-2023, https://doi.org/10.5194/bg-20-545-2023, 2023
Short summary
Short summary
We measured and modelled the CO2 and CH4 fluxes of the terrestrial and aquatic ecosystems of the subarctic landscape for 2 years. The landscape was an annual CO2 sink and a CH4 source. The forest had the largest contribution to the landscape-level CO2 sink and the peatland to the CH4 emissions. The lakes released 24 % of the annual net C uptake of the landscape back to the atmosphere. The C fluxes were affected most by the rainy peak growing season of 2017 and the drought event in July 2018.
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022, https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Short summary
In order to quantify C transport and emission and main environmental factors controlling the C cycle in Siberian rivers, we investigated the largest tributary of the Ob River, the Ket River basin, by measuring spatial and seasonal variations in carbon CO2 and CH4 concentrations and emissions together with hydrochemical analyses. The obtained results are useful for large-scale modeling of C emission and export fluxes from permafrost-free boreal rivers of an underrepresented region of the world.
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022, https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Short summary
Wetlands are the largest natural source of methane, one of the most important climate gases. The JULES land surface model simulates these emissions. We use satellite data to evaluate how well JULES reproduces the methane seasonal cycle over different tropical wetlands. It performs well for most regions; however, it struggles for some African wetlands influenced heavily by river flooding. We explain the reasons for these deficiencies and highlight how future development will improve these areas.
Saúl Edgardo Martínez Castellón, José Henrique Cattanio, José Francisco Berrêdo, Marcelo Rollnic, Maria de Lourdes Ruivo, and Carlos Noriega
Biogeosciences, 19, 5483–5497, https://doi.org/10.5194/bg-19-5483-2022, https://doi.org/10.5194/bg-19-5483-2022, 2022
Short summary
Short summary
We seek to understand the influence of climatic seasonality and microtopography on CO2 and CH4 fluxes in an Amazonian mangrove. Topography and seasonality had a contrasting influence when comparing the two gas fluxes: CO2 fluxes were greater in high topography in the dry period, and CH4 fluxes were greater in the rainy season in low topography. Only CO2 fluxes were correlated with soil organic matter, the proportion of carbon and nitrogen, and redox potential.
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022, https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Wantong Zhang, Zhengyi Hu, Joachim Audet, Thomas A. Davidson, Enze Kang, Xiaoming Kang, Yong Li, Xiaodong Zhang, and Jinzhi Wang
Biogeosciences, 19, 5187–5197, https://doi.org/10.5194/bg-19-5187-2022, https://doi.org/10.5194/bg-19-5187-2022, 2022
Short summary
Short summary
This work focused on the CH4 and N2O emissions from alpine peatlands in response to the interactive effects of altered water table levels and increased nitrogen deposition. Across the 2-year mesocosm experiment, nitrogen deposition showed nonlinear effects on CH4 emissions and linear effects on N2O emissions, and these N effects were associated with the water table levels. Our results imply the future scenario of strengthened CH4 and N2O emissions from an alpine peatland.
Karel Castro-Morales, Anna Canning, Sophie Arzberger, Will A. Overholt, Kirsten Küsel, Olaf Kolle, Mathias Göckede, Nikita Zimov, and Arne Körtzinger
Biogeosciences, 19, 5059–5077, https://doi.org/10.5194/bg-19-5059-2022, https://doi.org/10.5194/bg-19-5059-2022, 2022
Short summary
Short summary
Permafrost thaw releases methane that can be emitted into the atmosphere or transported by Arctic rivers. Methane measurements are lacking in large Arctic river regions. In the Kolyma River (northeast Siberia), we measured dissolved methane to map its distribution with great spatial detail. The river’s edge and river junctions had the highest methane concentrations compared to other river areas. Microbial communities in the river showed that the river’s methane likely is from the adjacent land.
Sonja Gindorf, Hermann W. Bange, Dennis Booge, and Annette Kock
Biogeosciences, 19, 4993–5006, https://doi.org/10.5194/bg-19-4993-2022, https://doi.org/10.5194/bg-19-4993-2022, 2022
Short summary
Short summary
Methane is a climate-relevant greenhouse gas which is emitted to the atmosphere from coastal areas such as the Baltic Sea. We measured the methane concentration in the water column of the western Kiel Bight. Methane concentrations were higher in September than in June. We found no relationship between the 2018 European heatwave and methane concentrations. Our results show that the methane distribution in the water column is strongly affected by temporal and spatial variabilities.
Margaret Capooci and Rodrigo Vargas
Biogeosciences, 19, 4655–4670, https://doi.org/10.5194/bg-19-4655-2022, https://doi.org/10.5194/bg-19-4655-2022, 2022
Short summary
Short summary
Tidal salt marsh soil emits greenhouse gases, as well as sulfur-based gases, which play roles in global climate but are not well studied as they are difficult to measure. Traditional methods of measuring these gases worked relatively well for carbon dioxide, but less so for methane, nitrous oxide, carbon disulfide, and dimethylsulfide. High variability of trace gases complicates the ability to accurately calculate gas budgets and new approaches are needed for monitoring protocols.
Janne Rinne, Patryk Łakomiec, Patrik Vestin, Joel D. White, Per Weslien, Julia Kelly, Natascha Kljun, Lena Ström, and Leif Klemedtsson
Biogeosciences, 19, 4331–4349, https://doi.org/10.5194/bg-19-4331-2022, https://doi.org/10.5194/bg-19-4331-2022, 2022
Short summary
Short summary
The study uses the stable isotope 13C of carbon in methane to investigate the origins of spatial and temporal variation in methane emitted by a temperate wetland ecosystem. The results indicate that methane production is more important for spatial variation than methane consumption by micro-organisms. Temporal variation on a seasonal timescale is most likely affected by more than one driver simultaneously.
