Articles | Volume 16, issue 10
https://doi.org/10.5194/bg-16-2233-2019
https://doi.org/10.5194/bg-16-2233-2019
Research article
 | 
29 May 2019
Research article |  | 29 May 2019

Underestimation of denitrification rates from field application of the 15N gas flux method and its correction by gas diffusion modelling

Reinhard Well, Martin Maier, Dominika Lewicka-Szczebak, Jan-Reent Köster, and Nicolas Ruoss

Related authors

Evaluation of denitrification and decomposition from three biogeochemical models using laboratory measurements of N2, N2O and CO2
Balázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, Mohammad Ibrahim Khalil, Simone Merl, Andreas Rode, Bianca Ziehmer, Amanda Matson, and Hongxing He
Biogeosciences, 18, 5681–5697, https://doi.org/10.5194/bg-18-5681-2021,https://doi.org/10.5194/bg-18-5681-2021, 2021
Short summary
Comparing modified substrate-induced respiration with selective inhibition (SIRIN) and N2O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions
Lena Rohe, Traute-Heidi Anderson, Heinz Flessa, Anette Goeske, Dominika Lewicka-Szczebak, Nicole Wrage-Mönnig, and Reinhard Well
Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021,https://doi.org/10.5194/bg-18-4629-2021, 2021
Short summary
Denitrification in soil as a function of oxygen availability at the microscale
Lena Rohe, Bernd Apelt, Hans-Jörg Vogel, Reinhard Well, Gi-Mick Wu, and Steffen Schlüter
Biogeosciences, 18, 1185–1201, https://doi.org/10.5194/bg-18-1185-2021,https://doi.org/10.5194/bg-18-1185-2021, 2021
Short summary
N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction – validation with the 15N gas-flux method in laboratory and field studies
Dominika Lewicka-Szczebak, Maciej Piotr Lewicki, and Reinhard Well
Biogeosciences, 17, 5513–5537, https://doi.org/10.5194/bg-17-5513-2020,https://doi.org/10.5194/bg-17-5513-2020, 2020
Short summary
The 15N gas-flux method to determine N2 flux: a comparison of different tracer addition approaches
Dominika Lewicka-Szczebak and Reinhard Well
SOIL, 6, 145–152, https://doi.org/10.5194/soil-6-145-2020,https://doi.org/10.5194/soil-6-145-2020, 2020
Short summary

Related subject area

Biogeochemistry: Soils
Soil priming effects and involved microbial community along salt gradients
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences, 21, 1–11, https://doi.org/10.5194/bg-21-1-2024,https://doi.org/10.5194/bg-21-1-2024, 2024
Short summary
Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023,https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary
Ecosystem-specific patterns and drivers of global reactive iron mineral-associated organic carbon
Bo Zhao, Amin Dou, Zhiwei Zhang, Zhenyu Chen, Wenbo Sun, Yanli Feng, Xiaojuan Wang, and Qiang Wang
Biogeosciences, 20, 4761–4774, https://doi.org/10.5194/bg-20-4761-2023,https://doi.org/10.5194/bg-20-4761-2023, 2023
Short summary
Dark septate endophytic fungi associated with pioneer grass inhabiting volcanic deposits and their functions in promoting plant growth
Han Sun, Tomoyasu Nishizawa, Hiroyuki Ohta, and Kazuhiko Narisawa
Biogeosciences, 20, 4737–4749, https://doi.org/10.5194/bg-20-4737-2023,https://doi.org/10.5194/bg-20-4737-2023, 2023
Short summary
Global patterns and drivers of phosphorus fractions in natural soils
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023,https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary

Cited articles

Bollmann, A. and Conrad, R.: Enhancement by acetylene of the decomposition of nitric oxide in soil, Soil Biol. Biochem., 29, 1057–1066, https://doi.org/10.1016/s0038-0717(97)00006-0, 1997a. 
Bollmann, A. and Conrad, R.: Acetylene blockage technique leads to underestimation of denitrification rates in oxic soils due to scavenging of intermediate nitric oxide, Soil Biol. Biochem., 29, 1067–1077, https://doi.org/10.1016/s0038-0717(97)00007-2, 1997b. 
Buchen, C., Lewicka-Szczebak, D., Fuss, R., Helfrich, M., Flessa, H., and Well, R.: Fluxes of N2 and N2O and contributing processes in summer after grassland renewal and grassland conversion to maize cropping on a Plaggic Anthrosol and a Histic Gleysol, Soil Biol. Biochem., 101, 6–19, https://doi.org/10.1016/j.soilbio.2016.06.028, 2016. 
Butterbach-Bahl, K., Willibald, G., and Papen, H.: Soil core method for direct simultaneous determination of N-2 and N2O emissions from forest soils, Plant Soil, 240, 105–116, https://doi.org/10.1023/a:1015870518723, 2002. 
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do we understand the processes and their controls?, Philos. T. R. Soc. B, 368, 23713120, https://doi.org/10.1098/rstb.2013.0122, 2013. 
Download
Short summary
Denitrification is a key process in the soil nitrogen cycle but poorly investigated due to methodical limitations. The 15N gas flux method is currently the only approach allowing field measurement of denitrification but was subject to bias due to unaccounted fluxes of 15N-labelled gaseous denitrification products to the subsoil. We used field flux experiments and diffusion–reaction modelling to estimate this source of error and developed an approach to correct denitrification rates.
Altmetrics
Final-revised paper
Preprint