Kukka-Maaria Kohonen, Roderick Dewar, Gianluca Tramontana, Aleksanteri Mauranen, Pasi Kolari, Linda M. J. Kooijmans, Dario Papale, Timo Vesala, and Ivan Mammarella
Biogeosciences, 19, 4067–4088, https://doi.org/10.5194/bg-19-4067-2022, https://doi.org/10.5194/bg-19-4067-2022, 2022
Short summary
Short summary
Four different methods for quantifying photosynthesis (GPP) at ecosystem scale were tested, of which two are based on carbon dioxide (CO2) and two on carbonyl sulfide (COS) flux measurements. CO2-based methods are traditional partitioning, and a new method uses machine learning. We introduce a novel method for calculating GPP from COS fluxes, with potentially better applicability than the former methods. Both COS-based methods gave on average higher GPP estimates than the CO2-based estimates.
Cited articles
Aalto, J., le Roux, P. C., and Luoto, M.: Vegetation mediates soil
temperature and moisture in arctic-alpine environments, Arct. Antarct. Alp.
Res., 45, 429–439, https://doi.org/10.1657/1938-4246-45.4.429, 2013.
AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, Arctic
Monitoring and Assessment Programme (AMAP), Oslo, Norway, xiv, 269 pp., 2017.
Beermann, F., Teltewskoi, A., Fiencke, C., Pfeiffer, E. M., and Kutzbach, L.:
Stoichiometric analysis of nutrient availability (N, P, K) within soils of
polygonal tundra, Biogeochemistry, 122, 211–227,
https://doi.org/10.1007/s10533-014-0037-4, 2015.
Beermann, F., Langer, M., Wetterich, S., Strauss, J., Boike, J., Fiencke, C.,
Schirrmeister, L., Pfeiffer, E.-M., and Kutzbach, L.: Permafrost Thaw and
Liberation of Inorganic Nitrogen in Eastern Siberia, Permafrost Periglac.,
28, 605–618, https://doi.org/10.1002/ppp.1958, 2017.
Biasi, C., Jokinen, S., Marushchak, M. E., Hämäläinen, K.,
Trubnikova, T., Oinonen, M., and Martikainen, P. J.: Microbial Respiration in
Arctic Upland and Peat Soils as a Source of Atmospheric Carbon Dioxide,
Ecosystems, 17, 112–126, https://doi.org/10.1007/s10021-013-9710-z, 2014.
Boike, J., Kattenstroth, B., Abramova, K., Bornemann, N., Chetverova, A.,
Fedorova, I., Fröb, K., Grigoriev, M., Grüber, M., Kutzbach, L.,
Langer, M., Minke, M., Muster, S., Piel, K., Pfeiffer, E.-M., Stoof, G.,
Westermann, S., Wischnewski, K., Wille, C., and Hubberten, H.-W.: Baseline
characteristics of climate, permafrost and land cover from a new permafrost
observatory in the Lena River Delta, Siberia (1998–2011), Biogeosciences,
10, 2105–2128, https://doi.org/10.5194/bg-10-2105-2013, 2013.
Brown, J., Miller, P. C., Tieszen, L. L., and Bunnell, F.: An arctic
ecosystem: the coastal tundra at Barrow, Alaska, Dowden, Hutchinson &
Ross, Inc., Stroudsberg, PA, USA, 1980.
Burnham, K. P. and Anderson, D. R.: Multimodel inference – understanding AIC
and BIC in model selection, Sociol. Method. Res., 33, 261–304,
https://doi.org/10.1177/0049124104268644, 2004.
Chapin, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett,
G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S.,
Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L., Harden,
J. W., Heimann, M., Howarth, R. W., Matson, P. A., McGuire, A. D., Melillo,
J. M., Mooney, H. A., Neff, J. C., Houghton, R. A., Pace, M. L., Ryan, M. G.,
Running, S. W., Sala, O. E., Schlesinger, W. H., and Schulze, E.-D.:
Reconciling Carbon-cycle Concepts, Terminology, and Methods, Ecosystems, 9,
1041–1050, https://doi.org/10.1007/s10021-005-0105-7, 2006.
Chemidlin Prévost-Bouré, N., Ngao, J., Berveiller, D., Bonal, D.,
Damesin, C., Dufrêne, E., Lata, J.-C., Le Dantec, V., Longdoz, B.,
Ponton, S., Soudani, K., and Epron, D.: Root exclusion through trenching does
not affect the isotopic composition of soil CO2 efflux, Plant Soil,
319, 1–13, https://doi.org/10.1007/s11104-008-9844-5, 2009.
Chen, J., Luo, Y., Xia, J., Shi, Z., Jiang, L., Niu, S., Zhou, X., and Cao,
J.: Differential responses of ecosystem respiration components to
experimental warming in a meadow grassland on the Tibetan Plateau, Agr.
Forest Meteorol., 220, 21–29, https://doi.org/10.1016/j.agrformet.2016.01.010, 2016.
Chimner, R. A. and Cooper, D. J.: Influence of water table levels on
CO2 emissions in a Colorado subalpine fen: an in situ microcosm
study, Soil Biol. Biochem., 35, 345–351, https://doi.org/10.1016/S0038-0717(02)00284-5,
2003.
Chivers, M. R., Turetsky, M. R., Waddington, J. M., Harden, J. W., and
McGuire, A. D.: Effects of Experimental Water Table and Temperature
Manipulations on Ecosystem CO2 Fluxes in an Alaskan Rich Fen,
Ecosystems, 12, 1329–1342, https://doi.org/10.1007/s10021-009-9292-y, 2009.
Christensen, J. H., Kanikicharla, K. K., Marshall, G., and Turner, J.:
Climate phenomena and their relevance for future regional climate change, in:
Climate Change 2013: The physical science basis, Contribution of Working
Group I to the fifth Assessment of the Intergovernmental Panel on Climate
Change, Cambridge, Cambridge University Press, 1217–1308, 2013.
Christensen, T. R., Jonasson, S., Michelsen, A., Callaghan, T. V., and
Havström, M.: Environmental controls on soil respiration in the Eurasian
and Greenlandic Arctic, J. Geophys. Res., 103, 29015–29021,
https://doi.org/10.1029/98JD00084, 1998.
Christiansen, J. R., Korhonen, J. F. J., Juszczak, R., Giebels, M., and
Pihlatie, M.: Assessing the effects of chamber placement, manual sampling and
headspace mixing on CH4 fluxes in a laboratory experiment, Plant
Soil, 343, 171–185, https://doi.org/10.1007/s11104-010-0701-y, 2011.
Corradi, C., Kolle, O., Walter, K., Zimov, S. A., and Schulze, E. D.: Carbon
dioxide and methane exchange of a north-east Siberian tussock tundra,
Glob. Change Biol., 11, 1910–1925, https://doi.org/10.1111/j.1365-2486.2005.01023.x, 2005.
Diaz-Pines, E., Schindlbacher, A., Pfeffer, M., Jandl, R.,
Zechmeister-Boltenstern, S., and Rubio, A.: Root trenching: a useful tool to
estimate autotrophic soil respiration? A case study in an Austrian mountain
forest, Eur. J. For. Res., 129, 101–109,
https://doi.org/10.1007/s10342-008-0250-6, 2010.
Dorrepaal, E., Toet, S., van Logtestijn, R. S. P., Swart, E., van de Weg, M.
J., Callaghan, T. V., and Aerts, R.: Carbon respiration from subsurface peat
accelerated by climate warming in the subarctic, Nature, 460, 616–679,
https://doi.org/10.1038/nature08216, 2009.
Durbin, J. and Watson, G. S.: Testing for serial correlation in least sqaures
regression: 1, Biometrika, 37, 409–428, https://doi.org/10.1093/biomet/37.3-4.409, 1950.
Eckhardt, T. and Kutzbach, L.: MATLAB code to calculate gas fluxes from
chamber-based methods, Pangaea, https://doi.org/10.1594/PANGAEA.857799, 2016.
Eckhardt, T., Knoblauch, C., Kutzbach, L., Holl, D., Simpson, G., Abakumov,
E., and Pfeiffer, E.-M.: Carbon dioxide fluxes and soil, vegetation,
meteorological data from a polygonal tundra in northeastern Siberia, Pangaea,
https://doi.org/10.1594/PANGAEA.898876, 2019.
Elberling, B., Michelsen, A., Schädel, C., Schuur, E. A., Christiansen,
H. H., Berg, L., Tamstorf, M. P., and Sigsgaard, C.: Long-term
CO2 production following permafrost thaw, Nat. Clim. Change, 3, 890,
https://doi.org/10.1038/NCLIMATE1955, 2013.
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G.,
Boulanger-Lapointe, N., Cooper, E. J., Cornelissen, J. H. C., Day, T. A.,
Dorrepaal, E., Elumeeva, T. G., Gill, M., Gould, W. A., Harte, J., Hik, D.
S., Hofgaard, A., Johnson, D. R., Johnstone, J. F., Jónsdóttir, I.
S., Jorgenson, J. C., Klanderud, K., Klein, J. A., Koh, S., Kudo, G., Lara,
M., Lévesque, E., Magnússon, B., May, J. L., Mercado-Díaz, J. A.,
Michelsen, A., Molau, U., Myers-Smith, I. H.,
Oberbauer, S. F., Onipchenko, V. G., Rixen, C., Martin Schmidt, N., Shaver,
G. R., Spasojevic, M. J., Þórhallsdóttir, Þ. E., Tolvanen,
A., Troxler, T., Tweedie, C. E., Villareal, S., Wahren, C.-H., Walker, X.,
Webber, P. J., Welker, J. M., and Wipf, S.: Plot-scale evidence of tundra
vegetation change and links to recent summer warming, Nat. Clim. Change,
2, 453–457, https://doi.org/10.1038/nclimate1465, 2012.
Estop-Aragonés, C., Cooper, M. D., Fisher, J. P., Thierry, A., Garnett,
M. H., Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R., and
Sanderson, N. K.: Limited release of previously-frozen C and increased new
peat formation after thaw in permafrost peatlands, Soil Biol. Biochem., 118,
115–129, 2018.
Frank, M. J., Kuipers, J. A. M., and van Swaaij, W. P. M.: Diffusion
coefficients and viscosities of CO2+H2O, CO2+CH3OH,
NH3+H2O, and NH3+CH3OH liquid mixtures, J. Chem. Eng.
Data, 41, 297–302, https://doi.org/10.1021/je950157k, 1996.
Frey, S. D., Drijber, R., Smith, H., and Melillo, J.: Microbial biomass,
functional capacity, and community structure after 12 years of soil warming,
Soil Biol. Biochem., 40, 2904–2907, https://doi.org/10.1016/j.soilbio.2008.07.020, 2008.
Gebauer, R. L. E., Reynolds, J. F., and Tenhunen, J. D.: Growth and
allocation of the arctic sedges Eriohorum angustifolium and E. vaginatum:
effects of variable soil oxygen and nutrient availability, Oecologia, 104,
330–339, https://doi.org/10.1007/bf00328369, 1995.
Görres, C. M., Kutzbach, L., and Elsgaard, L.: Comparative modeling of
annual CO2 flux of temperate peat soils under permanent grassland
management, Agr. Ecosyst. Environ., 186, 64–76,
https://doi.org/10.1016/j.agee.2014.01.014, 2014.
Grogan, P. and Chapin, F. S.: Initial effects of experimental warming on
above- and belowground components of net ecosystem CO2 exchange in
arctic tundra, Oecologia, 125, 512–520, https://doi.org/10.1007/s004420000490, 2000.
Grosse, G., Harden, J., Turetsky, M., McGuire, A. D., Camill, P., Tarnocai,
C., Frolking, S., Schuur, E. A. G., Jorgenson, T., Marchenko, S., Romanovsky,
V., Wickland, K. P., French, N., Waldrop, M., Bourgeau-Chavez, L., and
Striegl, R. G.: Vulnerability of high-latitude soil organic carbon in North
America to disturbance, J. Geophys. Res.-Biogeo., 116, G00K06,
https://doi.org/10.1029/2010jg001507, 2011.
Hanson, P. J., Edwards, N. T., Garten, C. T., and Andrews, J. A.: Separating
root and soil microbial contributions to soil respiration: A review of
methods and observations, Biogeochemistry, 48, 115–146,
https://doi.org/10.1023/a:1006244819642, 2000.
Harley, P. C., Tenhunen, J. D., Murray, K. J., and Beyers, J.: Irradiance and
temperature effects on photosynthesis of tussock tundra Sphagnum mosses from
the foothills of the Philip Smith Mountains, Alaska, Oecologia, 79, 251–259,
https://doi.org/10.1007/bf00388485, 1989.
Heikkinen, J. E. P., Virtanen, T., Huttunen, J. T., Elsakov, V., and
Martikainen, P. J.: Carbon balance in East European tundra, Global
Biogeochem. Cy., 18, GB1023, https://doi.org/10.1029/2003GB002054, 2004.
Helbig, M., Chasmer, L. E., Desai, A. R., Kljun, N., Quinton, W. L., and
Sonnentag, O.: Direct and indirect climate change effects on carbon dioxide
fluxes in a thawing boreal forest-wetland landscape, Glob. Change Biol., 23,
3231–3248, https://doi.org/10.1111/gcb.13638, 2017.
Hicks Pries, C. E., Schuur, E. A., and Crummer, K. G.: Thawing permafrost
increases old soil and autotrophic respiration in tundra: partitioning
ecosystem respiration using delta 13C and 14C, Glob. Change Biol.,
19, 649–661, https://doi.org/10.1111/gcb.12058, 2013.
Hicks Pries, C. E., van Logtestijn, R. S., Schuur, E. A., Natali, S. M.,
Cornelissen, J. H., Aerts, R., and Dorrepaal, E.: Decadal warming causes a
consistent and persistent shift from heterotrophic to autotrophic respiration
in contrasting permafrost ecosystems, Glob. Change Biol., 21, 4508–4519,
https://doi.org/10.1111/gcb.13032, 2015.
Hobbie, S. E., Nadelhoffer, K. J., and Högberg, P.: A synthesis: The role
of nutrients as constraints on carbon balances in boreal and arctic regions,
Plant Soil, 242, 163–170, https://doi.org/10.1023/a:1019670731128, 2002.
Holl, D., Wille, C., Sachs, T., Schreiber, P., Runkle, B. R. K., Beckebanze,
L., Langer, M., Boike, J., Pfeiffer, E.-M., Fedorova, I., Bolshianov, D. Y.,
Grigoriev, M. N., and Kutzbach, L.: A long-term (2002 to 2017) record of
closed-path and open-path eddy covariance CO2 net ecosystem exchange
fluxes from the Siberian Arctic, Earth Syst. Sci. Data, 11, 221–240,
https://doi.org/10.5194/essd-11-221-2019, 2019.
Hudson, J. M. G., Henry, G. H. R., and Cornwell, W. K.: Taller and larger:
shifts in Arctic tundra leaf traits after 16 years of experimental warming,
Glob. Change Biol., 17, 1013–1021, https://doi.org/10.1111/j.1365-2486.2010.02294.x,
2011.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G.,
Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,
O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J.,
and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with
quantified uncertainty ranges and identified data gaps, Biogeosciences, 11,
6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
IUSS Working Group WRB: World reference base for soil resources 2014
international soil classification system for naming soils and creating
legends for soil maps, FAO, Rome, 2014.
Johnson, L. C., Shaver, G. R., Cades, D. H., Rastetter, E., Nadelhoffer, K.,
Giblin, A., Laundre, J., and Stanley, A.: Plant carbon-nutrient interactions
control CO2 exchange in Alaskan wet sedge tundra ecosystems, Ecology,
81, 453–469, https://doi.org/10.1890/0012-9658(2000)081[0453:PCNICC]2.0.CO;2, 2000.
Juszczak, R., Humphreys, E., Acosta, M., Michalak-Galczewska, M., Kayzer, D.,
and Olejnik, J.: Ecosystem respiration in a heterogeneous temperate peatland
and its sensitivity to peat temperature and water table depth, Plant Soil,
366, 505–520, https://doi.org/10.1007/s11104-012-1441-y, 2013.
Kittler, F., Burjack, I., Corradi, C. A. R., Heimann, M., Kolle, O., Merbold,
L., Zimov, N., Zimov, S., and Göckede, M.: Impacts of a decadal drainage
disturbance on surface–atmosphere fluxes of carbon dioxide in a permafrost
ecosystem, Biogeosciences, 13, 5315–5332,
https://doi.org/10.5194/bg-13-5315-2016, 2016.
Knoblauch, C., Beer, C., Sosnin, A., Wagner, D., and Pfeiffer, E. M.:
Predicting long-term carbon mineralization and trace gas production from
thawing permafrost of Northeast Siberia, Glob. Change Biol., 19, 1160–1172,
https://doi.org/10.1111/gcb.12116, 2013.
Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N., and Pfeiffer, E.-M.:
Methane production as key to the greenhouse gas budget of thawing permafrost,
Nat. Clim. Change, 8, 309–312, https://doi.org/10.1038/s41558-018-0095-z, 2018.
Koskinen, M., Minkkinen, K., Ojanen, P., Kämäräinen, M., Laurila,
T., and Lohila, A.: Measurements of CO2 exchange with an automated
chamber system throughout the year: challenges in measuring night-time
respiration on porous peat soil, Biogeosciences, 11, 347–363,
https://doi.org/10.5194/bg-11-347-2014, 2014.
Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykänen, H.,
Shurpali, N. J., Martikainen, P. J., Alm, J., and Wilmking, M.: CO2
flux determination by closed-chamber methods can be seriously biased by
inappropriate application of linear regression, Biogeosciences, 4,
1005–1025, https://doi.org/10.5194/bg-4-1005-2007, 2007a.
Kutzbach, L., Wille, C., and Pfeiffer, E.-M.: The exchange of carbon dioxide
between wet arctic tundra and the atmosphere at the Lena River Delta,
Northern Siberia, Biogeosciences, 4, 869–890,
https://doi.org/10.5194/bg-4-869-2007, 2007b.
Kuzyakov, Y.: Sources of CO2 efflux from soil and review of
partitioning methods, Soil Biol. Biochem., 38, 425–448,
https://doi.org/10.1016/j.soilbio.2005.08.020, 2006.
Kwon, M. J., Heimann, M., Kolle, O., Luus, K. A., Schuur, E. A. G., Zimov,
N., Zimov, S. A., and Göckede, M.: Long-term drainage reduces CO2
uptake and increases CO2 emission on a Siberian floodplain due to
shifts in vegetation community and soil thermal characteristics,
Biogeosciences, 13, 4219–4235, https://doi.org/10.5194/bg-13-4219-2016,
2016.
Lara, M. J., Villarreal, S., Johnson, D. R., Hollister, R. D., Webber, P. J.,
and Tweedie, C. E.: Estimated change in tundra ecosystem function near
Barrow, Alaska between 1972 and 2010, Environ. Res. Lett., 7, 015507,
https://doi.org/10.1088/1748-9326/7/1/015507, 2012.
Lara, M. J. and Tweedie, C. E.: CO2 and CH4 Fluxes across
Polygon Geomorphic Types, Barrow, Alaska, 2006–2010, Next Generation
Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory,
U.S. Department of Energy, Oak Ridge, Tennessee, USA, https://doi.org/10.5440/1156852
(last access: 4 December 2018), 2014.
Lynch, A. H., Chapin, F. S., Hinzman, L. D., Wu, W., Lilly, E., Vourlitis,
G., and Kim, E.: Surface Energy Balance on the Arctic Tundra: Measurements
and Models, J. Climate, 12, 2585–2606,
https://doi.org/10.1175/1520-0442(1999)012<2585:sebota>2.0.co;2, 1999.
Mahecha, M. D., Reichstein, M., Carvalhais, N., Lasslop, G., Lange, H.,
Seneviratne, S. I., Vargas, R., Ammann, C., Arain, M. A., Cescatti, A.,
Janssens, I. A., Migliavacca, M., Montagnani, L., and Richardson, A. D.:
Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem
Level, Science, 329, 838–840, https://doi.org/10.1126/science.1189587, 2010.
Marushchak, M. E., Kiepe, I., Biasi, C., Elsakov, V., Friborg, T., Johansson,
T., Soegaard, H., Virtanen, T., and Martikainen, P. J.: Carbon dioxide
balance of subarctic tundra from plot to regional scales, Biogeosciences, 10,
437–452, https://doi.org/10.5194/bg-10-437-2013, 2013.
Mauritz, M., Bracho, R., Celis, G., Hutchings, J., Natali, S. M., Pegoraro,
E., Salmon, V. G., Schadel, C., Webb, E. E., and Schuur, E. A. G.: Nonlinear
CO2 flux response to 7 years of experimentally induced permafrost
thaw, Glob. Change Biol., 23, 3646–3666, https://doi.org/10.1111/gcb.13661, 2017.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.
D., Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet,
N.: Sensitivity of the carbon cycle in the Arctic to climate change, Ecol.
Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009.
Merbold, L., Kutsch, W. L., Corradi, C., Kolle, O., Rebmann, C., Stoy, P. C.,
Zimov, S. A., and Schulze, E. D.: Artificial drainage and associated carbon
fluxes (CO2/CH4) in a tundra ecosystem, Glob. Change Biol.,
15, 2599–2614, https://doi.org/10.1111/j.1365-2486.2009.01962.x, 2009.
Moyano, F. E., Manzoni, S., Chenu, C. J. S. B., and Biochemistry: Responses
of soil heterotrophic respiration to moisture availability: An exploration of
processes and models, Soil Biol. Biochem., 59, 72–85, 2013.
Murray, K., Tenhunen, J., and Nowak, R.: Photoinhibition as a control on
photosynthesis and production of Sphagnum mosses, Oecologia, 96, 200–207,
1993.
Muster, S., Langer, M., Heim, B., Westermann, S., and Boike, J.: Subpixel
heterogeneity of ice-wedge polygonal tundra: a multi-scale analysis of land
cover and evapotranspiration in the Lena River Delta, Siberia, Tellus B, 64,
17301, https://doi.org/10.3402/tellusb.v64i0.17301, 2012.
NASA: Landsat Programme: Lena Delta in Landsat 7, available at:
https://earthobservatory.nasa.gov/images/2704/lena-river-delta (last
access: 13 November 2018), 2002.
Natali, S. M., Schuur, E. A. G., Trucco, C., Hicks Pries, C. E., Crummer, K.
G., and Baron Lopez, A. F.: Effects of experimental warming of air, soil and
permafrost on carbon balance in Alaskan tundra, Glob. Change Biol., 17,
1394–1407, https://doi.org/10.1111/j.1365-2486.2010.02303.x, 2011.
Natali, S. M., Schuur, E. A. G., and Rubin, R. L.: Increased plant
productivity in Alaskan tundra as a result of experimental warming of soil
and permafrost, J. Ecology, 100, 488–498,
https://doi.org/10.1111/j.1365-2745.2011.01925.x, 2012.
Natali, S. M., Schuur, E. A. G., Mauritz, M., Schade, J. D., Celis, G.,
Crummer, K. G., Johnston, C., Krapek, J., Pegoraro, E., Salmon, V. G., and
Webb, E. E.: Permafrost thaw and soil moisture driving CO2 and
CH4 release from upland tundra, J. Geophys. Res.-Biogeo., 120,
525–537, https://doi.org/10.1002/2014JG002872, 2015.
Nobrega, S. and Grogan, P.: Landscape and Ecosystem-Level Controls on Net
Carbon Dioxide Exchange along a Natural Moisture Gradient in Canadian Low
Arctic Tundra, Ecosystems, 11, 377–396, https://doi.org/10.1007/s10021-008-9128-1, 2008.
Nowinski, N. S., Taneva, L., Trumbore, S. E., and Welker, J. M.:
Decomposition of old organic matter as a result of deeper active layers in a
snow depth manipulation experiment, Oecologia, 163, 785–792,
https://doi.org/10.1007/s00442-009-1556-x, 2010.
Oberbauer, S. F., Tweedie, C. E., Welker, J. M., Fahnestock, J. T., Henry, G.
H. R., Webber, P. J., Hollister, R. D., Walker, M. D., Kuchy, A., Elmore, E.,
and Starr, G.: Tundra CO2 fluxes in response to experimental warming
across latitundinal and moisture gradients, Ecol. Monogr., 77, 221–238,
https://doi.org/10.1890/06-0649, 2007.
Oechel, W. C., Vourlitis, G. L., Hastings, S. J., and Bochkarev, S. A.:
Change in Arctic CO2 Flux Over Two Decades: Effects of Climate Change
at Barrow, Alaska, Ecol. Appl., 5, 846–855, https://doi.org/10.2307/1941992, 1995.
Oechel, W. C., Vourlitis, G. L., Hastings, S. J., Ault, R. P., and Bryant,
P.: The effects of water table manipulation and elevated temperature on the
net CO2 flux of wet sedge tundra ecosystems, Glob. Change Biol., 4,
77–90, https://doi.org/10.1046/j.1365-2486.1998.00110.x, 1998.
Oechel, W. C., Laskowski, C. A., Burba, G., Gioli, B., and Kalhori, A. A. M.:
Annual patterns and budget of CO2 flux in an Arctic tussock tundra
ecosystem, J. Geophys. Res.-Biogeo., 119, 323–339, https://doi.org/10.1002/2013JG002431,
2014.
Olivas, P. C., Oberbauer, S. F., Tweedie, C. E., Oechel, W. C., and Kuchy,
A.: Responses of CO2 flux components of Alaskan Coastal Plain tundra
to shifts in water table, J. Geophys. Res.-Biogeo., 115, G00I05,
https://doi.org/10.1029/2009JG001254, 2010.
Olivas, P. C., Oberbauer, S. F., Tweedie, C., Oechel, W. C., Lin, D., and
Kuchy, A.: Effects of Fine-Scale Topography on CO2 Flux Components of
Alaskan Coastal Plain Tundra: Response to Contrasting Growing Seasons, Arct.
Antarct. Alp. Res., 43, 256–266, https://doi.org/10.1657/1938-4246-43.2.256, 2011.
Parmentier, F., Van Der Molen, M., Van Huissteden, J., Karsanaev, S.,
Kononov, A., Suzdalov, D., Maximov, T., and Dolman, A.: Longer growing
seasons do not increase net carbon uptake in the northeastern Siberian
tundra, J. Geophys. Res.-Biogeo., 116, G04013, https://doi.org/10.1029/2011JG001653,
2011.
Pihlatie, M. K., Christiansen, J. R., Aaltonen, H., Korhonen, J. F., Nordbo,
A., Rasilo, T., Benanti, G., Giebels, M., Helmy, M., and Sheehy, J.:
Comparison of static chambers to measure CH4 emissions from soils,
Agr. Forest Meteorol., 171, 124–136,
doi.org/10.1016/j.agrformet.2012.11.008, 2013.
Pogoda i Klimat: Climate Tiksi, available at:
http://www.pogodaiklimat.ru/climate/21824.htm, last access: 8 May 2016.
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost thermal
state in the polar Northern Hemisphere during the international polar year
2007–2009: a synthesis, Permafrost Periglac., 21, 106–116,
https://doi.org/10.1002/ppp.689, 2010.
Rößger, N., Wille, C., Holl, D., Göckede, M., and Kutzbach, L.:
Scaling and balancing carbon dioxide fluxes in a heterogeneous tundra
ecosystem of the Lena River Delta, Biogeosciences Discuss.,
https://doi.org/10.5194/bg-2019-10, in review, 2019.
Runkle, B. R. K., Sachs, T., Wille, C., Pfeiffer, E.-M., and Kutzbach, L.:
Bulk partitioning the growing season net ecosystem exchange of CO2 in
Siberian tundra reveals the seasonality of its carbon sequestration strength,
Biogeosciences, 10, 1337–1349, https://doi.org/10.5194/bg-10-1337-2013,
2013.
Salmon, V. G., Soucy, P., Mauritz, M., Celis, G., Natali, S. M., Mack, M. C.,
and Schuur, E. A.: Nitrogen availability increases in a tundra ecosystem
during five years of experimental permafrost thaw, Glob. Change Biol., 22,
1927–1941, https://doi.org/10.1111/gcb.13204, 2016.
Sanders, T., Fiencke, C., and Pfeiffer, E.-M. J. P.: Small-scale variability
of dissolved inorganic nitrogen (DIN), C∕N ratios and ammonia
oxidizing capacities in various permafrost affected soils of Samoylov Island,
Lena River Delta, Northeast Siberia, Polarforschung, Bremerhaven, Alfred
Wegener Institute for Polar and Marine Research & German Society of Polar
Research, 80, 23–35, 2010.
Schneider, J., Kutzbach, L., and Wilmking, M.: Carbon dioxide exchange fluxes
of a boreal peatland over a complete growing season, Komi Republic, NW
Russia, Biogeochemistry, 111, 485–513, https://doi.org/10.1007/s10533-011-9684-x, 2012.
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and
Osterkamp, T. E.: The effect of permafrost thaw on old carbon release and net
carbon exchange from tundra, Nature, 459, 556–559, https://doi.org/10.1038/nature08031,
2009.
Schuur, E. A. G., Abbott, B., and Network, P. C.: High risk of permafrost
thaw, Nature, 480, 32–33, https://doi.org/10.1038/480032a, 2011.
Schwamborn, G., Rachold, V., and Grigoriev, M. N.: Late Quaternary
sedimentation history of the Lena Delta, Quatern. Int., 89, 119–134,
https://doi.org/10.1016/S1040-6182(01)00084-2, 2002.
Segal, A. D. and Sullivan, P. F.: Identifying the sources and uncertainties
of ecosystem respiration in Arctic tussock tundra, Biogeochemistry, 121,
489–503, https://doi.org/10.1007/s10533-014-0017-8, 2014.
Shaver, G., Johnson, L., Cades, D., Murray, G., Laundre, J., Rastetter, E.,
Nadelhoffer, K., and Giblin, A. J. E. M.: Biomass and CO2 flux in wet
sedge tundras: responses to nutrients, temperature, and light, Ecol. Monogr.,
68, 75–97, 1998.
Soegaard, H., Hasholt, B., Friborg, T., and Nordstroem, C.: Surface energy-
and water balance in a high-arcticenvironment in NE Greenland, Theor. Appl.
Climatol., 70, 35–51, https://doi.org/10.1007/s007040170004, 2001.
Subke, J.-A., Inglima, I., and Cotrufo, M. F.: Trends and methodological
impacts in soil CO2 efflux partitioning: A metaanalytical review,
Glob. Change Biol., 12, 921–943, https://doi.org/10.1111/j.1365-2486.2006.01117.x, 2006.
Suseela, V., Conant, R. T., Wallenstein, M. D., and Dukes, J. S.: Effects of
soil moisture on the temperature sensitivity of heterotrophic respiration
vary seasonally in an old-field climate change experiment, Glob. Change
Biol., 18, 336–348, https://doi.org/10.1111/j.1365-2486.2011.02516.x, 2012.
Taylor, P. C., Cai, M., Hu, A., Meehl, G. A., Washington, W., and Zhang, G.
J.: A decomposition of feedback contributions to polar warming amplification,
J. Climate, 26, 7023–7043, https://doi.org/10.1175/JCLI-D-12-00696.1, 2013.
Turetsky, M. R., Bond-Lamberty, B., Euskirchen, E., Talbot, J., Frolking, S.,
McGuire, A. D., and Tuittila, E. S.: The resilience and functional role of
moss in boreal and arctic ecosystems, New Phytol., 196, 49–67,
https://doi.org/10.1111/j.1469-8137.2012.04254.x, 2012.
van't Hoff, J. H.: Lectures on theoretical and physical chemistry, Part 1:
Chemical dynamics, Edward Arnold, London, 1898.
Voigt, C., Lamprecht, R. E., Marushchak, M. E., Lind, S. E., Novakovskiy, A.,
Aurela, M., Martikainen, P. J., and Biasi, C.: Warming of subarctic tundra
increases emissions of all three important greenhouse gases – carbon
dioxide, methane, and nitrous oxide, Glob. Change Biol., 23, 3121–3138,
https://doi.org/10.1111/gcb.13563, 2017.
Vourlitis, G. L., Oechel, W. C., Hope, A., Stow, D., Boynton, B., Verfaillie,
J., Zulueta, R., and Hastings, S. J.: Physiological models for scaling plot
measurements of CO2 flux across an Arctic tundra landscape, Ecol.
Appl., 10, 60–72, https://doi.org/10.1890/1051-0761(2000)010[0060:PMFSPM]2.0.CO;2, 2000.
Walker, D. A., Raynolds, M. K., Daniëls, F. J. A., Einarsson, E.,
Elvebakk, A., Gould, W. A., Katenin, A. E., Kholod, S. S., Markon, C. J.,
Melnikov, E. S., Moskalenko, N. G., Talbot, S. S., Yurtsev, B. A., and
Franklin, J.: The Circumpolar Arctic vegetation map, J. Veg. Sci., 16,
267–282, https://doi.org/10.1658/1100-9233(2005)016[0267:TCAVM]2.0.CO;2, 2005.
Walz, J., Knoblauch, C., Böhme, L., and Pfeiffer, E.-M.: Regulation of
soil organic matter decomposition in permafrost-affected Siberian tundra
soils – Impact of oxygen availability, freezing and thawing, temperature,
and labile organic matter, Soil Biol. Biochem., 110, 34–43,
https://doi.org/10.1016/j.soilbio.2017.03.001, 2017.
Wendler, G. and Eaton, F.: Surface radiation budget at Barrow, Alaska, Theor.
Appl. Climatol., 41, 107–115, https://doi.org/10.1007/bf00866433, 1990.
Wilber, A. C., Kratz, D. P., and Gupta, S. K.: Surface Emissivity Maps for
Use in Satellite Retrievals of Longwave Radiation, NASA Langley Technical
Report Server, 1999.
Wille, C., Kutzbach, L., Sachs, T., Wagner, D., and Pfeiffer, E.-M.: Methane
emission from Siberian arctic polygonal tundra: eddy covariance measurements
and modeling, Glob. Change Biol., 14, 1395–1408,
https://doi.org/10.1111/j.1365-2486.2008.01586.x, 2008.
Yershov, E. D.: General Geocryology, Cambridge University Press, Cambridge,
1998.
Zamolodchikov, D., Karelin, D., and Ivaschenko, A.: Sensitivity of Tundra
Carbon Balance to Ambient Temperature, Water Air Soil Poll., 119, 157–169,
https://doi.org/10.1023/a:1005194613088, 2000.
Zimov, S. A., Davydov, S. P., Zimova, G. M., Davydova, A. I., Schuur, E. A.
G., Dutta, K., and Chapin, F. S.: Permafrost carbon: Stock and
decomposability of a globally significant carbon pool, Geophys. Res. Lett.,
33, L20502, https://doi.org/10.1029/2006gl027484, 2006a.
Zimov, S. A., Schuur, E. A. G., and Chapin, F. S.: Permafrost and the global
carbon budget, Science, 312, 1612–1613, https://doi.org/10.1126/science.1128908, 2006b.
Zona, D., Lipson, D., Zulueta, R., Oberbauer, S., and Oechel, W.:
Microtopographic controls on ecosystem functioning in the Arctic Coastal
Plain, J. Geophys. Res.-Biogeo., 116, G00I08, https://doi.org/10.1029/2009JG001241, 2011.
Zona, D., Lipson, D. A., Paw U, K. T., Oberbauer, S. F., Olivas, P., Gioli,
B., and Oechel, W. C.: Increased CO2 loss from vegetated drained lake
tundra ecosystems due to flooding, Global Biogeochem. Cy., 26, GB2004,
https://doi.org/10.1029/2011GB004037, 2012.
Zona, D., Lipson, D. A., Richards, J. H., Phoenix, G. K., Liljedahl, A. K.,
Ueyama, M., Sturtevant, C. S., and Oechel, W. C.: Delayed responses of an
Arctic ecosystem to an extreme summer: impacts on net ecosystem exchange and
vegetation functioning, Biogeosciences, 11, 5877–5888,
https://doi.org/10.5194/bg-11-5877-2014, 2014.
Zubrzycki, S., Kutzbach, L., Grosse, G., Desyatkin, A., and Pfeiffer, E.-M.:
Organic carbon and total nitrogen stocks in soils of the Lena River Delta,
Biogeosciences, 10, 3507–3524, https://doi.org/10.5194/bg-10-3507-2013,
2013.
Short summary
We quantified the contribution of individual components governing the net ecosystem exchange of CO2 and how these fluxes respond to environmental changes in a drained and water-saturated site in the polygonal tundra of northeast Siberia. This work finds both sites as a sink for atmospheric CO2 during the growing season, but sink strengths varied between the sites. Furthermore, it was shown that soil hydrological conditions were one of the key drivers for differing CO2 fluxes between the sites.
We quantified the contribution of individual components governing the net ecosystem exchange of...
Altmetrics
Final-revised paper
Preprint